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1. Introduction

Mountain pass methods have proved very helpful in many applications. In the
original formulation, Ambrosetti-Rabinowitz [1] considered a C! functional G(u)
defined on the whole of a Banach space B. It was assumed that there were elements
€p, €1 € B such that

(1.1) max G(e;) < c:= ;Ielgolélsag(l G(p(3))

where ® is the set of all continuous maps ¢ of [0,1] into B such that ¢(i) = e;,
it =0,1. It was desired to find a point v € B such that

(1.2) G'(u) =0, u#e,i=01
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Assumption (1.1} is not sufficient for such a point to exist, but it does imply that
there is a sequence {ug} C B such that

(1.3) Glux) — ¢ G'(ux) — 0.

If, in addition, G satisfies the Palais-Smale (PS)-condition, then indeed one does
obtain a solution of (1.2). (The (PS)-condition states that (1.3) implies that the
sequence {ux} has a convergent subsequence). In order to conclude that (1.2) has
a solution (or at least that (1.3) holds), it is necessary to allow the paths in &
complete freedom to roam over the entire space B. As a result, one might obtain
llur|| — oo.

This situation is common for various mountain pass geometries which we do
not study here. For further references on mountain pass theorems we address the
reader to extensive bibliographies in [2] and [4].

In some previous publications [5-9] the authors considered the situation when
one restricts the paths in ® to remain in a fixed region of B. If the competing paths
touch the boundary, one generally does not obtain a solution of (1.2), but rather
the Lagrange multiplier relation similar to one for a constrained minimum.

In the present paper we give a general analysis of what happens when one
restricts the paths in @ to fixed regions. We consider regions of the form

(1.4) B :={u€ H|F(u) < R}

where G(u), F(u) are C! functionals on a Hilbert space H. Assuming that Bp
is path connected for R = Ry and ep,e; € Bg,, we let ®x denote the continuous
maps ¢ from [0, 1] to Bg such that ¢(i) = e;, ¢ = 0,1. Then we define

(1.5) o(f) = inf max G(p(s))-

We still have to impose some convergence conditions, but they do not amount to
(PS). In typical situations in applications one obtains in our setting a bounded
approximation sequence on which the gradient of the functional tends to zero and
which has weak limit points. Assumptions then are needed to establish those weak
limit points as critical points. The case when competing paths stay away from the
boundary 0Bpg is a “good” one: one has a point u where G'(u) =0, G(u) = ¢(R)
and F(u) € R. Our attention is to the “bad” case, when approximation paths do
not stay away from the boundary for any R. In this case there is a solution of

(1.6) G'(u) = —aF'(u), u € OBg.
Moreover,

(1.7) D*e(R) < —Xo(R),  D-c(R)> —po(R),
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where po(R) (resp. Ao(R)) is the upper (resp. lower) bound of the set of all a
satisfying (1.6).
Finally we prove that

(1.8) liminf A\g(R) = 0.
R—o0

This provides a “qualified” approximation of a solution to (1.2). As it was men-
tioned in [9], relations (1.6)~(1.8) have an advantage over (1.3), since they often
allow a uniform a priori bound for {ux} and, as result, convergence of ux to a
solution of (1.2).

The following example in H = R? illustrates our main results. Let

(L9)  Glz,y)=(A-2Ye™, Flz,y) =2 + 4%, e1=(2,0), ez = (~2,0).

Then G possesses a mountain pass geometry in any Bg, R > 4, ¢(R) = e R, the
Palais-Smale condition is not satisfied and G has no critical point correspondmg to
a critical value in [0,e~*). However, (1.3) holds with u; = (0, :i:R ), aj = —e B
for any sequence R; — occ.

In Section 2 we prove a “mountain pass alternative”, namely, we study sequences
approximating the critical value ¢(R) on Bpg or, if possible, on 8Bgr. In Section
3 we associate the rate of decrease of ¢(R) with would-be eigenvalues of (1.7). In
Section 4 we discuss convergence of approximating sequences to critical points. In
Section 5 we prove two technical lemmas used in Sections 2 and 3.

2. The Mountain Pass Alternative
In this section we generalize the alternative proved in [8]. Let F(u), G(u) be
C1 functionals on a Hilbert space H, and assume that
(2.1) Br:={ue H| F(u) < R}

is path connected for each R > Ry, with some Ry € R. Let eg, e; be fixed elements
in Bg, and define

(2.2) ®p:={® € C([0,1]), Br) | ¢(j) =¢;, j =0,1}.

We assume that G(u) has mountain pass geometry in B, relative to the e;. This

means that
(2.3) max Gle;) <c(R):= inf ax, G(p(s))-
Let

(24) v(u) = (F'(u),G'(u)),
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(25) 1) =v)/|IF@IIG@I for |F(w]#0, |Gl #0,

and let ¥ denote the set of those positive non-increasing functions %(t) on [0, c0)
such that

o0
(26) / B()dt = oo
1
Our first result is

THEOREM 2.1. Under the above hypotheses, the following alternative holds:
either

(a) for each v € T there is a sequence {ux} C Br such that
(2.7) G(ux) = c(R), G (ur)/v(lluell) — 0

or
(b) there is a sequence {uy} C Bg such that

(2.8) G(ug) — ¢(R), v(ug) <0

and

Gl(w) , F'(w)

G + TF ]

(2.9)

In proving this theorem we shall make use of

LEMMA 2.2. In addition to the above hypotheses, assume that there are con-
stants €9 > 0, 0 < 1 such that F'(u) # 0 and

(2.10) v(u) + 0)|G (u)|| |1 F' (w)]| = 0

holds for all u € 0Bpg satisfying

(2.11) |G(u) — ¢(R)| < 3eq.

Then for every 1 € ¥ there is a sequence {ux} C Bg such that (2.7) holds.

Before proving Lemma 2.2 we shall show it implies Theorem 2.1. Assume that
option (b) of Theorem 2.1 does not hold. Then there are positive constants €o, a
such that

GI
(2.12) || W, i ()
IG' (w) IIF u)|

holds whenever u € 8Bp, satisfies

’>a

(2.13) |G(u) — c(R)| S 3e0, v(u)<0.
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But (2.12) is equivalent to
1
(2.14) v(u) + (1= 50®)|F'(w)]| |1G'(w)]) 2 0

and this holds trivially when v(u) > 0 provided we take a? < 2. This implies that
(2.10) holds whenever u € &Bp, satisfies (2.11). Lemma 2.2 now implies that option
(a) of Theorem 2.1 holds. O

Our proof of Lemma 2.2 will depend upon the following lemma, to be proved in
Section 5.

LEMMA 2.3. Suppose X (u), Y (u) are continuous mappings from a subset B of
a Hilbert space H into H. Let B be the set of those u € B such that X (u) # 0, and
assume that Y (u) # 0 for all u in o closed subset Qo of B. Assume also that there
s a @ < 1 such that

(2.15) (X(w), Y(u) < OIX(w)[ Y (w)ll, u € Qo

Then for each a < 1 — @ there is a locally Lipschitz map Z(u) of B into H such
that ‘

(2.16) IZwl <1, ueB,
(2.17) (X(u), Z(u)) > o X(u)ll, ueB
and

(2.18) (Y(u),Z(u)) <0, u€Qyq.

Using this lemma we give the

PROOF OF LEMMA 2.2. If the conclusion were not true, there would be a YeV
and a positive constant £ such that

(2.19) G ()| = %(llull)
holds for all 4 € Bpg satisfying

(2.20) |G (u) — ¢(R)| < 3e.
We may take £ < g9 and 3¢ < c(R) — max G(e;). Let

(2.21) Q = {u € B ||G(u) - «(R)| < 2},

(2.22) Q1 = {u € Bg ||G(u) — c(R)| < €},
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Q2 =Bgp\ Q@ and

"I('U') = d(ﬂ, QZ)/[d(u1 Ql) + d(“) QZ)]
Then n(u) is Lipschitz continuous on H, vanishes on 62 and equals one on Q.
Take

(2.23) Qo={u€0Br| |G(v)—c(R)| < 3¢},

Y(u) = —F'(u), X(u) = G'(u), B = Bg in Lemma 2.3. Note that Y (u) # 0 on
Qo and that (2.10) implies (2.15). By Lemma 2.3 there is a locally Lipschitz map
Z(u) of Bg into H such that (2.16)—(2.18) hold. Hence

(2.24) (G'(u),Z(w)) 2 o|G'(w)], w€ Br
and
(2.25) (F'(u), Z(u)) >0, u€ Q.

Let W(u) := —n(u)Z(u). We can solve
(2.26) do(t)/dt = W(o(t)), o(0)=u

uniquely in [0,00) for each v € Bg provided o(t) does not exit Br. (Note that
W (u) is locally Lipschitz and bounded on the whole of Bg since n(u) vanishes
outside @, which is a closed subset of Bg). But indeed the solution o (t, u) of (2.26)
does not exit Bg for ¢ > 0. To see this note that if u; € Qg, then (Z(w), F'(u)) >0
in a neighbourhood of u;. If u; € 8Bg\ Qo, then n(u) vanishes in a neighbourhood
of u;. Since
(W (o), F'(0)) = —n(0)(Z(0), F'(0)),
any solutions of (2.26) would either be constant or directed into B at a point of
OBr. Since
(G'(w), W(u)) £ —an(u)|G'(W)| IW (u)]] < n(w)

for u € By, we have

(2.27) lotu)—ull ¢, t20,

and |

(2.28)  dG(a(t,u)/dt = (G'(o(t,u), W(o(t,w) < —an(o(t, w)G'(o(t,w)].
Thus

(2.29) G(o(tz,u)) < G(o(t1,u)), 1 < to.

By the definition (2.3) of ¢(R), there is a ¢ € ®g such that

(2.30) G(p(s)) < c(R) +¢, 0<s<1.
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Pick T so that

M4T

(2.31) % < o / ()i,
M

where

(2.32) M = max [lo(s)]l

This can be done by (2.6). If for some s and t; < T, o(t1,9(s)) € Q1, then we
must have

(2.33) Glo(t,9(s))) <c(R) - ¢
since (2.29) and (2.30) exclude G(a(t1,¢(s))) > c¢(R) + . Hence by (2.29)
(2.34) G(o(T,¢(s))) < c(R) —&.

On the other hand, if for a particular s, o(t, ¢(s)) € Qy for all ¢ satisfying 0 < ¢ <
T, then we have
T
Glo(T, p(a)) = Glol) < —a [ 16 (ot w(s))d
T
<o [ wllott, o)
T
< [ 0ol + tat
T M+T
< —a/o. PY(M + t)dt = —a-/M Y(r)dr < —2¢

by (2.28), (2.21), (2.27), (2.32) and (2.31). This combined with (2.30) shows that
(2.34) holds in this case as well. Moreover 1 vanishes in the neighbourhood of e;.
Hence o(T,e;) = e; and pr(s) := o(T, ¢(s)) is in ®r. But then (2.34) contradicts
(2.3). The conclusion of the lemma must be valid. ]

3. Estimate of Remainder

In this section we continue the analysis of Section 2. We add the assumption
that for each R > Ry there is a § > 0 such that [|F'(u)|| is bounded away from 0
on the set

{u€ H|F(u) < R+6, |G(u) — c¢(R)| < 6}.

For 6 > 0 we define

(31)  Qs(R):={ueH||F(u)—R| <6, |G(u) - c(R)| <6, r(u) <61}
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When Qs(R) # 0, we define

(3:2) As(R) = Qiﬁfz) NG ()II/I|F" ()l

(3.3) ps(R) := sup [|G'(w)]|/|IF" ()],
Qs(R)

(34) A(R) := %1_{% As(R),

(3.5) p(R) = lim ps(R).

We have

THEOREM 3.1. Under the above hypotheses the following alternative holds for
each R > Ry: either
(a) there is a sequence {ux} C H such that

(3.6) G(ug) — c(R), G'(ug) — 0
and
3.7 lim F(ug) < R,

(b) Qs(R) # 0 for each § >0 and
(3.8) c(R+T)<c(R)+ (6 —1)X(R)T, e(R—T)<c(R)+ (1+6)us(R)T
for T > 0 sufficiently small depending on 6.

In proving Theorem 3.1 we shall raake use of the following lemmas.

LEMMA 3.2. Let V be a closed subset of a real Hilbert space H, and let X;,
i=1,...,k be continuous maps from V to H. Assume that there is a continuous
map Y fromV to H and constants a; € R such that

(3.9 (X, Y)<a; and ||Y|SM onV,i=1,... k.

Then for each ¢ > 0 there is a locally Lipschitz continuous map Z from 'V to H
such that

(3.10) (X;,Z)<a;+e and ||Z|<M onV,i=1,...,k

Lemma 3.2 will be proved in Section 5. Here we use it to prove

LEMMA 3.3. Assume that there are positive constants a, 6, such that

(3.11) IG' (W)l > a
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whenever
(3.12) Fu)<R+36, |G(u)—c(R)| <36

Then Q,(R) # 0 for all p > 0, and for each € > 0 there is a locally Lipschitz
continuous maep Z from

(3.13) W:={ue H| F(u) < R+24, |G(u)—c(R)| <26}
to H such that

(3.14) Izl <M, uweW,

(3.15) (G'(u), Z(w)) < (e + 36 — V)Ass(R), ueW,
(3.16) (F'(u), Z(w)) <1+¢, ueW, F(u)>R-§,
(3.17) (F'(u),Z(u)) <c, weW.

Proor. If Q,(R) were empty for some p > 0, then the hypothesis of Lemma
2.2 would be satisfied for g9 = p, @ = 1 — p. In virtue of that lemma, there would
be a sequence {uy} C Bg satisfying (3.6). This contradicts (3.11). By Lemma 3.2
it suffices to find a continuous map which satisfies (3.14)—(3.17). Let

Q ={ue H||F(u)— R| <36 |G(u)—c(R)| < 36},
Q1={ueQ|r(u) <36-1},

Q:={ueQ||r(v)] <1-46}
Qs={ueqQ|r(u)>1-36},

Qi={ue H|F(u) <R-§, |G(u) —c(R)| < 36},

where we assumed that § < % The sets (J; are open, and their union contains W.
Let {t%} be a partition of unity subordinate to this covering. Let

Zi(u) = F'(w)/|IF(w)?, u€Qu

Then
(Z1(u), F'(w)) = 1

and
(Z1(u),G'(w) = v(w) /| F'(w)[|* = 7 |G" )|/ | F' ()|l < (36 — 1)Xss(R)
for u € @1. Let
Zy(w) = das(R)[v(uw)F' (w) — | F')I*G' @)/ IIF' @) PIIG" (@)1 (1 = 7(w)?), u € Qa.
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Then
(Z2(u), F'(u)) =0
and
(Z2(u), G'(u)) = —X35(R).
Let
Zy(u) = -A3s(R)G' (w)/|IG'(W)|?,  u € Qs
Then

(Zs(u), F'(w)) = = 2as(R)v(u) /|G (w)l|* < (38 — DAss(R)|IF' (w) /|G’ (w)]| < 0

and
(Z3(u), G'(u)) = —Ass(R).
Finally, let
Zy(u) = —Xas(R)G'(W)/IIG"'(W)||?,  u € Qu.
Then
(Z4(w), F'(uw)) < Aas(R)||F' (u)||/1G"(w)]| < Co
and

(Za(u), G' () = —Ass(R).

Thus we have
(Zk, F') <1, (Zi,G")<(86—1)A35(R) in Q, k=1,2,3,

(Z4’FI) S CO, (Z47 GI) = _A36(R) in Q4.
Let

4
2(u) = Y e () Ze(w).
k=1
This map is defined and continuous on the whole of W. Clearly it satisfies (3.14)-

(3.17). Application of Lemma 3.2 completes the proof. m]

LEMMA 3.4. Under the hypotheses of Lemma 3.3, for each € > 0 there is a
locally Lipschitz continuous map Z of W into H such that (3.14) and (3.17) hold
and

(3.18) (G'(u), Z(u)) < (1 +e)uss(R), ueW,

(3.19) (F'(u), X(u)) <e—1, ueW, F(u)>R-6.

PROOF. As in the preceding proof, we cover W with the @;. On @, we define

Zi(u) = ~F'W/IF'W)|?, ueQr
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Then
(Z1(u), F'(u)) = -1

and
(Z1(w), G'(w)) = —T(W)|G'(WI/ | F' ()| < p3s(R).
On @, we define

Z3(w) = [v(W)G'(u) = IG' @) I*F @)/IIF' @G (@) (1 - (u)?).

Then
(Z3(u), F'(u)) = -1
and
(Za(u), G'(u)) = 0.
Next take
Z3(u) = -F'(W)|/F')|?, ueQs.
Then
(Z3(u), F'(u)) = —
and
(Z3(u), G'(w)) = —7(W)|G' (WII/I|F'(uw)]| < 0
Finally set
Zy(u) = -G W/IFWIIF @), u€Qa
Then
(Za(u), F'(u)) = —7(u) £ 1
and

(Z4(u), G'(w)) = =IG"WI/IIF'(w)]| < 0.

As before we take

Z ¥k () Z ().
This is clearly continuous on the whole of W and satisfies (3.14), (3.17)-(3.19).
Application of Lemma 3.2 completes the proof. ]

PRrRoor oF THEOREM 3.1. If option (a) does not apply, then there are positive
constants a, § such that the hypothesis of Lemma 3.3 holds. By the lemma there
is a locally Lipschitz mapping Z from W to H such that (3.14)—(3.17) hold with
e=106, <9. Let

={u € H | |F(u) — R| < 25, |G(u) — c(R)| < 26},
={u€eW | F(u) <R+, |G(u) — c(R)| < 6},
Wz =H\W,
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and
n(u) = d(u, Wa)/[d(u, W1) + d(u, Ws)].
For each u € W, let o(¢,%) be the unique solution of

(3.20) do(t)/dt = n(o(t))Z(a(t)),  o(0) =u.

Since n(u)Z(u) is locally Lipschitz continuous and bounded on the whole of H,
o(t,u) will exist for all real t. Now

(3.21) dF(0)/dt = (F'(0),0') = n(0)(F'(0), Z(0)).
If F(u) < R— 6 and T < §/C, then (3.17) implies that

(3.22) F(o(t,u)) — F(u) <6, 0<t<T.
On the other hand, if F(u) > R — §, then (3.16) implies

(3.23) F(o(t,u)) — F(u) < (14 6.)T, 0<t<T.
Since

(3.24) dG(o)/dt = (G',0") = n(0)(G'(0), Z(0)),
we have

(3.25) G(o(t,u)) — G(u) < tn(o)(61 + 36 — 1)A35(R)

by (3.15). Let P € &5 be a path such that

(3.26) mng < ¢(R) + &5, where 8§, < 6.
If u € P and there is a t < T such that o(¢,u) € W1, then
(3.27) G(o(T,u)) < c(R)— 6

or

(3.28) F(o(T,u)) > R+ 6.

But (3.28) is excluded by (3.23) and the size of T. Moreover, if o(t,u) € W; for
0 <t <T, then (3.25) gives

(3.29) G(o(T,u)) < ¢(R) + 62 + (81 + 36 — 1) A35(R)T.

If we take (1 — &; — 36)A35(R)T < 26, then (3.22), (3.23), (3.27) and (3.29) imply
(3.30) (R4 (14 6)T) < c(R) + 82 + (61 + 36 — 1) Aas(R)T.

Letting 61,82 — 0, we obtain

e(R+T) <c(R)+ (36 — 1)Ass(R)T.
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This implies the first inequality in (3.8) if we replace 36 by §. To obtain the second,
we use Lemma 3.4. This time we take T' < §/(C +1). If F(u) > R — 6, then (3.19)
gives

(3.31) F(o(T,v)) — F(u) < (6 — 1)T
where we take € =61 < 6. If F(u) < R— 6, then (3.17) gives
F(o(T,u)) — F(u) < CT.
These imply
F(o(T,u)) <R+ (6 — 1)T.
On the other hand, (3.18) and (3.24) imply
(3.32) G(o(T,u)) — G(u) < (1 + 61)pss(R)T.
If P satisfies (3.26) and u € P, then (3.31), (3.32) imply
c(R+ (61— 1)T) < ¢(R) + 63 + (1 + 61)pas(R)T,

which implies
c(R—T) < c(R) + (1 + 36) uzs(R)T.
This gives the second inequality in (3.8). O

COROLLARY 3.5. If option (b) of Theorem 3.1 holds, then
(3.33) D_c¢(R) > —u(R), Dtc(R) < -A(R).
COROLLARY 3.6. If there is a § > 0 such that
(3.34) (R +6)=c(R)

then option (a) of Theorem 3.1 holds.

PRroOF. If option (a) did not hold, then the hypothesis of Lemma 3.3 would be
satisfied. Thus (3.2), (3.4), (3.1) and the assumptions on || F'(u)|| would imply that
A(R) > 0. Corollary 3.5 would then imply that ¢(R + 6) < ¢(R) for every 6 > 0. O

COROLLARY 3.7. If option (b) of Theorem 3.1 holds, then

(3.35) " A(r)dr < c(Rg) — c(R).
Ry

Hence

R A(r) < [e(Bo) = (R)]/(R — Ro).
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COROLLARY 3.8. If option (b) of Theorem 3.1 holds and u(R) < oo, then c(r)
is continuous from the left at r = R. If u(r) is bounded for r near R, then c(r) is
continuous at v = R.

PRroOOF. By (3.8) for each § > 0
0<c(R-T)—c(R) < (1+ 8)us(R)T.
Thus ¢(r) is continuous from the left. Moreover for T sufficiently small
0<e(R)—c(R+T)<(1+6)us(R+T)T.

When p(R + T) is bounded for T small, this gives continuity from the right. O

4. An Absolute Continuity Condition

In this section we introduce a compactness criterion which will help us locate
solutions of

(4.1) G'(u) =0

and

(4.2) G (u) = oF" (u).
We define

(4.3) B(u) = v(u)/ | F'(w)|*.

Our compactness assumption is

I. A sequence {ux} C H satisfying

(4.4) G(ux) — c(R), lim F(ug) < R
and
(4.5) either G'(ux)— 0 or 7(ux)— -1,

has a convergent subsequence.
We have

THEOREM 4.1. In addition to the hypotheses of Theorem 3.1, assume compact-
ness condition 1. Then the following alternative holds: either
(a) there is a solution u of (4.1) in Bp satisfying

(4.6) G(u) = ¢(R)
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or
(b) there is a solution of (4.2) on OBg satisfying (4.6) and

(4.7) a = —o(R),

and a solution satisfying (4.6) and

(4.8) a = —ug(R).
Moreover,
(4.9) D*c(R) < —Xo(R), D_c(R) > ~po(R),
where
—a | a <0 satisfies (4.2) for some v € B
(4.10) M(R)=inf{ | e (42) Rt
with (4.6) holding
and
—a | a < 0 satisfies (4.2) for some u € 8By
(4.11) Ho(R) =supq . :
with (4.6) holding

‘PROOF. We apply Theorem 3.1. If option (a) holds, then G’(uy) — 0. Thus
{ux} has a renamed subsequence converging to an element u € H. By (3.6) and
(3.7), u € Bp and satisfies (4.1) and (4.6). This gives option (a) of our theorem. If
option (b) of Theorem 3.1 holds, then Ag(R) > 0 and there is a sequence {ug} c H
such that

Mgy (B) < |G (we)ll/IIF" (ui) | € Mg (R) + 6%

and
(4.1232) IG(’U) - C(R)l < 6);, IF(uk) - Rl < (5k, T(’uk) < 6k -1,

where 6 — 0. Then there is a renamed subsequence u; — w in H. Thus u satisfies
(4.6) and

T(w) = =1, [G'@|/IF W] =XMR), Bu)=-MR), F(u)=R.

Also () "
G'(u F'(u) |2
+ =2+427(u)=0.
Iveean * el )
Hence u satisfies (4.2) with @ = 8(u) = —A(R). Similarly, we can obtain a sequence

satisfying (4.12) and
G @I/ F' (ue)l| — p(R).
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In this case B(ux) — —u(R) and we again have a convergent subsequence. This
time the limit satisfies (4.2) with & = —u(R). If o satisfies (4.2) for some u € 0B
with (4.6) holding, then o = B(u) and

(4.13) el = 16" W)II/ I F* ()l

Then

(4.14) AR) < |a| < u(R)

if 7(u) = —1, i.e., if @ < 0. Since we have found such a which satisfy |a| = A(R)

and |a| = u(R), we see that Ao(R) = A(R), po(R) = u(R). We now apply (3.8). O

REMARK 4.2. Without further assumptions we cannot tell if Ag(R) # po(R).

Let
(4.15) c:= lim ¢(R).
R—oo
Then
(4.18) ¢ > max G(e;) > —oo.
‘We have

THEOREM 4.3. Under the hypotheses of Theorem 4.1 assume that (4.1) has no
solution satisfying

(4.17) c(Ry) > G(u) > e
Then (4.9) holds for each R > Ry and
(4.18) liminf Ao(R) = 0.

PRrROOF. By hypothesis, option (a) of Theorem 4.1 does not hold for any R > Rp.
Thus (4.9) must hold by option (b):

(4.19) D*¢(R) < —Ao(R), R > Ry.

If there were an m > 0 such that Ag(R) > m for R > R,, then we would have

R
(4.20) ¢(R)—c(R;)<— | mdr——o0 as R—o00
R,

contradicting (4.16). Thus (4.18) holds. O

THEOREM 4.4. Under the hypotheses of Theorem 4.1 assume that (4.1) has no
solution satisfying

(4.21) G(u) > c(Ry)
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for some Ry > Ry, and that ||G'(u)|| is bounded for all u in Bg,, satisfying (4.21).
Then c(R) is continuous in the interval [Ro, Ry].

PROOF. By Theorem 4.1, 0 > D_¢(R) > —co for R < Ry, since po(R) has a
uniform bound for R € [Ro, R1] under assumptions on ||G/|| and || F”|. |

THEOREM 4.5. Under the hypotheses of Theorem 4.1, if there is a § > 0 such
that (3.34) holds, then (4.1) has a solution in Bp satisfying (4.6).

PRroOF. By Corollary 3.6, option (a) of Theorem 3.1 holds. Under the com-
pactness condition I this implies option (a) of Theorem 4.1.

5. Types of Pseudogradients

In this section we shall prove Lemmas 2.3 and 3.2. Lemma 2.3 was essentially
proved in [5-7]. We give the proof here for completeness. First we prove

LEMMA 5.1. Let a, 6 satisfy 0 < a <1 —6 < 1. Then for any elements u #0,
v # 0 satisfying (u,v) < Ofjul| ||v|| there is an element h such that (u, h) > a||u| ||A||
and (h,v) < 0.

PRrROOF. We may assume that u and v are unit vectors. We take h = u — Bv
with 8 > 0. Then ||A| <1+ 8, (h,u) =1 - B(v,u) > 1— 40 and (h,v) < 6 — 4.
We take 8 > 0 such that a(1+ 8) <1 — 8. This can be done by the assumptions
on §, a. This gives the desired inequalities. O

PROOF OF LEMMA 2.3. Let o satisfy o < o/ < 1—6. For each u € B \ Qo let
h(u) = X(u)/|| X (u)|| and for each u € Qp let h(u) satisfy

IB(u)l =1, (X(u),h(w) > alX(w)l, ueB, (Y(u),h(x)<0, ueCQ.

By continuity, for each u € B there is a neighbourhood N(u) such that

(5.1) (X(g),h(u)) 2 all X (), g€ N(u),
and if u € Qg, then
(5.2) (Y(g), h(u)) <0, g € N(u).

If u & Qo, we reduce N(u) so that N(u) N1 Qo = §. The collection {N(u)} is
an open cover of B. Since B is a metric space, it is paracompact. Thus {N(u)}
has a locally finite refinement {N.}. Let {t#,} be a locally Lipschitz continuous
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partition subordinate to this refinement. For each 7, let u, be an element for which
N, C N(u). Write

Z(g) =Y _ ¥-(9)h(u,).
Since u, is fixed on the support of v,, Z(g) is locally Lipschitz continuous. By
(5.1) and (5.2)

(X(9),2(9)) = > _ ¢+ (9)(X(g), h(ur)) 2 aZ-wr(y)llX(y)H =al|X(g)l, g€ B

and
(Y(g)aX(g)) = Z«b,(g)(Y(g),h(uf)) <0, g € Qo,
since u, & Qo implies g € N,. Also

1Z@N <3 wr(@)llrur)l = D 9r(9) = 1.

This proves the lemma. O

PROOF OF LEMMA 3.2. Let € > 0 be given. For each w € V there is a relatively
open neighbourhood V;, of w such that

(Xi(w),Y(z)) < a;+e¢, i€1l,...,k, u€eV,.

Since V is a metric space, the collection {V,,} has a locally finite refinement {V;}.
Let {t#,} be a locally Lipschitz continuous partition of unity subordinate to this
refinement. For each 7 let w, be an element for which V,; C V,,. Let

Z(u) = Z s (U)Y(w'r)

Then
(Xi(u), Z(u) = Y 9r(u)(Xi(u), Y (wr))

<(ai+e) Y vru) = aite

Finally,
IZ@ £ 3 e @Y (@)l < MY dhr(u) = M.
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