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0. Introduction

After the pioneering work of Pucci and Serrin [4], motivated by the forced
pendulum equation, many papers were devoted to the limiting case in critical point
theory. Let us recall that, in the limiting case,

51}1,p = 1r1;‘f ©

where F' and Y link. Some very general results are contained in the paper of Ghous-
soub ([3]). For strongly indefinite functionals, the only results we know are due to
Silva ([6]). However the geometrical assumptions of Silva are more restrictive than
the usual ones. In the present paper, we consider the limiting case for strongly inde-
finite functionals under the usual assumptions of the saddle-point theorem and the
generalized mountain pass theorem. The basic tools are the limit relative category
defined by Fournier, Lupo, Ramos and Willem [1] and the quantitative deformation
lemma proved in [7].
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1. Preliminaries

By a map between topological spaces we mean a continuous function. Let (X, A)
be a topological pair; a deformation hy : A — X is a map h: [0,1] x A — X such
that hg(z) = z for every z € A.

Let A, B,Y be closed subsets of the topological space X. Then, by definition,
A<y Bin X if Y C AN B and if there exists a deformation h; : A — X such that
h1(A) C B and h(Y) C Y for every ¢ € [0, 1].

DEFINITION 1.1. Let Y C A be closed subsets of a topological space X. The
relative category of A in X relative to Y is the least integer n such that there exist
n+ 1 closed subsets Ag, A1,...,An of X satisfying

(a) A=Ui- 4,

(b) Ay,..., A, are contractible in X,

(c) Ag <y Y in X.

When no such integer exists, the category of A in X relative to Y is infinite. The
relative category is denoted by catx y (A).

REMARK. The above definition is a variant, due to Szulkin, of the notion of
relative category introduced in [5] and [2].

We consider now a topological space X together with a sequence (X,,) of closed
subsets of X. We assume that there exists, for every n € N, a retraction r, : X —
X,. If A is any subspace of X, denote by A, the set AN X,,.

DEFINITION 1.2, (cf. [1]) Let Y C A be closed subsets of X. The limit relative
category of A in X relative to Y, with respect to (X,), is defined by catPy (A) :=
Hn_,oocatxmyn (4,).

Let us now recall some notations of critical point theory. Let ¢ € C}(E,R)
where F is a Banach space and let S C E, d € R, § > 0. Then we set

K.:={u€E : p(u)=c, ¢'(u) =0},
¢*:={u€E : o(u)<d},
Ss:={ueE : dist(u,S) <b}.

‘We shall use the following quantitative deformation lemma. We only sketch the

proof.

LEMMA 1.3. (cf. [7]) Let E be a Banach space, ¢ € C*(X,R), S C X, c € R,
g,6 > 0 be such that

(1.1) (Vu € o7 [c — 2e,c+ 2€]) N 8)25) : |9’ (u)]| > 4e/6.
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Then there exist n € C([0,1] x X, X) such that
(i) n(0,u) =u, VueX,
(i) n(t,.) is @ homeomorphism of X for every t € [0,1],
(i) n(t,u) = u, Yu & o~ ([c — 2¢,¢ + 2¢]) N Sas, Vi € [0,1],
(iv) |In(t,w) —ull <6, Yu € X, Vt € [0,1],
(v) @(n(.,u)) is non-increasing, Vu € X,
(vi) n(L, ¢+ N S) C poe.

ProOOF. Denote
A= SN ([ — 2, ¢ + 2€)),

B:=8n¢  c—e,c+e]),
and let 9 : E — [0, 1] be the locally Lipschitz continuous function given by

' dist(u, X \ A)
)= dist(u, X \ A) + dist(u, B)’

Choose a pseudo-gradient vector field g for ¢ on {u€ E: ¢'(u) # 0} and define
Y(w) ——g(u), u€ A,

f(u):= lly(U)ll
0, u€ X\ A

Then f is a bounded locally Lipschitz continuous vector field on E. Thus the
corresponding Cauchy problem

o(t,u) = f(o(t, u))

o(0,u)=u
has a unique solution o(.,u) defined on R for any u € E. It is easy to check that
n(t, u) := o(6t,u)

satisfies the desired properties. O

2. Location and the limiting case

Like in [3], we first prove a result without assuming a Palais-Smale condition.
But we use the quantitative deformation lemma instead of the Ekeland variational
principle.

Let X be a Banach space and consider a sequence of closed subspaces

XoCcX;cCc...cX,C...
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We assume that each X, has a closed complement. The limit relative category is
always computed with respect to (X, ). For every ¢ : X — R we denote by , the
function ¢ restricted to X,. Let us recall that, for any ACcX,A,:=ANX,.

LEMMA 2.1. Let ¢ € CY(X,R) and let F, Y be non-empty closed subsets of X.
Define

c:= inf su Uu
AEAHGECP( )

where
A:={AC X :Aisclosed, Y C A, cat¥y(A)=1}.

Assume that

(A1) for any n, for any closed subset By, of Xn such that Y, C By and

B,NF =0, we have
catx, v,(Bn) =0,

(A2) dist(F,Y) >0,

(A3) —co < c =infF .
Then, for every j € N, £ > 0, § €]0,dist(F,Y)/2[, A € A such that

supp < c+é&,
A

there exists n > j and u € X,, such that
a) c— 2 < p(u) <c+ 2,
b) dist(u, F, N As) < 26,
c) [len(u)ll < 4e/6.

PROOF. Let j, €, § and A satisfy the assumption of the lemma and suppose that
the conclusion of the lemma is false. According to Lemma 1.3, applied to E := X,
Y 1= —p, § 1= F, N Ag, for every n > j there exists a deformation 7, satisfying (i)
to (vi).

Define, for n > j,

B :={u€ X, : nu(l,u) € An}.

It follows from (iii) that 7,(1,y) = y for any y € Y. Proposition 2.6 in [1] and (ii)
imply that

catx, v, (An) = catx, v, (Bn).
If, for every n > j, B, N F = @, assumption (Al) implies that

1= catg?’y(A) = nl_ig.locatx"’y"(A")
= lim catx, v, (Bn) =0,
n—od

a contradiction.
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Hence there exists n > j such that B, N F = §. By definition, there exists
u € Fy, such that 7,(1,u) € An. We obtain from (A3) u € F C ¢ and from (iv)
dist(u, 4,) < 8. Thus u € SN ° and it follows from (vi) that

c+e < pn(nn(l,u)) <supp, <c+ £,
Ay
a contradiction. O
We shall use the following conditions.

DEFINITION 2.2. Let ¢ € R and ¢ € C(X,R). The function ¢ satisfies the
(PS)} condition if every sequence (u.,,].) C X satisfying

nj =00, Un; € Xn, @(un;) —c, oy (un;) >0
possesses a subsequence which converges in X to a critical point of p.

DEFINITION 2.3. Let c € R, ¢ € CY(X,R) and F be non-empty closed subset
of X. The function ¢ satisfies the (PS)},C condition if every sequence (u,,) C X
satisfying

g — 00, Up, € Xp,, diSt(unk;Fnk) — 0, QD(Unk) -G ()0;;,: (unk) — 0,

possesses a subsequence which converges in X to a critical point of .

THEOREM 2.4. Let ¢ € C'(X,R) and let F, Y be non-empty closed subsets of
X. Assume that @, F, Y satisfy (A1)-(A3) and the (PS)}. condition, where c is
as in Lemma 2.1. Then F contains a critical point of ¢ with critical value c.

THEOREM 2.5. Let F, Y be non-empty closed subsets of X satisfying (A1)-
(A2). Suppose that ¢ € C*(X,R) satisfies the following assumptions:

(A4) supy ¢ < infpp:=1b,

(A5) There is AC X, A closed, ADY, cat¥y (4) = 1 such that sup, ¢ < oo,

(AB) @ satisfies the (PS)} condition, where ¢ is as in Lemma 2.1.

Then we have:
(i) e> b,

(i) K. #0,
(iii) K.NF#0 ifc=b.

PROOF. It is clear that ¢ > b from (Al). If ¢ > b, then we have by (A4) and
(A5) supy ¢ < ¢ < 00 and then we deduce from Theorem 6.1 in [1] that K. # 0.
If ¢ = b, clearly it suffices to prove K. N F # (. Assumption (A6) implies that @
satisfies the (PS)% . condition and the conclusion follows from Theorem 2.4. O
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3. Some applications

We consider now the generalized Saddle Point Theorem. Let X = W & Z
be a Banach space and X, = W,, @ Z, be a sequence of closed subspaces with
ZoCcZiCc...CZ, WoCWC...CW,1<dimW, < oo.

THEOREM 3.1. Let ¢ € CY(X,R). Assume that there exists r > 0 such that,
withY :={weWw : ||w|=r}:

a) supy ¢ < infz ¢,

b) ¢ is bounded from above on A:={w €W : |e|| <r},

c)  satisfies the (PS)}, where c is defined as in Lemma 2.1.
Then c is a critical value of ¢. Moreover if c =infz ¢, then K. N Z # 0.

ProoF. We apply Theorem 2.5 with F := Z. It is easy to see the properties
(A2), (A4)-(A6) are satisfied. Now let B, be a closed subset of X, such that
Y, C B,, and B, N Z = . So the deformation A, : [0,1] x B, — X,, given by

ir
ho(t,w+2)= ((1—t)+ m)w+(1—t)z

is well-defined and shows that catx, v, (Bn) = 0. The proof is complete, since (A1)
is satisfied. O

We consider now the generalized linking theorem. Let X, X, = W, @ Z,, be as
above. Let R >0, p > 0, r €]0, R[ and suppose e € [\,—, Zn, |le|| = 1. Define
Q:={weW:|w|<p}d{re:0< A< R},
Y=0Q ={weW:|uwl|=p}®d{le:0< AL R}
U{w e W : |lw|| < p} & {0, Re},
F:={z€Z:|z| =7}
THEOREM 3.2. Let ¢ € C}(X,R) such that
a) supy ¢ < infr o,
b) ¢ is bounded from above on Q,
¢) o satisfies the (PS)?%, where c is defined as in Lemma 2.1. Then c 1s a critical
value of ¢. Moreover if c = infp ¢ then K. NF # 0.

PROOF. We apply Theorem 2.5. It is easy to see that (A2), (A4)-(A6) are
satisfied. Let B, be a closed subset of X, such that ¥, C B, and B, N F = §.
Let 0, : W, ® {Xe : A € R} \ {re} — Y, be a retraction. Then the deformation
hy : [0,1] x B, — X, given by

ho(t,w+2) = (1 —t)(w+ z) + 0, (w + ||2]|e)
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is well defined and shows that catx, v, (Bn) = 0. The proof is complete, since (A1)
is satisfied. 0

(1]
2
(3]
(4]
(8]
(6]
(7]

REMARK. The above theorems are well-known when supy ¢ < infr ¢ (see [1]).
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