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1. Introduction

This paper is concerned with the existence of solutions of the wave equation
(1) Ou = Uy — Uzz = J(z,1, 1), 0<z<m teR,
satisfying the boundary and the periodicity conditions

(2) u(0,t) = u(m,t) =0, teR,

(3) u(z,t + 2m) = u(z, t), 0<z<m teR.

Suppose that f is continuous, 27-periodic in ¢, strongly increasing (in the sense to
be defined) and f(z,t,£)/€ — by as £ — 0, f(z,t,£)/€ — b as €] — oo. Denote
the spectrum of the operator O subject to the conditions (2)-(3) by o(0). We will
show that if by, b & o(0) and o(O) intersects the interval with the endpoints by and
b, then (1)-(3) has at least one non-trivial solution (in addition to the trivial one
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u = 0). The same conclusion remains valid -under some additional hypotheses if
bo,b € o(O).

Our result generalizes that of Amann and Zehnder [1, 2] where it was assumed
that f € C!, the derivative Je satisfles 0 < a < fe < B and b ¢ o(0) (on the other
hand, if by € o(00), our hypotheses at £ = 0 are somewhat different and rather more
restrictive). In [2] the assumptions that fe is bounded and b ¢ o(0) were used in
order to reduce the problem to a finite dimensional one and to obtain estimates near
infinity. Then it was shown via the Morse-Conley index theory that the reduced
problem has a non-trivial solution.

In [4, 6] simpler proofs of the result of Amann and Zehnder were given: a finite
dimensional reduction was used together with the classical Morse theory. Moreover,
it was shown that under some additional hypotheses (1)-(3) possesses at least two
non-trivial solutions.

Our approach here is different. We obtain solutions of (1)(3) as critical points
of a strongly indefinite functional in an L?-space. To this functional we apply
an infinite dimentional cohomology and a Morse theory developed in [17]. Since
we make no finite dimensional reduction, we need not assume that f € C! and
b & o(0) (this second hypothesis was essential in obtaining the necessary estimates
near infinity for the reduced functional).

Although we concentrate on the problems (1)—(3), we would like to mention
that our method (with some obvious changes) also applies to the equation Du =
—f(=,t,u) with the boundary and the periodicity conditions (2)-(3).

In what follows the ball of radius r and center at the origin will be denoted by
By, and its closure and boundary by B, and 9B, respectively. For a functional
® € C1(E,R), E a real Hilbert space, we will use the customary notation

¢ ={ucE:®(u)<a} and K:={u€E:Vd(u)=0}.

Recall that @ is said to satisfy the Palais-Smale condition ((PS) in short) on a closed
set A if each sequence (u,) C A such that ®(u,) is bounded and V®(u,) — 0 has
a convergent subsequence. Recall also [5, 12] that the critical groups of an isolated
critical point p of ® are defined by

(4) cq((I>,p) = Hq(i)“ nNU,®*NU — {p}),

where a = ®(p), U is a closed neighbourhood of p and H, is the g-th (singular)
homology group with coefficients in a field F (¢, is independent of U by the excision
property of homology). Since ¢, (<I>, p) = 0 for all g if ® is strongly indefinite, we
will also use a different notion of critical group which has been introduced in [17]
and will be recalled in Section 2 of this paper.
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2. An infinite dimensional cohomology and Morse theory

In this section we summarize some results from [17] and prove an additional
result on cohomology of a saddle point.

Let E be areal Hilbert space with inner product (, ) and suppose that E = F@ﬁ,
where F and F are orthogonal to each other and F has an orthonormal basis
(eén)nen. Denote

En:={'u,=(:clel+---+:t:nen)+y:z,-GRforlgignandyef'}

and
Ef :={u€Ep:x, 20}, E,:={u€E,:z,<0}.

Observe that E, = E} UE; and E,_, = Ef N E,;. For the pair (X, A) of
closed subsets of E with A C X denote X, := X NE,, X% := X N E, and
similarly for A. Then (X,; X}, X7) is a triad and (An; A}, A7) its subtriad. Since
X 1 NX, =X, and AL, N A, = Ay, there exists an exact Mayer-Vietoris
sequence of this pair of triads and a corresponding Mayer-Vietoris homomorphism

Agr. : HQ+"(X,,,,A") s Hq+n+1(Xn+1,An+1).

Here H* is the Cech cohomology with coefficients in some field F. Following an
idea of Ggba and Granas [7], we define for each ¢ € Z a new cohomology group by

HEL(X,A) :== lim{H"™(X,, A,), A}

A mapping f : (X, A4) — (Y, B) is said to be admissible if f, := f|x, maps the
triad (Xo; X5, X,;) to (En; Ef, E; ) for almost all n. Then {f:} is a direct system
of homomorphisms and

f*:=1mf; : HL(Y,B) - HL(X, A).

Admissible homotopies are defined in a similar way. There exists a coboundary
homomorphism §* for the pair (X, A) and one shows [17, Theorem 2.2] that the
cohomology theory Hp satisfies all the Eilenberg-Steenrod axioms except the di-
mension axiom which takes the following form: If § := {u € F : ||ju|| = 1}, then
HE'(S) ~ HI({point}). Moreover, HE has the strong excision property, i.e.,
H;(AUB,B) = Hj;(A,AN B) whenever A and B are closed subsets of E.
Denote the orthogonal projectors of E onto F and E,, by Pr and P, respectively.
Suppose that ® € C'(E,R) is a functional satisfying the following hypothesis:

(H) ®(u) = 3(Lu,u) + ¢(u), where
(i) L: E — Eis alinear, self-adjoint and bounded operator such that LF c F
and LE, C E,¥n € N;
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(ii) the gradient V4 is bounded on bounded sets and the mapping PV is
compact. ‘
A mapping V : E— K — E (where K is the set of critical points of ®) is said to be
a pseudo-gradient vector field for @ if V is locally Lipschitz continuous and there
exist constants 0 < # < a such that

(5) V(@) <el|Vew)l and (VO(u),V(u)2BIVE(W)|® VueE - K.

Let A be a compact subset of K. A pair of sets (W,W™) is said to be an
admissible pair for A and & if

(i) W, W~ areclosed in E, W~ C W, A is in the interior of W and there are
no other critical points in W;
(ii) ®|w is bounded below;
(iii) there exist a neighbourhood N (in E) of the boundary W of W and a
pseudo-gradient vector field V for ® on N such that W — N is bounded and
V(u) = Lu+ C(u), where C is bounded on bounded sets and C(N) C E,,
for some nyp;
(iv) W~ is the union of finitely many (possibly intersecting) closed sets each
of which lies on a Cl-manifold of codimension 1 in F, V is transversal to
each of these manifolds at points of W, the flow n of —V can leave W
only via W, and if u € W, then (¢,u) ¢ W for any ¢ > 0.
For an isolated critical point p of ® we define the critical groups cL.(®,p) of ® at p
by

(6) ¢&(@,p) = HEW,W™), q€Z.

It has been shown in [17, Section 3] that if ® satisfies (H) and (PS), then each
neighbourhood of p contains an admissible pair and the definition (6) is independent
of the choice of such a pair.

PRoOPOSITION 2.1. [17, Example 2.1(ii)] Let X be a closed linear subspace of
E such that X, := X N E, is (n + d)-dimensional whenever n is sufficiently large.
Then for each r > 0,

— F ifqg=d,
H;(B,nX,aB,nX)z{ /e

0 otherwise.

DEFINITION 2.2. A functional @ is said to satisfy the local linking condition at
0 if there exist an orthogonal decomposition E = X @Y and a constant p > 0 such
that
®(u) > c:=9(0) foreachue B, NY
and
®(u) <c¢ for eachu€ B,NX.
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This is a variant of a condition that has been introduced in [10].

The following result extends [11, Theorem 2.1] to the case of strongly indefinite
functionals:

THEOREM 2.3. Suppose that @ satisfies (H), (PS) and the local linking condi-
tion at 0 (with X and Y as above). Suppose also that 0 is an isolated critical point
of ®. If Y C E, and dim X,, = n+d for all sufficiently large n, then ¢k (®,0) % 0.

PrROOF. We may assume that 0 is the only critical point of & in B,. Let
0 < 6 < p. We first briefly recall the construction of an admissible pair (W, W)
with W C Bj which has been given in [17, Proposition 3.3]. Let £ > 0 be small
enough and let 0 < 6z < 6; < §/2, where 6; is chosen so that |®(u) — ¢| < ¢ for all
u € Bs,. There exists a pseudo-gradient vector field V=L+C:E-K—E such
that C is bounded on bounded sets and PrC is compact. Then for all ng large
enough, V := L + P,,C is a pseudo-gradient field on N := Bs — By, (and has the
form given in (iii) of the definition of an admissible pair). Moreover, according to
[17, Lemma 3.2], the constants & and 3 (cf. (5)) for V do not depend on ng but
only on the corresponding constants for V. Let w be a locally Lipschitz continuous
function such that w = 0 on Bs, and w = 1 on N. Consider the initial value
problem

dn

dt —W(W)V(ﬂ), 77(0,“) = U,
and note that u — 7(t,v) is an admissible map (whenever defined) because V (u) =
Lu + P,,C(u), and therefore n(t,u) € ET if u € EX and n > ng. Set

W := {n(t,u) : t > 0,u € Bs,, 2(n(t,v)) > c — ¢}

and
W =Wn{u€FE:®u)=c—ec}.

Then (W,W~) is an admissible pair and W C Bjs. Note that if one chooses a
smaller §; and a larger ng, then W and W~ may change, but (W, W~) will remain
an admissible pair.

Let v € (0,6:/2). We may assume that 6 < v < 61/2, w = 1 on By — B,
and, choosing a larger ng if necessary, that V is a pseudo-gradient vector field on
Bs — B, (with the same constants « and 3 as above). Denote

A= {n(t,u) : ¢ > 0,u € 8Bs, N X, B(n(t,u)) > c—¢}.

Then A C W. Suppose u € 0B, N X. Since ®(u) < ¢, one sees as in the proof of
[17, Proposition 3.3] that if (¢, u) € 8Bs, /2, then

O(n(t,u)) < ¢ —eo,
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where €9 > 0 is independent of u and ng. Choosing 7 small enough, ®(u) >
¢ — g0 Yu € B,. Therefore n(t,u) cannot enter B, whenever u € A. Using (iv)
of the definition of an admissible pair it follows that if u € A, then there exists a
unique t(u), continuously depending on u, such that n(t(u),u) € W~. Hence the
mapping
a(s,u) :=
fueW-,0<s<1,
is an admissible strong deformation retraction of AU W~ onto W~. So it follows
from the exact sequence of the triple (W, AUW~,W~) that

(7) Hp(W,W™) = Hp(W,AUW").

{ n(st(u),u) HueA0<Ls<1,

Fory €Y, let
61(y) := min {6;,d(y, AUW ™)},
where d(y, AU W ™) is the distance from y to the set AU W, and denote
D={z+yeXaY:|z| <y}
Since (AUW™)NY =@, D is an open set and (AU W~)N D = §. Define
Fs:=(BsNX)® (BsNY)
and let i : (Bs, NX,8B5,NX) = (W,AUW ™) and j : (W, AUW~) — (Fj, Fs— D)
be the inclusion mappings. Then we have
(8)  Hp(Fs,Fs— D) Lo Hp(W,AUW™) -5 H;(Bs, N X, 085, N X),

where i*, j* are the induced homomorphisms. It is easy to see that the mapping
2t51$
max{|z|, 61(¥)}

61.’17
max{||z]|, 61(y)}

+ (1 -2t)z +y, 0<t<y,
Btz +y):=
+ (2 - 2t)y, $<t<,

is a deformation of (Fs, F5 — D) onto (Bs, N X,0Bs, N X). It is admissible since
Y C Ep, for some ng and therefore 8(t,z + y) € EX whenever z +y € EX and
n > ng. Moreover, the restriction of 3 to [0, 1] x (Bs, N X,8Bs, N X) is a homotopy
between 3(1,.) o (ji) and the identity on (Bs, N X,8B5, N X). Similarly, 8 is a
homotopy between (ji) o 8(1,.) and the identity on (Fs, Fs — D). So the inclusion
mapping ji is an admissible homotopy equivalence, and it follows that i*j* in (8)
is an isomorphism. In particular, HE(W,AUW~) % 0 (and HL(W,W~) # 0
by (7)) whenever H%(Bs, N X,8B5 N X) % 0. Now it remains to observe that
HE(Bs, N X,8B5, N X) = F according to Proposition 2.1. m
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3. Variational formulation

Consider the wave equation
Ou = Ug — Uge = [(T, ¢, u), 0<z<mmteR,
(9) u(0,t) = u(m,t) =0, t € R,
u(z,t + 2m) = u(z, t), 0<z<mteR,
with f satisfying the following hypotheses:

(f1) feC([0,7] x R x R) and f(z,t + 27, &) = f(z,t,£) for all z,¢,&;
(f2) there exists an € > 0 such that (f(x,2,€) — f(z,t,7))(€ —n) > (€ —n)?
for all z,t,£, 7 (strong monotonicity);
(f3) f(z,t, &) = b€ + g(x,t, &), where g is a bounded function;
(fa) flz,t, &) = bo& + go(z,t, &), where go(z,t,€)/€ — 0 uniformly in z and ¢
as & — 0.
Note that f(z,t,0) = 0 according to (f4), so u = 0 is a solution of (9) (the trivial
solution). Note also that bg,b > 0.
Henceforth we will assume that f satisfies (f1) - (f4) although the results of this
section remain true under weaker hypotheses.
Let  := (0, 7) x (0,27) and let E be the space of functions

(o, o] o0
u(z,t) = z E Cik sin jze'Ft, Cj—k = Cj,
Jj=lk=—o00
with the norm given by
o0 o0
lul® =227 > lel*
j=1lk=—cc

Then E is a subspace of L?(2). In what follows we identify the operator O with
its self-adjoint extension in E. There exists an orthogonal decomposition

E =N(@)e R(DO),
where N(O) is the (generalized) nullspace and R(T) is the range of O. Define
Au:=0u—bu

and let E = F* © F° @ F~ be the orthogonal decomposition into subspaces cor-
responding to the positive, zero and negative part of the spectrum of —A (note
the minus sign). Let (eD,)me, be an orthonormal basis for F°, (e;,)%°_; an or-
thonormal system of eigenfunctions of —A in F~ (with corresponding eigenvalues
A,) and (e})%_,, (fm)Z~; an orthonormal system of eigenfunctions of —A in F*
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(with corresponding eigenvalues A} and b respectively). Note that f,, € N(O)
while e, e € R(D1). Denote the orthogonal projector of E onto F° by P and set

= 1 = 1

(10) Ru:=)Y" chedh + > —dmfm
m= A‘;‘r-l m=1 \/Z
and
— 1
(11) Su = ——Cnem
1'1'2:1 m m-m?

where c,ﬂ,:,, 2., dm are the Fourier coefficients of u with respect to the basis (eX,el,

fm). Then R, S are linear, bounded and self-adjoint operators in E. Since all
eigenvalues A, are isolated, of finite multiplicity and A, - —co as m — oo, S is
compact (note that R is not).

A function u is said to be a weak solution of (9) if v € E and

/ulj(pd.'z:dt:/f(a:,t,u)goda:dt
Q Q

for all smooth ¢ € E. Let

3 ~
G(z,t, &) = / g(z, t, s)ds, P(u) 1= / G(z,t, u)dzdt
0 Q
and
(12) 8(u) i= gt = Sl 1P+ F(R+ P+ ),

where ©v = ut +u’+u~ € Ft® F°® F~. The functional ® has been introduced by
Hofer in [9], where it was also shown that critical points of ® correspond to weak
solutions of (9). For the sake of completeness, we include the proof.

PropPoSITION 3.1. @ € CY(E,R) and if V®(u) =0, thenw = (R+ P+ S)u
is a weak solution of (9).

Proor. That 1;, and therefore also @, is continuously differentiable is a standard
fact which follows from the boundedness of g [14, Appendix B].
Suppose that u is a critical point of ®. Then

VO(u)=ut —u" + (R+ P+ S)V((R+ P+ S)u) = 0.
Applying —R + P + S to this equation and setting w = (R + P + S)u gives
(I - P)yw=(—R?+ P + S*)Vi(w)

(I denotes the identity mapping). Since A}, b are the positive and A, the negative
eigenvalues of —A4, —RZ+ P + §% = (A + P)~!. Hence

Aw = Vi(w),
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or
/ (wOy — bwy)dz dt = / gz, t, w)pdr dt
Q Q

for all smooth ¢ € E. So w is a weak solution of (9). O

PROPOSITION 3.2. (i) @ satisfies the hypothesis (H) with F = F~ (and a
corresponding orthonormal basis (e;,)%_;), Lu = ut —u™ and ¢(u) = p((R+ P+
S)u).

(ii) © satisfies (PS) if either b ¢ o(T) or G(z,t,&) — oo uniformly in z and t
as |¢] — oo.

Proor. (i) Since
Pp-Vi(u) = Pp-(R+ P + S)V§((R+ P + S)u) = SVH((R + P + S)u),

the conclusion follows immediately from (12) and the fact that S is compact.

(ii) Suppose that b € o(0), i.e., F? # {0} (the other case is simpler). Let ®(u,)
be bounded and

(13) Vo (uy) = ul —u, + Vip(un) — 0.

Since g is bounded, so is V¢(E), and therefore also the sequences (u}), (u7).

Hence we may assume after passing to a subsequence that
ut > @t and v, >4~ weakly in E.

n

Furthermore, ¥(uy) is bounded (because ®(u,) is). By the mean value theorem,
P(uf) ~ P(un) < sup IV ()l flug +uz |-
Hence (ul) is bounded above. Since (R + P + S)ul = u?,
P(uld) = /ﬂG(:c,t, ul)dzdt.

Since FO is finite dimensional and all u® € F° have the unique continuation property
(ie., if meas{(z,t) € Q : u%(z,t) = 0} > 0, then u® = 0), it is easy to see that
#(u)) — oo whenever [|lu}|| — oo. Thus (u3) is bounded and u — %° after passing
to a subsequence.

Denote the orthogonal projector of E onto R(O) by Q. Since

QRu = ——clet
2V

(cf. (10)), A}, are isolated eigenvalues of finite multiplicity and A} — oo as m — oo,
QR is compact. Therefore also Q(R+P+S) is compact, and it follows from (13) that



220 S. L1 — A. SZULKIN

Qu, — Qu strongly and (I — Q)u, — (I — Q)4 weakly in E. Let w := (R+P+S)u.
Then
(T-Qu=(T-QR+P+Su=(I-QRu=Y" dnfn= (1~
Vb vb

according to (10), (11). Hence (I — Q)u, — (I — Q)u strongly if and only if
(I — Quwy, — (I — Q)W strongly.

We complete the proof by showing that w, — W strongly. As in the proof of
Proposition 3.1, we see that V®(u,) — 0 implies

Aw, = v¢(wn) + Cn,
where (,, — 0. Keeping in mind that Aw =Ow — bw, we obtain
Owp = f($7 t, w'n-) + (-

Denoting the inner product in E by (,) and using (f2) gives
Owp, w, — W) = / F(z,t, wn ) (wn — W)dzdt + ((n, wn — W)
Q

> / £ (@, t, ) (wn — B)dodt + ljwn — B + (G, wp — ).
Q

Now w, — W weakly, Qw, — QW strongly, Dwy, is bounded (because f(z, f, wy,)+(n
is) and (Qwn, wn, — W) = (Dwn, Qw, — QW). Hence the left-hand side above tends
to zero as n — oo. Since also the first and the third term on the right-hand side
tend to zero, w, — W strongly. O

4. Local linking

LEMMA 4.1. (i) Let H be a Hilbert space and let xs € C'(H,R) for 0 < s < 1.
Suppose that p is the only critical point of x, in a ball

B:={ueH:|u-p|<r}

fr independent of s) and all x, satisfy (PS) on B. If the functions x, are con-
tinuous with respect to s in the C'(B)-topology(i.e., sup,ep{|xs(u) — xao(u)] +
|Vxs (1) = Vxo, ()|} — 0 as s — sg), then the critical groups cg(xs,p) (cf. (4)) are
independent of s.

(ii) Suppose that p is an isolated critical point of x € C*(H,R) and x satisfies
(PS) on B, where B is as above. Then co(x,p) # 0 if and only if x has a local
minimum at p.

Part (i) of this lemma for x € C? is due to Gromoll and Meyer [8]. See also [5,
Corollary 6.1} and [12, Theorem 8.8]. The argument in [12] relies on Lemmas 8.1
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and 8.3 there. Since they remain valid for x € C! (see e.g. [15, Theorems 3.1 and
4.5]), so does the conclusion in (i). In [17, Corollary 3.6] a corresponding result has
been proven for functions of class C! and the critical groups cf..

It is clear that co(x,p) = F if p is a local minimum of x. In [5, Example 1.4]
and [12, Theorem 8.6] it is shown that if p is not a local minimum of x € C2, then
co(x,p) = 0. Again, if one uses [15, Theorem 4.5, the same argument as in [5, 12]
shows that it suffices to have y € C1.

PROPOSITION 4.2. Suppose that f satisfies the conditions (f;)~(fy) and as-
sume that either by € o(D) or there exists a § > 0 such that go(x,t,£)¢ > 0 (or
90(2,%,£)§ < 0) for all |€| < 8. If0 is an isolated critical point of ®, then ® satisfies
the local linking condition at 0 (in the sense of Definition 2.2).

PROOF. Suppose that by € ¢(0) and go(z,t,£)€ > 0 for |€] < 6 (the other cases
are similar). Let Go(z,t,£) := foE go(z,t,8)ds,

(14) Po(u) == /Q Go(z,t,u)dzdt,  o(u) := Yo((R+ P + S)u)
and
(15) Bu := (by — b)(R+ P + S)?u.
Since g(z, t,£) = (bo — b)¢ + go(z, ¢, £),
B(w) = w12 = S I+ 5 (Bu,wd + o) = L((L+ B)u, ) + vo(u).

Furthermore,

> bo—b\ 4+ 4+  ~=bo
Lu+ Bu= 2_1(1 + f)cmem +m2_:1 ?dmfm
(16) = -

= = bo— b
+ Z (bo — b)c%,el, + Z (—1 + f/\_ )c;le;.
m=1 m=1 m

Let E = X @Y, where X corresponds to the negative and Y to the non-negative
part of the spectrum of L + B (if go(z,t,£)¢ < 0 for |¢] < §, X corresponds to
the non-positive and Y to the positive part of the spectrum of I + B). Note that
X Cc R(O).

We claim that ®(u) < 0 for all u € B, N X whenever p is small enough. Let
Xs : X — R be given by

Xe(W) = (L + BJuyu) +stho(w), 0<s<1,

Suppose that v € B, N X and
1mn Vxs(u) = (L + B)u+ sPxVipo(u) =0
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(Px is the orthogonal projector onto X). Using the argument of Proposition 3.1
and setting w := (R + P + S)u, we obtain

Ow = bow + sPxgo(z,t, w).

Since |lu|| < p and |go(z, ¢, w)| < e1lw], [|bow + sPxgo(z,t, w)|| < cap, where the
constants ¢;,cy are independent of w and s. Since w € R(O), it follows from
well-known regularity results (see e.g. [3]) that

(18) |w|lzee < es|lbow + sPxgo(z,t, w)|| < cap.

Choosing p small enough and employing (14), (17), (18) and (fs) gives
1
csllll” < ~((Z + Byu,u) = s(Vho(w),0) = s [ gole,t,whwdzd < Seslul’®
Q

Therefore ¢ = 0. It follows that 0 is the only critical point of x; in B, N X. Since
Px = PxQ and

PxVipo(u) = PxQ(R+ P + S)Vio((R+ P + S)u),

we see that Px Vi is compact and x, satisfies (PS) on B, N X. Hence accord-
ing to Lemma 4.1, the critical groups cq(—xs,0) are independent of s. Since
—xo(u) = —=3{(L + B)u,u) is positive definite, it attains its minimum at 0. There-
fore co(—x1,0) = co(—x0,0) % 0 and —x; has a local minimum at 0. Since
x1 = ®|x, ®(u) < 0 for each u € B, N X, possibly after choosing a smaller

p.
It remains to show that ®(u) > 0forallu€ B,NY. Let 6, : Y — R be given
by the formula

0a(w) = (L + BJu,u) + 5 (1= s)(Bruw) + syo(w), 0<s<1,
where Byju := (R + P + S)%u (cf. (15)). Since Py B; = B1 Py,
VO,(u) = (L + B)u + (1 — 8)Bru + sPy Vo (u).
Let u € B,NY be a critical point of §;. Then
(19) Ow = bpw + (1 — 8)w + sPygo(x,t, w),

where w = (R+ P + S)u. Writing w = v + 2, v € N(O), z € R(O), we see as in
(18) that

(20) l|2]l e < cop,
¢g independent of 5. Assume for the moment that

(21) vl < crp,
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where ¢y is independent of s (this will be proved in Lemma 4.3 below). Since u is
a critical point of 8,,

0 = {(L + B)u,u) + (1 — 8){Bru, u) + s{Vipo(u), u)
=((L+ Bu,u)+ (1 — s)/ w?dz dt + s/ go(z, t, w)wdz dt.
o Q

If p is small enough, then ||w||pe~ < (cg + c7)p < 6. Since ((L + B)u,u) is positive
semidefinite on Y, all terms on the right-hand side above are non-negative. Clearly,
if s < 1, then w = 0, and therefore also u = 0 (because R + P + S is injective).
So 0 is the only critical point of 8, in B,NY for 0 < s < 1. Let s = 1. Then
(L + B)u = 0 and go(z,t,w) =0 a.e. Hence

V&(u) = (L + B)u+ (R+ P + S)Vio(w) = (L + B)u =0.

Since 0 is an isolated critical point of ®, © = 0. Moreover, it is seen as in the
proof of Proposition 3.2 that each 6, satisfies (PS) on B,NY. So by Lemma 4.1,
co(61,0) = co(fo,0) % 0 because f attains its minimum at 0. Therefore §; = ®|y
has a local minimum at 0 and ®(u) > 0 for each u € B,NY provided p is sufficiently
small. O

LEMMA 4.3. Let w = v+ 2z, where v € N(O) and z € R(O). If w satisfies (19)
and z satisfies (20), then v satisfies (21).

PROOF. We adapt the argument of Rabinowitz [13, Lemma 3.7]. Denote
hs(z,t, &) := bo€ + (1 — 8)¢ + sgo(x, t,&).
It follows from (f2) that
(22) (hs(z,t,€) = ho(z,t,m))(E —n) 2 e(§ ~n)* VE n,s.
Since N(O) C Y, (19) implies
/ﬂhs(x,t, w)pdrdt =0 Yo e N(@O),
or equivalently,
(23) _/Q(h_,(:l;,t,v + z) — hs(z,t,2))pdrdt = — /9 he(z,t, 2)pdzdt Vo € N(O).
Each v € N(O) can be represented as

(24) v(z,t) = p(t + z) - p(t — z) = v (z,t) v~ (z,1),
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where f:’r p(r)dr = 0. A simple computation shows that if ¥(z,t) = p(t + z) —
p(t — z) is another element of N(O), then

(25) / p(t + 2)p(t — z) dz dt = 0.
Q
Let v in (23) have the representation (24), let M > 0 and
0 for 7] < M,
g(r):={ 7—M for7>M,

T+ M forrT< —-M.
Then
o(z,t) = q(v* (z,1)) — q(v™(z,)) € N(O)
and ¢(z,t) > 0 if v(z,t) > 0, ¢(z,t) <0 if v(z,t) < 0. Using this and (22)-(23),
we obtain

E/ v(g(vT) — g(v7))dz dt < /(hs(m, t, v+ z) — hy(z,t,2))(q(vt) — g(v7)) dx dt
Q Q

< ha(z,t, 2)l| e fn (lg(@™*)] + lg(v™))) dz dt.

Since T¢(1) > M|g(7)| for all 7, it follows from (25) that
[ vl —awNdsdt = [ @ =0 a0 - v o
Q Q

- / (v g(v*) + v q(v™)) dedt > M / (Iao™)] + la(v™)]) de dt.
Q Q
Therefore
(26) Me /n (lg@*)] + lav™)) do dt < ||haa,t, 2)]| 1 /9 (lg™)] + lg(™)) de dt.

If v is not essentially bounded, the integral above is non-zero and Me<||h,(z, ¢, )|z~
VM >0, a contradiction. So v € L*®(2). Let M = 1|v*|z». Then either M =0
and (21) is trivially satisfied or the integral in (26) is non-zero. In the second case
we have 4

ollzee < 2ljv £ ||z = 4M < B (3,2, 2)]2»

and (21) follows from (20) and the fact that |hs(z,t,£&)| < cg|é|, where cg is inde-
pendent of s. O

COROLLARY 4.4. (i) Supposebg < b. Then X = F~-®F°®S, where S C F*. If
bo € o(0) or go(z,t,£)€ > 0 V|E| < 8, then the dimension of S equals the number of
eigenvalues of O (counted with their multiplicity) in the interval (bg,b). If by € o(D)
and go(z,t,£)€ < 0 V|| < 6, the interval should be changed to [by,b).

(ii) Suppose bg > b. Then X C F~ and X is spanned by all but finitely many
eigenfunctions e,,. If bg & o(Q) or go(z,t,£)€ > 0 V|¢| < 8, then the codimension
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of X in F~ equals the number of eigenvalues of O (counted with their multiplicity)
in the interval (b,bo]. If by € 0(T) and go(z,t,£)€ < 0 V|E] < 6, the interval should
be changed to (b, bg).

PROOF. (i) Clearly, A € 0(—A) = o(—0 +b) if and only if b — )\ € ().

Recall that X corresponds to the negative part of the spectrum of L + B {cf.
(16)) if bo & o(O) or go(z,t,£) > 0 V|¢] < 6, and to the non-positive part if
90(,t,£)¢ < 0V|¢] < 6. Tt follows from (16) that in the first case X = F~ @ F°@ S,
where S is spanned by those e} for which A}, < b — by. The number of them is
equal to the number of eigenvalues of —A4 in the interval (0,b— &), or equivalently,
to the number of eigenvalues of O in (bg, b). To obtain the non-positive part of the
spectrum, one adds those e}, for which A, = b — bg, that is, the eigenfunctions of
O corresponding to the eigenvalue bg.

(ii) The negative (non-positive) space of L+ B is spanned by those e, for which
An < b—Dbp (A, <b—bp). So the remaining eigenfunctions €., correspond to the
eigenvalues A, € [b — bg,0) (respectively A, € (b — bg,0)). Hence b — A, € (b, bo]
(respectively b — A, € (b, bp)). O

5. The main result

We are able now to formulate the main result of this paper.

THEOREM 5.1. Suppose that f satisfies the conditions (f)~(f;) and assume that
either b & o(0) or G(z,t,£) — co uniformly in z and t as |€] — oo. Then the wave
equation (9) has a non-trivial solution in each of the following cases:

(i) bg < b, by ¢0’(|:]) and (bo,b] ﬂa(l:l) #+ (Z);
(i) bo < b, bp € o(@), (bo,b] Na(@) # @ and there is a § > 0 such that
90(1"’ t,£)>0 Vlfl <é;

(iif) bo < b, bo € o(0) and there is a 6 > 0 such that go(z,t,£)€ <0 V|él < 6;

(iv) b > b, by & o(@) and (b,bp) No(T) # 0;

(v) bo > b, by € o(@O), (b,bo) No(Q) # @ and there is a § > 0 such that

90('7"1 t, £)§ <0 VKI < 6;
(vi) bo > b, bo € 0(01) and there is a § > 0 such that go(z,t,£)¢ > 0 V|¢| < 6.

PROOF. By Proposition 3.1, critical points of @ correspond to solutions of (9),
and by Proposition 3.2, ® satisfies (PS) and (H) with F = F~, Lu = u* — 4~ and
¥(w) = PR+ P + S)u).

Suppose that 0 is the only critical point of ®. Let

W:={u€E:|u"| <R} and W :={u€E:|u"|| =R}
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If R is large enough,

(V(u),u”) = —flu”I* + (Vi(u), u7)
< =l + el sup V)| <0 V|lu™| > R.

Moreover, if u € W, then it follows from the mean value theorem that
2(w) = Lt — Sl + 9(u0) + ($(w) - $())
(27) > 2| - %IIU"H2 +9p(u®) — (™) + IIU"II)Slelg V73 (u)
> 2t + 9(u%) - 4,

where A is a constant. Since 1(u®) — oo as [[u’|| — oo (cf. the proof of Proposition
3.2), ®|w is bounded below and ®(u) — oo as |lu|| — oo, u € W.

Let V = L + C be a pseudo-gradient vector field for . Since V1) has bounded
range and PrV1 is compact (recall that F' = F~), C may be constructed in such
a way that it has bounded range and PrC is compact (cf. [16, Proof of formula
(3)] and [14, Appendix A]). Then

(28)  (Lu+ P,C(u),u™) = —|lu”||? + {P.C(u),v") < 0 V|u"|| > R

provided R is large enough (recall that P, is the orthogonal projector onto E,). It
is easy to see [17, Lemma 3.2] that if V is a bounded set whose closure does not
contain 0, then L + P,C is a pseudo-gradient vector field for ® on N whenever n
is sufficiently large. Let a > ®(0) = 0. Since ®* N W is a bounded set (cf. (27)),
one sees using (28) that (2 NW, >N W ™) is an admissible pair for 0 and & and
L + P,C (n large) is a corresponding pseudo-gradient vector field. Moreover,

(29) Hp(®NW,8°NW™ )~ Hp(W,W™).

This has been shown in the course of the proof of Theorem 7.2 in [17]. Therefore
we only sketch the argument here. By excision, H5(®*NW, ®*NW ™) = HL((2*N
WYUW~,W™). Let

Di={ut+u+u" e Ft o FP@ F :|ju”|| <R, (v’ € Ro,|lu| < Ro},
where Rg is chosen so that ® NW C D. For v € W — D, let y(t,u) := e H(ut +

u%) +etu~. There exists a unique ¢(u) > 0, continuously depending on u, such that
~v(t(u),u) € (W — D). Define

r1(s,u) :=

v(st(u),u) fueW—-D,
ifu e D.
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Then r; is an admissible strong deformation retraction of the pair (W, W) onto
(DUW™,W~). The flow of —L — P,C now provides an admissible strong defor-
mation retraction r; of the pair (D UW™,W~) onto ((2*NW)UW~,W~). It
follows from (29) that

F ifg=0,

0 otherwise,

ch(®,0) ~ HL(W, W) ~ {

where H;(W,W~) was computed using Proposition 2.1 with d = 0 and the fact
that the mapping u — (1—s)u+su™ is an admissible strong deformation retraction
of (W,W~) onto (WNF,W~NF).

We complete the proof by showing that ¢f.(®,0) % 0 for some ¢ 3 0. According
to Proposition 4.2, @ satisfies the local linking condition at 0. If the hypothesis (i)
or (ii) of the theorem is satisfied, it follows from Corollary 4.4 (i) that ¥ C E, and
dim X, = dim(X N E,) = n + d for all n, where d := dim(F° & S) is the number
of eigenvalues of O in the interval (bg,b]. So d > 0 and Theorem 2.3 implies that
¢k (®,0) % 0. If (iii) is satisfied, d is the number of eigenvalues in [bo, b]. Since
b € o(O), d > 0.

Suppose now that the hypothesis (iv) or (v) is satisfied. Then by Corollary
44 (i), X C FT = F, Y C E, and dimX,, = n + d for almost all n, where
—d := codimp X is the number of eigenvalues of O in (b,by). So d < 0 and
c4(®,0) % 0 according to Theorem 2.3. Finally, if (vi) is satisfied, —d is the
number of eigenvalues in (b, bo] and d < 0 because by € o(O0). O

COROLLARY 5.2. Ifb ¢ o(D), then the hypothesis (f3) in Theorem 5.1 may be
replaced by

(f5) f(z,t,£) = b€ + g(=,¢,£), where |g(x,1,£)| < alé| + B and a < d(b,s(0))
(d denotes the distance).

PROOF. We have
a < d(b,0(0)) = d(0,0(~A)) = min {| 7], 5} =: ap.
Since F® = {0}, R+ P+ S = R+ S, and it follows from (10)-(11) that
[(Vep(u),v)| = ’ /ﬂg(z, t,(R+ S)u)(R+ S)vdz dt
< [(@l(R+ Syl + )|+ S)oldsde < Zul ol + Dlol) Vo € .
where D is a constant. If V®(u) = ut — u~ + Vip(u) = 0, then

- — [¢]
llull® = flu* 17 + llu™ 1 = (V(u),u™ —v*) < a—OIIUII2 + Dl
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So

a - 1
(30) ll < (1-5-) D
Let

g(z,t,8) if |¢] <K,
9k (z,1,8) =< g(z,t,K) if £€>K,

g(z,t,~K) if ¢<-K,
and fk(x,t,£) := b¢ + gk (z,t,£). Then fx satisfies (f1) — (fo) and (f5). Denote
the corresponding functional by ®x and suppose V®x(u) = 0. Set (R + S)u =
w = v+ 2, where v € N(O) and z € R(O). Then

Ow = bw + gr(z,t,w) = fx(z,t,w).
As in (18) and (20) we see using (f;) and (30) that
2l < a1llbw + gk (2,2, w)l| < aszllwll + a3 < ayflull + a3 < as.
The same argument as in Lemma 4.3 (with h, replaced by fx) shows that
[ollzee < as.

The constants as and ag are independent of K. Therefore choosing K large enough,
gk (z,t,w) = g(z,t,w) and w is a (weak) solution of (9). O

REMARKS. (i) The argument at the end of the proof of Corollary 5.2 (with gx
and fx replaced by g and f) shows that each non-trivial weak solution w of (9)
(with f satisfying (f;)-(f)) is in L®(€).

(ii) If bp & o(O), our argument may be simplified. Let

B,(u) == 5{(L+ Bua) + sgo(u), 0<s<1,

Using the fact that L + B is invertible, an argument similar to but simpler than
the one in the proof of Proposition 4.2 shows that v = 0 is the only critical point
of ®, in B, if p > 0 is small enough. Since ®; = @, it follows from [17, Corollary
3.6] that cj(®,0) = c(Po,0). Since ¢ is a quadratic functional, it is easy to find
an admissible pair for 0 and &g (cf. [17, Theorem 4.2]). Using Proposition 2.1 one
shows that:

if by < b, then c.(®o,0) % 0 if and only if ¢ = dim(F° & S),

if bp > b, then c%.(®o,0) % 0 if and only if ¢ = — codimp X,
where S and X are as in Corollary 4.4.

(iii) Suppose b € o(0) and the non-trivial critical point up found in Theorem 5.1
is non-degenerate in the sense that ¢ (®, ug) = F for some gy € Z and ¢%.(®, ug) =
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0 for ¢ # go. Then ® has another non-trivial critical point. Indeed, otherwise we
obtain from the Morse inequalities [17, Theorem 5.1] that

(31)

1 +¢9 =1+ (1+1)Q(1),

where

Q(t) = Z aqtq’ ag >0

g=—00

for all ¢ and e, = 0 for all |g| large. Here t% is the contribution of uy and ¢ the
contribution of u = 0 to the Morse polynomial. Now choosing ¢t = —1 in (31) gives

a contradiction.
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