Topological Methods in Nonlinear Analysis Volume 46, No. 2, 2015, 507–548 DOI: 10.12775/TMNA.2015.057

O 2015 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

COINCIDENCE OF MAPS ON TORUS FIBRE BUNDLES OVER THE CIRCLE

João Peres Vieira

ABSTRACT. The main purpose of this work is to study coincidences of fibrepreserving self-maps over the circle S^1 for spaces which are fibre bundles over S^1 and the fibre is the torus T. We classify all pairs of self-maps over S^1 which can be deformed fibrewise to a pair of coincidence free maps.

1. Introduction

Given a fibration $M \xrightarrow{p} S^1$ and fibre-preserving maps $f, g: M \to M$ over S^1 , the question is if the pair (f, g) can be deformed by fibrewise homotopy over S^1 to a coincidence free pair (f', g').

This problem was motivated by the case in that f = Id, and in this case, the question is if the map g can be deformed by fibrewise homotopy over S^1 to a fixed point free map g', which has been considered by many authors, among them see [4], [6], [8] and [9].

Let us consider fibre-preserving maps $f, g: M \to M$, where M is a fibre bundle over the circle S^1 and the fibre is a closed surface S. These fibre bundles are obtained from the space $S \times [0, 1]$ by identifying the points (x, 0) with the points $(\phi(x), 1)$, where ϕ is a homeomorphism of the surface S. The cases when f = Id and the fibre S is either the torus T or the Klein bottle K, were completely solved in [8] and [9], respectively.

²⁰¹⁰ Mathematics Subject Classification. Primary: 55M20; Secondary: 55R10, 55S35. Key words and phrases. Coincidence, fibre bundle, fibrewise homotopy.

J.P. VIEIRA

In this work, we consider the fibre S = T. We denote the total space by $M(\phi)$. We investigate when given fibre-preserving maps $f, g: M(\phi) \to M(\phi)$ over S^1 , i.e. $p \circ f = p$ and $p \circ g = p$, the pair (f, g) can be deformed by fibrewise homotopy over S^1 to a coincidence free pair (f', g').

The set of homotopy classes of the pairs (f,g) such that $(f|_T,g|_T)$ can be deformed to a coincidence free pair is given by Theorem 3.6.

This paper is organized into four sections. In Section 2 we prove that our problem is equivalent to the existence of a section. This is given by Theorem 2.2. We show that to find this section it is equivalent to find a lifting in an algebraic diagram. This is the Proposition 2.10. We also present some results on the torus T and fibre bundles over S^1 and fibre T. These results include the Nielsen number of a pair of maps of the torus and the fundamental group of the spaces $M(\phi), M(\phi) \times_{S^1} M(\phi)$ and $M(\phi) \times_{S^1} M(\phi) \setminus \Delta$ where Δ is the diagonal in $M(\phi) \times_{S^1} M(\phi)$, which is the pullback of $p: M(\phi) \to M(\phi)$ by $p: M(\phi) \to M(\phi)$.

In Section 3 we classify all *T*-bundles over S^1 . This is the Proposition 3.4. We also obtain a presentation for the fundamental groups of $M(\phi)$, $M(\phi) \times_{S^1} M(\phi)$ and $M(\phi) \times_{S^1} M(\phi) \setminus \Delta$.

In Section 4, we present a necessary and sufficient condition for the existence of the lifting in the diagram

with base points suitable. These conditions are related to existence of solutions of a system of equations involving the presentation of the groups above.

In Section 5, we classify all the pairs of maps (f, g), which can be deformed, by a fibrewise homotopy over S^1 , to a pair of coincidence free maps (f', g'), which is Theorem 5.1.

2. Preliminary and general results

2.1. Coincidence theory. Let $f, g: X \to Y$ be maps between finite CW-complexes. Denote by $\operatorname{Coin}(f,g) = \{x \in X \mid f(x) = g(x)\}.$

Suppose that x_1 , x_2 are in $\operatorname{Coin}(f,g)$. Then we say that x_1 , x_2 are Nielsen equivalent according to f and g if there exists a path $\sigma: [0,1] \to X$ such that $\sigma(0) = x_1$, $\sigma(1) = x_2$ and $f \circ \sigma$ is homotopic to $g \circ \sigma$ relative to end points.

508