Topological Methods in Nonlinear Analysis Volume 46, No. 2, 2015, 563–602 DOI: 10.12775/TMNA.2015.059

O 2015 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

## STRONGLY DAMPED WAVE EQUATION AND ITS YOSIDA APPROXIMATIONS

Matheus C. Bortolan — Alexandre N. Carvalho

ABSTRACT. In this work we study the continuity for the family of global attractors of the equations  $u_{tt} - \Delta u - \Delta u_t - \varepsilon \Delta u_{tt} = f(u)$  at  $\varepsilon = 0$  when  $\Omega$  is a bounded smooth domain of  $\mathbb{R}^n$ , with  $n \geq 3$ , and the nonlinearity f satisfies a subcritical growth condition. Also, we obtain an uniform bound for the fractal dimension of these global attractors.

## 1. Introduction

We study the continuity of global attractors of the following semilinear evolution equation of second order in time

(1.1) 
$$\begin{cases} u_{tt} - \Delta u - \Delta u_t - \varepsilon \Delta u_{tt} = f(u), & t > 0, \\ (u(0), u_t(0)) = (u_0, v_0), \\ u|_{\partial\Omega} = 0, \end{cases}$$

and we give an uniform bound for the fractal dimension of these global attractors.

We know that, for  $\varepsilon = 0$ , this equation is the usual strongly damped wave equation, and its asymptotic dynamics – related to global attractors – has already been vastly explored; see for instance [6], [7], [9], [12], [15], [22], [23], [26]–[28].

<sup>2010</sup> Mathematics Subject Classification. 34D45, 37L30.

Key words and phrases. Global attractor, Yosida approximation, continuity of attractors, fractal dimension.

The first named author partially supported by FAPESP 2012/23724-1.

The second named author partially supported by CNPq 305230/2011-5.

However, for each  $\varepsilon > 0$  fixed, we have a special form of the improved Boussinesq equation (see [4], [19], [20], [25]) with damping  $-\Delta u_t$ , which, among other things, is used to describe ion-sound waves in plasma (see [20], [21]).

For each  $\varepsilon > 0$  fixed, this equation has been studied in [8], in terms of existence and uniqueness of solutions, existence of global attractors and asymptotic bootstrapping; in this case, the linear part of the equation (after a change of variables) is a bounded operator. Here, since we want to study the continuity of attractors at  $\varepsilon = 0$ , we will use the properties of the limiting problem with  $\varepsilon = 0$ (local and global well posedness, regularity and existence of global attractors) as reported in [6], [7].

Throughout this paper, we will assume that  $f: \mathbb{R} \to \mathbb{R}$  is a continuously differentiable function, respecting a growth condition with subcritical exponent; that is, there exist constants c > 0 and  $\rho < (n+2)/(n-2)$  such that for all  $s_1, s_2 \in \mathbb{R}$ 

(1.2) 
$$|f(s_1) - f(s_2)| \le c|s_1 - s_2|(1 + |s_1|^{\rho-1} + |s_2|^{\rho-1}),$$

and also, if  $\lambda_1$  denotes the first eigenvalue of  $-\Delta$  with Dirichlet boundary conditions in  $\Omega$ , we assume the following dissipation condition

(1.3) 
$$\limsup_{|s| \to \infty} \frac{f(s)}{s} < \lambda_1$$

To begin our study, we will write further A for  $-\Delta$  with the Dirichlet boundary conditions. Our problem then takes the form

(1.4) 
$$\begin{cases} u_{tt} + Au + Au_t + \varepsilon Au_{tt} = f(u), & t > 0, \\ (u(0), v(0)) = (u_0, v_0). \end{cases}$$

and it is well-known that  $A: H_0^1(\Omega) \cap H^2(\Omega) \subset L^2(\Omega) \to L^2(\Omega)$  is a closed, densely define operator which has the following properties:

- (O1) A is self-adjoint with compact resolvent;
- (O2) A is an operator of positive type;
- (O3)  $\sigma(A) = \sigma_p(A) = \{\lambda_n\}_{n \in \mathbb{N}}, \lambda_1 > 0, \lambda_i \leq \lambda_{i+1}, \text{ for all } i \geq 1 \text{ (repeated to take into account the multiplicity)}, \lambda_n \xrightarrow{n \to \infty} \infty \text{ and if } v_n \in L^2(\Omega)$  are unitary eigenvectors associated with  $\lambda_n$  then  $\{v_n\}_{n \in \mathbb{N}}$  constitutes an orthonormal basis for  $L^2(\Omega)$ .

REMARK 1.1. We included in Appendix A the proof of the main results of functional analysis we will use, in order to make explicit the uniformity of the constants obtained for  $\varepsilon \in [0, 1]$ .

The key point in our analysis is the observation that the differential equation in (1.4), for  $\varepsilon > 0$ , can be obtained from its limit, for  $\varepsilon = 0$ , with a suitable exchange of the unbounded operator A by its Yosida approximation  $\Lambda_{\varepsilon}$  (see