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1. Introduction

In the last ten years, several authors have extended the classical critical
point theory (see e. g., [17-19]) to various nonsmooth settings. We refer to [3]
for locally Lipschitz continuous functionals, to [6, 7, 9, 15] for certain classes
of lower semi-continuous functionals and to [20] for C* perturbations of convex
lower semi-continuous functionals. All these developments are independent and
are not comparable among them.

In [10], a new generalized notion of ||df(u)|| has been introduced, where
f : X — R is a function defined on a metric space X; this notion allows to
treat continuous functionals and some classes of lower semi-continuous function-
als.

On the other hand, the whole classical theory is not covered in [10] since,
for instance, a deformation theorem is proved only for compact sets and only
a relation between the number of critical points of the functional f and the
supremum of cat(K; X) with K compact in X, is established.
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The main purpose of this paper is to prove a natural extension of the De-
formation Theorem and of the Noncritical Interval Theorem (Theorems (2.14),
(2.15)) to continuous functionals. Consequently, critical point theory for contin-
uous functionals can be developed following the classical lines of [17-19]. On the
contrary, in [10] an essential tool was constituted by the Variational Principle of
Ekeland.

If the functional f is only lower semi-continuous, a general critical point
theory seems not to be possible, according to the simple example mentioned at
the beginning of section 4. However, it is always possible to define a continuous
function G and, in some particular cases, to establish a bijective correspondence
between the critical points of f and those of Gy, reducing the problem to the
continuous case.

We wish to point out that, if X is a Finsler manifold of class C! and f is
of class C1, we improve the results of [21]. As a particular case, if the manifold
X is of class C2, we recover the classical theory without the construction of a
pseudo-gradient vector field. Moreover, we include and unify all the mentioned
results of [3, 6, 7, 9, 15, 20].

A further development of our approach is contained in [5], where also the
equivariant case is treated.

In section 2, we prove the basic deformation theorems for continuous func-
tionals. In section 3, we apply them to get some typical results of critical point
theory. Finally, in section 4, we show some possible extensions to the lower
semi-continuous case.

2. Deformation properties

In this section we recall from [10] some basic facts concerning the notion of
weak slope and we prove some deformation properties for continuous functionals.
In the following X will denote a metric space endowed with the metric d.

(2.1) DErFINITION. Let f: X — R be a continuous function and u € X. We
denote by |df|(u) the supremum of the ¢’s in [0, +-0c0[ such that there exist § > 0
and M : B(u;6) x [0,6] — X continuous with

(2.2) d(H(v,t),v) <t,
(2.3) f(H(v, b)) < f(v) —ot.

The extended real number |df|(u) is called the weak slope of f at u. If X
is a Finsler manifold of class C* and f is a function of class C!, it turns out
[10, Corollary 2.12] that |df|(u) = ||df (u)||. For further comparisons between the
weak slope and other notions in the literature, the reader is referred to [10].
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(2.4) DEFINITION. Let f : X — R U {400} be a lower semi-continuous
function. The effective domain of f is the set

D(f)={ueX: f(u) < +oo}.
According to [7], we define Gy : epi(f) — R by
Gs(u,€) = ¢,
where  epi(f) ={(u,£) € X xR: f(u) <&}
In the following, epi(f) will be endowed with the metric
d((u,€), (v,)) = (d(u,v)* + (€ — w)?)""*.
Since Gy is Lipschitz continuous of constant 1, it follows that |dGy|(u,¢) < 1.

(2.5) PROPOSITION (See [10, Proposition 2.3]). Let f : X — R be a contin-
uous function and let (u,£) € epi(f). Then

o AL i fu) = nd |df|(u 00;
|dgf|(u,£)={ T+ |df|(w)? f f(u) =€ and |df|(u) < +oo;

1, i f(u) <& or |df|(u) = +oo.

By the previous proposition it is possible to define consistently the weak slope
also in the lower semi-continuous case.

(2.6) DEFINITION. Let f : X — R U {+00} be a lower semi-continuous
function and let u € D(f). We set

|dGs|(u, f(u)) 1 £0)) < 1
Idfl(u)={ 1dGsl(u, f(u)) < 1;

VI 1467w, @Y’
+o00, if [dG|(u, £(u)) = 1.

(2.7) PROPOSITION (See [10, Proposition 2.6]). Let f : X — R U {400}
be a lower semi-continuous function. Then, for every sequence (up) in D(f)
converging to u € D(f) with (f(up)) converging to f(u), we have

ldf|(u) < lim inf |df|(un)-

Now we can prove the first result concerning deformations.

(2.8) THEOREM. Let f: X —» R and 0 : X — [0,+00[ be two continuous
functions such that

|df(w) #0 = |df|(w) > o(u).
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Then there exist two continuous maps 1 : X X[0,+oo[— X and1: X — [0, +oo]

such that
d(ﬂ(u, t), u) <t,

f(n(w,8)) < f(u),
t < 7(u) = f(n(u,1)) < f(u) —o(u)t,
|df|(u) # 0 = 1(u) > 0.

PROOF. By Proposition (2.7) |df| is lower semi-continuous. Hence, for every
u with |df|(w) # O there exists §, > 0 with

B(u;6,) € {ve X : |df|(v) # 0}

and H, : B(u;6,) x [0,8,] — X continuous satisfying (2.2) and (2.3), with o
substituted by sup{e(v) : v € B(u;§,)}. By Milnor’s lemma (see for instance [16,
Lemma 2.4}), the open cover {B(u;6,/2) : |df|(u) # 0} of {u € X : |df|(u) # 0}
admits a locally finite refinement {Vj : j € N, A € A;} such that

A#Fu=V; NV, =0.
Let 9, : X — [0,1] be a family of continuous functions with

supt ;A C Vja,

[o o]
(@) #0 =3 > dia(v) =1.
J=1 A€A;
For every (j, A) let Vjx © B(ujx; 6u;,,/2). Set 8;,1 = 8y, , and H;x = Ha, , .
Let 7 : X — [0,400[ be a continuous function such that
|df|(v) = 0 = 7(v) = 0,
|df|(’U) £F0=0< T(’U) < %min{rSj,;\ YV E Vj,,\}.

We want to define a sequence of continuous maps

nn: {(v,t) € X x [0,4+00[: t<T(v)} = X

such that
h
(29) amo,0,9) < (2 X a0t
J=1 A€A;
h
(2.10) fm(e,0) < 10 o) (3 X 9ia0) ).
F=1 AEA;

First of all we set

Hia(v,912(0)t), ifveVyy;
"71('0;73) =

v, if v ¢ UAEAl Vi.,/\-
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Now assume we have defined 75,1 satisfying (2.9) and (2.10). For every v € Vi
we have

h—1
dmato i) < (T 3 03a) )¢ <7(0) < 3o,

F=1 A€A;
hence n,_1(v,t) € B(up,z; 6n,0). Therefore the map
Haa(h—1(v,8), Ip A (0)t), if v € Vi y;
ﬂh(”, t) = .
"Ih—l('U, t)7 if v ¢ UXGA). th\
is well defined and satisfies (2.9) and (2.10).

Since the family {V; .} is locally finite, for every u with |df |(u) # 0 there
exist a neighborhood U of u and hg € N such that 7, (v,t) = n, (v, 1) for every
v€U,te€[0,7(v)] and h > hg. Therefore the map 7 : X x [0, +00o[ — X defined
by

”(ua t) = h’Iln ﬂh(u: min{tv T(u)})
is continuous at the points (u,t) with |df|(u) # 0. By (2.9) and (2.10) it follows
d(n(u,t),u) <1,
f(n(u, 1)) < f(uw),
t < 7(w) = f(n(u,1)) < flu) - a(ut,
so that 7 is continuous also at the points (u,t) with |df|(u) = 0. O
(2.11) THEOREM. Let X be a complete metric space, f:X > R a continu-
ous function, C a closed subset of X and 6,0 > 0 such that
d(u,C) < § = |df|(u) > 0.
Then there ezists a continuous map 17 : X x [0,6] — X such that
d(n(u,t),u) <t,
f(n(u,1)) < f(u),
d(u,C) > 6§ = n(u,t) = u,
u € C = f(n(u,?)) < f(u) - at.

PROOF. By the lower semi-continuity of |df| there exists a continuous func-

tion & : X — [0, +oo[ such that

d(u,C) < 6 = o(u) = o,
|df|(u) # 0 => &(v) < |df|(u).
Let m : X x [0,400[— X and 7y : X — [0,+o00[ be two continuous maps
obtained applying the previous theorem to . Let us set recursively
Nh—1(u, t), if 0<t< mp1(u);
M(Mh-1(, Th-1(w), t = Th1(w)), if 227 1(u),

n(u,t) = {
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h(u) = Th—1(w) + 71 (mh-1(u, Th-2(w))).
Let us show that for every (u,t) with d(u,C) +t < § we have
li}I,,n (u) > t.
By contradiction, let us suppose that 7, (u) < ¢ for every h. Since
(i (ty Th (%)), Mm—1 (s, Th—1(w))) £ 7a(w) — Th—1(u),
d(nn(u, (), C) < d(nn(u, Th(w)), w) + d(u, C) < mh(u) + d(u, C),
then (ns (u, 7n(w))) is a Cauchy sequence in {v : d(v,C) < 6}. If
lim7p (u, (1)) = v,
it follows
71(v) = Hm 7 (n (u, 7h(w))) = Bm(7hr1(u) — 7(w)) =0,

hence a contradiction.
Therefore we can define a continuous map

n:{(u,t):d(u,C)+t <6} = X
by
n(u,t) = li’rlnnh(u,t).
It is readily seen that
d(n(u,t),u) < ¢,
f(n(u,t)) < f(u) —ot.
If we set

n(u,t) = n(u, (§ — d(u, C))*)
whenever d(u,C) + ¢ > §, the map 7 has the required properties. O

(2.12) DEFINITION. Let f : X — R U {+00} be a lower semi-continuous
function. A point u € D(f) is said to be critical if |df |(u) = 0.

(2.13) DEFINITION. Let f : X — RU {+o0o} be a lower semi-continuous
function and let ¢ € R. We say that f satisfies the Palais-Smale condition at
level ¢ ((PS). in short), if every sequence (up) in D(f) with |df|(us) — 0 and
f(up) — c contains a subsequence (u4,) converging in X.

In the following, for every ¢ € R we set
K.={ue X: |df|(u) =0, f(u)=c},
ff=fueX: f(u)<ch

Now we can prove the two main results of this section.
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(2.14) THEOREM (Deformation Theorem). Let f : X — R be a continuous
Junction defined on a complete metric space X, and let ¢ € R. Assume that I
satisfies the Palais-Smale condition at level c.

Then, given € > 0, O a neighborhood of K. (if K. = 0, we allow © = #) and
A >0, there existe > 0 and n: X x [0,1] = X continuous with:

(a) d(n(u,t),u) < Xt;

() fn(u,?)) < f(u);
(C) f(u') ¢ ]C_E’C+E[ == W(U,t) =uy
(d) n(fe*\ 0,1) C foe.

PROOF. Fix € > 0, a neighborhood O of K. and A > 0. First of all, let us
suppose that f is Lipschitz continuous of constant 1.

From the Palais-Smale condition at level ¢ and Proposition (2.7), we deduce
that K. is compact. Let r > 0 be such that B(K,;2r) C O. Let 6,0 > 0 be such
that 26 < 7,6 <r and

c—26 < f(u) <ec+26, u¢ B(K;r)= |df|(u)> 0.

Set
C={uv€X: c~6<f(u)<c+6, u¢ B(K;2r)}.

Since f is Lipschitz continuous of constant 1, we have
d(u,C) < 6 = |df|(u) > 0.

Let 7' : X x [0,6] — X be a continuous map as in Theorem (2.11). We can
assume, without loss of generality, A < 6§ and define  : X x [0, 1] - X by
7(u,t) = 7' (u, At).

Properties (a) and (b) are obvious. Since f is Lipschitz with constant 1,
f(u) ¢ Jc — ,c + €[ implies d(u,C) > §, hence n(u,t) = u. Finally, set ¢ =
min{%,6}. If u € f*+\ @ and f(u) > ¢ — ¢, it follows u € C, hence

f(’?(“al)):f(ﬂ’(ua'\))Sf(u)—o')\Sc+E—a)\Sc—e.

Ifue f+*\ O and f(u) < ¢ — ¢, we deduce from (b) that f(n(u,1)) < ¢ —e.
Now let us consider the general case. Being closed in X x R, epi(f) is com-
plete. Let us denote by K, the set of critical points of Gy at level c. By Propo-
sition (2.5), the function Gy satisfies the Palais-Smale at level c. Moreover,
(O x R) Nepi(f) is a neighborhood of K. and G is Lipschitz continuous of
constant 1.
By the previous step, we can find € > 0 and a continuous map

ﬁ = (ﬁla ﬁZ) : epl(f) X [01 1] - epl(f)
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such that

(1w, €),8) <&,
£ ¢ le—F ctal= i((u€),t) = (u,¢),
ESC+57 u ¢ O=>ﬁ2((u1€)11)) <c—e.
Let us define n : X x [0,1] — X by n(u,t) = 71((x, f(u)),f). Since 7 takes its
values in epi(f), we have
Fn((u, £(1)), 1)) < f2((u, f(w)), t)-
Then (a), (b), (c) and (d) easily follow. O
(2.15) THEOREM (Noncritical Interval Theorem). Let X be a complete met-
ric space, f : X — R be a continuous function, a € R and b € RU {+o0}
(a < b). Assume that f has no critical points u with a < f(u) < b and that
(PS)¢ holds whenever ¢ € [a,b], ¢ < f(u) for some u € X. Then there exists
7: X x[0,1] » X continuous with:
(@) n(u,0) =u;
(8) f(n(u,t)) < fu);
(c) flu) b = f(n(u,1)) < a;
(d) f(u) <a = n(y,t) =u.

PRroOF. First of all assume b < f(u) for some u € X. Consider the case in
which f is Lipschitz continuous of constant 1. By the Palais-Smale condition,
we can find é, ¢ > 0 such that

a—6< flu)<b+46 = |df|(u) > o.
If we set
C={ueX: a< f(u) <b},
it follows
d(u,C) <6 = |df|(u) > o.
Let 5 : X x [0,6] = X be a continuous map as in Theorem (2.11). Define
recursively 7, : X x [0,1] — X by
m(u,t) = n'(u, t),
ﬂh(“a t) =T ("7h—1('“, t)at)a

and consider n such that noé > b—a. If ¥ : R — [0,1] is the function such that
¥(s) =0for s <0, 9(s) =sfor 0 <s<1,and ¥s) =1 for s > 1, then the map

7w, t) = o (u,t 0(”5‘1;"))
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has the required properties.
Now consider the case in which f is only continuous. The function G + satisfies
the assumptions of the theorem and is Lipschitz continuous of constant 1. Let

7 = (71, 72) : epi(f) x [0,1] — epi(f)
be a continuous map given by the previous step. Then the map

ﬂ(u, t) = ﬁl((ua f(u))v t)

has the required properties.
Finally, assume b > f(u) for all u € X. Of course, it is sufficient to treat the
case b =sup f. Let (bs) be a strictly increasing sequence with

by =a and li’Ilnbh = b.

For every h > 1 let nj, : X x[0,1] — X be a continuous map satisfying the thesis
with a and b substituted by b, and bp41. Let us define 7 X x[0,1] = X by

m(u,t) = ni(u,t),
(1, ) = np_1(nh (u, t), 2).
Arguing by induction, it is easy to see that
Mk (y,0) = u,
f(n(u,t)) < f(u),
f(u) < bhyr = f(mn(u,1)) < a,
f(w) Sbp = ma(y,t) = mr-1(u, ),
fw) <a=> nu(u,t) = u.
Therefore the map
n(u, t) = limnp (u, )
has the required properties. 0
Now we want to give “symmetric” versions of the previous results, when X
is a Banach space endowed with the usual Z;—action. Since 0 is a fixed point of

the action, we have to treat the origin as a critical point, even if we do not know
whether |df|(0) = 0 for every even continuous function f: X — R.

(2.16) THEOREM. Let X be a Banach space, f : X — R be an even contin-
uous function and c € R. Assume that f satisfies the Palais-Smale condition at
level c.

Then, given€ > 0, O a neighborhood of K.U{0} and A > 0, there exist € > 0
andn: X x[0,1] = X continuous having properties (a) to (d) of Theorem (2.19)
and

(e) n(+,t) : X = X is odd for each t € [0,1].



160 J.-N. CORVELLEC — M. DEGIOVANNI — M. MARZOGCHI

PROOF. Since f is even, |df|(—u) = |df|(u) for all u € X (in particular, K,
is a symmetric set for each ¢ € R).

If u# 0 and |df|(u) > o > 0,1let § > 0 and H : B(u;6) x [0,6] = X be a
continuous map satisfying (2.2) and (2.3). Of course, we can suppose § < |[u|.
Then

H : (B(u; 6) U B(—u; 6)) x [0,6] = X

defined by
~ H(w, 1), if v € B(u;6);
oo [ @0 Ve Bwo)
—H(~v,t), ifve€ B(—u;6),
is continuous, odd with respect to the first variable and satisfies (2.2) and (2.3).

Then, all the constructions of Theorems (2.8), (2.11) and (2.14) can be re-
peated in a symmetric way, yielding the result. O

(2.17) THEOREM. Let X be a Banach space, f : X — R be an even con-
tinuous function, a € R and b € RU {+oo}(a < b). Assume that f has no
critical points u with a < f(u) < b, f(0) ¢ [a,b] and that (PS). holds whenever
c € [a,b], ¢ < f(u) for someu € X.

Then there exists n: X x [0,1] = X continuous having properties (a) to (d)
of Theorem (2.15) and

(e) n(-,t) : X > X is odd for each t € [0,1].

ProoF. The argument is similar to that of the previous theorem. O

3. Applications to critical point theory

In this section we apply the Deformation Theorem and the Noncritical Inter-
val Theorem, to extend some classical results of critical point theory to contin-
uous functionals.

Throughout this section X will denote a metric space endowed with the
metric d.

(3.1) DEFINITION. Let A be a closed non-empty subset of X. We denote
by cat(4; X) the least integer n such that A can be covered by n open subsets
of X, each of which is contractible in X. If no such integer n exists, we put
cat(A; X) = oo. We set also cat(d; X) = 0 and cat(X) = cat(X; X).

For our purposes, we prefer the definition of the Lusternik-Schnirelman cat-
egory given by means of open covers, as in [11, 12]. Of course, if X is an ANR,
the above definition agrees with the usual one ([17, 18]), involving closed covers.

Let us recall the basic properties of the category.
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(3.2) PROPOSITION. Let A and B be two closed subsets of X. Then the
following facts hold:

(a) AC B = cat(4;X) < cat(B; X);

(b) cat(A U B; X) < cat(4; X) + cat(B; X);

(c) if H:X x[0,1] = X is a deformation with H(A x {1}) C B, we have
cat(4; X) < cat(B; X);

(d) there ezists an open subset U of X such that A C U and
cat(U; X) = cat(4; X).

If f: X — R is a continuous function and 1 < m < cat(X), we set
An={ACX: Aisclosed and cat(4;X) > m},
= inf .
om = 0, s S
The first result concerning the Lusternik-Schnirelman category is the follow-
ing one.

(3.3) THEOREM. Let X be a complete metric space and f : X — R a con-
tinuous function. Assume that (PS). holds whenever c < f(u) for some u € X.
If 1 <m < n < cat(X), the following facts hold:

(a) em < cn <sup{f(u): |df|(u) = 0} (with the convention sup § = —oo);
(b) if —00 < em < f(u) for some u € X, then K., # 0;
(¢) if —00 < em = cn < f(u) for some u € X, then

cat{(K. ; X)>n—m+ 1.

PROOF. Since we have proved in our setting the Deformation Theorem and
the Noncritical Interval Theorem, it is sufficient to adapt the classical arguments
of [17, 18] to our situation. O

The next results on the Lusternik-Schnirelman category require some regu-
larity of the metric space X.

(3.4) DEFINITION. The metric space X is said to be weakly locally con-
tractible, if every z € X admits a neighborhood U contractible in X.

It is readily seen that X is weakly locally contractible if and only if
cat({z}; X) =1, forall z € X.

If X is weakly locally contractible and K is a compact subset of X, it is easy
to show that cat(K; X) < co.



162 J.-N. CORVELLEC — M. DEGIOVANNI — M. MARZOCCHI

(3.5) THEOREM. Let X be a weakly locally contractible complete metric
space, f : X — R be a continuous function and a,b € R (@ < b). Assume
that (PS). holds for all c € [a,b)].

Then cat(f®; X) < oo implies cat(f% X) < co.

ProoF. It is sufficient to show that the set
{c €[a,b] : cat(f%X) < o}

is open and closed in [a,b]. This fact can be proved in a standard way by means
of the Deformation Theorem. O

(3.6) THEOREM. Let X be a weakly locally contractible complete metric space
and f: X — R be a continuous function. Assume that f is bounded from below
and that (PS). holds whenever ¢ < f(u) for some u € X.

Then the following facts hold:

(a) f has at least cat(X) critical points;
(b) if cat(X) = oo, sup f is not achieved, and
x

lim ¢, = sup f;
m X

(c) if cat(X) = oo and (PS). holds for all c € R, we have

sup f = +o0.
X

PROOF. It follows from Theorems (3.3) and (3.5) by a standard technique.
a

Now we want to prove a result of saddle point type. It is an extension of the
results of [1, 19] in the regular case and of [4, 13, 14] in the “limit” case.

(3.7) THEOREM. Let X be a complete metric space, f: X — R a continuous
function, (D,8) a compact pair and ¢ : § — X a continuous map. Let

2={p€eC(D,X): ¢s =1}
Let us assume that ® # 0 and that there exists a closed subset A of X such that
ANny(S) =10, iﬂff Zm?x(fo'd)) and AN@(D)#0 forall p€d.
If f satisfies the Palais-Smale condition at level

c= ;gg max(f o ),
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then K. # 0. Furthermore, if c = i%ff, then K.N A # 0.
PROOF. It follows from the hypothesis that
>1i .
c> 1ﬁf b

If this inequality is strict and we suppose that K, = 0, we obtain a contradiction
in a standard way (see e.g. [19]), using (¢) and (d) of the Deformation Theorem.

Ife= iﬁf f, we can proceed as in [4, Theorem 1]. Let us give the proof for
the reader’s convenience. Let us assume by contradiction that K.NA=0and
let A > 0 be such that

u € K, = d(u, A) > ),
u € A, v€Y(S) = d(u,v) > 2

Let e >0 and n: X x [0,1] = X continuous be as in the Deformation Theorem
with

d(n(u, t), u) < At
u € fc+€, d(u7A) A= f("’(ua 1)) <c-e

Define, for v € X, t € [0, 1]:
p(u) = % m.in{d('u,, 1/}(5)): ’\}a ﬁ(ua t)= 7(u, p(u)t).

Let ¢ € ® be such that
mg,x(fogo) <c+e.

Then ¢ = 7j(-,1)o ¢ € @. Let 2o € D be such that $(zy) € A, so that
F(@(zo0)) = ¢. On the other hand, d(p(zg), A) < A, so that pl(zo)) = 1 and
F(@(zo)) = f(n(p(z0),1)) < ¢ — e: a contradiction. O

(3.8) REMARK. Theorem (3.7) is similar to [4, Theorem 3] and, as in [4],
the two parts of the proof can be deduced from a unique principle; indeed, in
the case ¢ > inf, f, the set {x € X : f(z) > ¢} has the same properties as the
set A with respect to ®.

4. Lower semi-continuous functionals

In the previous section we have proved some results of critical point theory
for continuous functionals. In the lower semi-continuous case a further difficulty
arises.

Let X again denote a metric space and let f : X — R U {+oc} be a lower
semi-continuous function. Because of Definition (2.6), u € D(f) is critical for f
if and only if (u, f(u)) is critical for Gy. Moreover Gs(u, f(u)) = f(u). Therefore,
in order to get information about the critical points of f, we could study the
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function G;. The advantage is that Gy is continuous, so that the theory of the
previous section applies to Gy. Unfortunately, Gy has in general more critical
points than f. Consider, for instance, the function f : R — R defined by
fl@)=xz+1,ifz <0, and f(z) =z, if z > 0. Then (0,0) and (0,1) are both
critical points of Gy. This is correct, because Gy satisfies the assumptions of the
mountain pass theorem (which is, of course, a particular case of Theorem (3.7)).
Actually, (0,0) is a strict local minimum, while (0, 1) is the mountain pass point.
On the other hand, 0 is the unique critical point of f and f(0) = 0, in spite of
the fact that f also presents a behaviour of mountain pass type.
This difficulty cannot arise, if we assume

(4.1) inf{|dGy|(u,€) : flu) <&} > 0.

For instance, in [10, Theorem 3.13] it has been proved that, if X is a Banach
space and f = fo+ f1 with fo : X — RU{+00} convex and lower semi-continuous
and fi : X — R of class C?, then

f(u) < &€ = |dGy|(u, &) = 1.

In particular, (4.1) holds.

The same property is true for (f + Ip), where Ips is the indicator of a
C'—hypersurface M, provided that a suitable non-tangency condition is satisfied
(see [2, Theorem 2.6]).

First of all, we want to show that the same result holds for another class of
lower semi-continuous functionals. Let us recall some notions from [6, 7, 9].

(4.2) DEFINITION. Let A be an open subset of a Banach space E and f :
A — RU {+00} be a lower semi-continuous function. For every u € D(f) we
denote by 8~ f(u) the (possibly empty) set of o’s in E’ such that
[~ fw) — o v=w) o

lim inf
v—u llv — ull

(4.3) DEFINITION. Let A be an open subset of a Hilbert space H and p 2>
0. We say that a lower semi-continuous function f : A — R U {400} has a
p-monotone subdifferential of order p, if there exists a continuous function

x: (D(f))? xR* - R*
such that
(@ — B, u—v) > —x(u,v, f(w), F©))(L+ [l + 18]7)lu — v

whenever u,v € D(f), a € 8~ f(u) and B € 0~ f(v).
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(4.4) THEOREM. Let A be an open subset of a Hilbert space H and f:A—>
RU{+oo} be a function. Assume that f = fo+ f1 with fo: A — RU{+oc0} lower
semi-continuous with p-monotone subdifferential of order 2 and f; : A - R of
class C1.

Then for every (u, £) € epi(f)

F(u) <& = |dGy|(u,£) = L.

PRrROOF. Let u € D(f) and £ > f(u). By [10, Proposition 2.7], it is sufficient
to consider the case f; = 0.

For every v € D(f) let V : [0, T (v)[— D(f) be the curve of maximal slope
for f such that V(0) = v defined on its maximal interval (see [9, section 3]). We

recall that
t

lim T+ IV + d(V(r),04)7%) dr = +o0
t—T (v) 0

with the convention d(V(7),04)"2 =0 if A= H. Set

A={(v,t): 0<t<T(v)}
and define @ : A — D(f) by ®(v,t) = V(t). Then, if ((vh,ts)) is a sequence in
A converging to (v,t) € A with sup f(vs) < 400, we have

h
li’f'nq)(vh)th) = (D(Uat)v
> 0= lim f(®(va,t4)) = F(D(v,1)).
If, in addition, f(vs) — f(v), then f(®(vn,tn)) — f(®(v,t)) also when ¢ = 0.
For every (v,t) € A let
t
aul®)= [ @+ VI +dVir), 04)?) d.

0

Let us define ¥ : D(f) x [0, +00[ — D(f) by ¥(v,s) = ®(v,0,'(s)). We have

ou(t) =t+ f(v) — F(V() + /: d(V(7),04) 2 dr.
Therefore, for every sequence ((vg, s)) in D(f) x [0, +o0[ converging to (v, s)
with f(vn) — f(v), we have
li,{n U(vn, sp) = ¥(v,s),
lim £((on, 1) = /(¥ (v, ).
Let us define 7 : epi(f) x [0, +o0o[ — epi(f) by
(v, — 3), if 0<s<p~ flu)

i) = { (V0,5 =+ FO)), F(¥(0, =+ F0)), i 82 um £(0)
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Since 7 is Lipschitz continuous of constant 1 in the last variable, it follows
that
d(n((v, 1), 8), (v, ) < 8.

In order to show that 7 is continuous, consider a sequence ((vn, 1), Sn) con-
verging to ((v, ), s) with f(va) < pn. Up to a subsequence, we can assume that
F(vp) — 1. Since 7 is uniformly Lipschitz continuous in the last variable, we can
suppose, without loss of generality, s, = s and treat only the cases 0 < s < u—|,
p—l<s<p— f(v)and s >p— f(v).

Case [0 < s < p—1]: It is clear that

n((vh: uh)i 5) = ('Uh,/l'h - 3) — (v,p- s) = "7(('0,#), 5)'

Coase [p—1< s < p—f(v)]: Suppose first f(vn) = pp and set tp = o, 1(s).
Let us show that ¢, — 0. Since t; < s, up to a subsequence {;, — t. If, by
contradiction, ¢t > 0, it follows that

f(2(vn,tn)) — f(2(v,1)) < f(v).
On the other hand we have
f(@(vn,tn)) = f(¥(vn,8)) = flvn) — s,
hence f(v) > 4 — s a contradiction. Therefore
U(vp, 8) = D(un, tp) — v.

Moreover,
th
F(U(on,8)) = F(®(un, 1)) = F(vn) — /0 V()| dr

th
= Up— 8 + / (1 + d(Vh(T),aA)_z) dr.
0
It follows that
7((vn, n), 3) = n((vn, f(vn)), 8) = (¥(vn, 8), F(¥(vn, s)))
- (U’IJ‘ - S) = T’((Uv ﬂ)1 3)'
If we remove the restriction f(vp) = pp, we have in any case
n((vh, in); 8) = n((vn, f(vn)), s — pn + Fvn)),
77((”, I"‘)a 3) = 77((”, l)’ s—p+ l)
Therefore we are reduced to the previous situation.
Case [s > p— f(v)]: Suppose first | > f(v). Let
(wha f(wh.)) = n((vh’ I‘h)’ H— f('v))
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By the previous step we have

(wha f(wh)) B 77((‘0,#), u= f('v)) = (‘U, f(v))’

hence,

1((va; o), 8) = (¥(wh, 8 — p + f(v)), F(L(wh,s — p+ f(v))))
— (\I’('Ua s—p+ f('U))v f(\I’(Uv 3-_ b+ f(v)))) = n((v’l"')v 3)'

On the other hand, if I = f(v), it follows that
ﬂ((”h, “h): s) = (‘I’(vh‘l 8§ — ip + f('”h))v f(\I’('Uh’ S— pp+ f('uh))))
— (U(v,8 — p+ F(v)), f(¥(v,5 — p+ f()))) = n((v, ), ).

Therefore the map 7 is continuous.
By [9, Theorem 1.18] for every & > 0 there exists § > 0 such that

(v, 7 (v)) € B((1,£);26), @ €™ f(v) = ella||® > 1 + d(v,04)72.
Let us consider
1 : (B((u,£); 6) Nepi(f)) x [0, 6] — epi(f).
If s < pu— f(v), of course we have
Gr(n((v, 1), 8)) = — s =Gs(v,p) — .
If s > p— f(v), set t = 0;1(s — p + f(v)), so that
s—p+ f(v) = /0 W VIR + dOV(r), 04)2) dr.

Then
Gr(n((v, u), 5))

= f(¥(v,s — u+ f(v)) = £(2(v,1)) = f(v) — /Ot V' (7)1 dr

=f(v)—/o (1+||V'(‘r)||2+d(V(T),6A)_2)d'r+/0 (1+d(V(1),04)"2)dr

_ t1+d(V('r),6A)_2 , 9
—p—s+ /0 e V@I dr

t
<u=ste [ VI dr < Gplom (1 -
0

It follows that |dGy|(u,£) > 1 — ¢, hence the thesis by the arbitrariness of .
o
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Now let us show in more detail how the function G¢ can be used to get infor-

mations on the critical points of f. As an example, let us prove an adaptation

of Theorem (3.7).

(4.5) THEOREM. Let X be a complete meiric space and f: X — RU {+o0}
a lower semi-continuous function satisfying (4.1). Let D™, S"~! denote re-
spectively the closed unit ball and sphere in R™ and let ¢ : §7~1 — D(f) be

continuous. Consider
® = {p e C(D",D(f)): psn-1 =¥}
Assume that ® # 0 and that there ezists A closed in D(f) such that

An¢(s"—1)=@,iﬂffz sup (fot) and AN@D™)#0 for all p €.
gn-1

Finally, suppose that

= inf
c &lésgg(fow)

is a real number and that f satisfies the Palais-Smale condition ot level c. Then

K, # §; furthermore, if c = i%ff, then K.N A # 0.

PROOF. Set a = sup (f o %) and define:
Sn—-1

"ﬁ = (¢7a)1
&; = {‘P € C(Dn)epl(f)) : (P|S"_1 = "Z}l

é = inf max(Gys o ¢).
ped D"

We show that ® # 0 and that ¢ = c. Let ¢ € ® with sup(f o ¢) = 8 < +o0;
Dn

define, for £ € D™:
¢(2z), if z€iD™
P1(z) = Ty . = irn
{ cp(m), if z€ D\ 3D",

B, if z € D™
¢a(z) = —
(2lz| - 1)a+2(1—|z|)B, ifzeD*\LiDn

It is easy to verify that ¢ = ($1,92) € :I;, with maxpn(Gs o ¢) = B. This shows
that ® # 0§ and that & < c. Conversely, if ¢ = (1, p2) € @, then ¢; € ® and

Gi(p(z)) = p2(x) 2 f(pi(z)),  forallz € D*,

whence ¢ < é.
Now, let
A = (A x R) Nepi(f).
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The set A is closed in epi(f),
ANP(S™ 1) =4, i%f Gy = inf f > max(Gy o ¥) =0,
and

Anp(D™) # 0, for all ¢ € d.

It follows from Definition (2.6) and (4.1) that G satisfies the Palais-Smale con-
dition at level ¢ and that (u,c) is a critical point for G; if and only if u is a
critical point for f at level c. E‘he thesis thus follows by applying Theorem (3.7)
to Gy, making use of the set A. O

For the Lusternik-Schnirelman theory, one has also to prove that epi(f) is
weakly locally contractible and to evaluate cat(epi(f)). The following result may
help in this direction.

(4.6) THEOREM. Let A be an open subset of a Hilbert space H and f : A —
RU{+00} be a function. Assume that f = fo+ f1 with fo: A — RU {400} lower
semi-continuous with -monotone subdifferential of order 2 and f; : A - R of
class C1. Let us define on D(f) the graph metric d* by

d*(u,v) = (Jlu — v]| + (f(u) — F(2))*)/2

Then epi(f) is weakly locally contractible and homotopically equivalent to
D(f) endowed with the metric d*.

PROOF. First of all D(fp) = D(f) and the graph metric associated with f,
is topologically equivalent to that associated with f. On the other hand, epi(f,)
is homeomorphic to epi(f). Therefore it is sufficient to treat the case f; = 0.

By [8, Theorem 3.14] (D(f), d*) is an AN R, hence weakly locally contractible.
Then it is enough to prove that epi(f) is homotopically equivalent to (D(f), d*).

The metric space (D(f),d*) is isometric to the graph

G = {(w, f(u)): ueD(f)}C epi(f).

Let us show that G is a weak deformation retract of epi(f).

Let 7 : epi(f) % [0, +oo[— epi(f) be as in the proof of Theorem (4.4). Let
¥ : epi(f) — R be a continuous function such that §(u,£) > & — f(u), and let
H : epi(f) x [0, 1] — epi(f) be defined by

H((uv 5)’ s) = 77((“’ E): s9(u, 5))

Then we have
H((,£),0) = (v, &),

H((,£),1) = n((u,£),9(u, ) €G,
H((u” f(u)), 8) €q.
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