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COINCIDENCE OF MAPS ON TORUS FIBRE BUNDLES

OVER THE CIRCLE

João Peres Vieira

Abstract. The main purpose of this work is to study coincidences of fibre-

preserving self-maps over the circle S1 for spaces which are fibre bundles

over S1 and the fibre is the torus T . We classify all pairs of self-maps over

S1 which can be deformed fibrewise to a pair of coincidence free maps.

1. Introduction

Given a fibration M
p
−→ S1 and fibre-preserving maps f, g : M →M over S1,

the question is if the pair (f, g) can be deformed by fibrewise homotopy over S1

to a coincidence free pair (f ′, g′).

This problem was motivated by the case in that f = Id, and in this case,

the question is if the map g can be deformed by fibrewise homotopy over S1 to

a fixed point free map g′, which has been considered by many authors, among

them see [4], [6], [8] and [9].

Let us consider fibre-preserving maps f, g : M → M , where M is a fibre

bundle over the circle S1 and the fibre is a closed surface S. These fibre bundles

are obtained from the space S × [0, 1] by identifying the points (x, 0) with the

points (φ(x), 1), where φ is a homeomorphism of the surface S. The cases when

f = Id and the fibre S is either the torus T or the Klein bottleK, were completely

solved in [8] and [9], respectively.
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In this work, we consider the fibre S = T . We denote the total space by

M(φ). We investigate when given fibre-preserving maps f, g : M(φ) → M(φ)

over S1, i.e. p ◦ f = p and p ◦ g = p, the pair (f, g) can be deformed by fibrewise

homotopy over S1 to a coincidence free pair (f ′, g′).

The set of homotopy classes of the pairs (f, g) such that (f |T , g|T ) can be

deformed to a coincidence free pair is given by Theorem 3.6.

This paper is organized into four sections. In Section 2 we prove that our

problem is equivalent to the existence of a section. This is given by Theorem 2.2.

We show that to find this section it is equivalent to find a lifting in an algebraic

diagram. This is the Proposition 2.10. We also present some results on the

torus T and fibre bundles over S1 and fibre T . These results include the Nielsen

number of a pair of maps of the torus and the fundamental group of the spaces

M(φ), M(φ) ×S1 M(φ) and M(φ) ×S1 M(φ) \ ∆ where ∆ is the diagonal in

M(φ)×S1M(φ), which is the pullback of p : M(φ)→M(φ) by p : M(φ)→M(φ).

In Section 3 we classify all T -bundles over S1. This is the Proposition 3.4. We

also obtain a presentation for the fundamental groups of M(φ), M(φ)×S1 M(φ)

and M(φ)×S1 M(φ) \∆.

In Section 4, we present a necessary and sufficient condition for the existence

of the lifting in the diagram

π1(F)

��

≃ π2(T, T \ 1)

π1(ES1(M(φ)))

q#

��

≃ π1(M(φ)×S1 M(φ) \∆)

π1(M(φ))

ψ
66

(f,g)#

// π1(M(φ)×S1 M(φ))

with base points suitable. These conditions are related to existence of solutions

of a system of equations involving the presentation of the groups above.

In Section 5, we classify all the pairs of maps (f, g), which can be deformed,

by a fibrewise homotopy over S1, to a pair of coincidence free maps (f ′, g′),

which is Theorem 5.1.

2. Preliminary and general results

2.1. Coincidence theory. Let f, g : X → Y be maps between finite CW-

complexes. Denote by Coin(f, g) = {x ∈ X | f(x) = g(x)}.

Suppose that x1, x2 are in Coin(f, g). Then we say that x1, x2 are Nielsen

equivalent according to f and g if there exists a path σ : [0, 1] → X such that

σ(0) = x1, σ(1) = x2 and f ◦ σ is homotopic to g ◦ σ relative to end points.


