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Abstract 

One of the main immediate challenges in the biomedical sciences is the synthesis of the vast 

amount of data now available at the molecular and cellular levels for development, regulation 

and repair. This, in turn, requires an understanding of the interaction and coordination of a 

myriad of complex inter-related processes occurring on very different spatial and temporal 

scales. Mathematics provides the obvious language in which to develop and interpret these 

interactions, and a number of mathematical models have already been proposed to account for 

certain observed biological and medical phenomena. Here, we consider two areas of modelling, 

namely spatial patterning, and wound healing, both sharing the common underlying processes 

of cells creating and responding to signalling cues. 

Introduction 

Recent technological advances in molecular and cellular biology have led to an explosion 

of data in the biomedical sciences. We have a complete mapping of the human genome; 

we can determine when in development certain genes are switched on; we can accurately 

follow the fate of single cells. The list is endless. However, we are in danger of falling into 

the practices of the nineteenth century, when biology was steeped in the mode of 

classification and there was a tremendous amount of list-making activity. This was 

recognised by D’Arcy Thompson, in his classic work “On Growth and Form”, first 

published in 1917 (see Thompson, 1992 for the abridged version). He was the first to 

develop theories as to how certain forms arose, rather than simply cataloging different 

forms, as was the tradition at that time. 

Of course, we have come a long way since then. The identification of a gene that 

causes a certain disease or deformity has huge benefits for medicine. We must 
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recognise, though, that genes only specify the properties of proteins and cells. It is the 

physio-chemical interaction of these cells that lead to, for example, the development of 

structure and form in the early embryo. Cell fate can be determined by environmental 

factors and cells respond to signalling cues. Therefore, a study at the molecular level alone 

will not help us to understand how cells interact. 

Such interactions are highly nonlinear and may be nonlocal and therefore they must 

be couched in a language that is designed to compute the results of complex interactions. 

At the moment, the best language we have for doing such calculations is mathematics. 

Mathematics has been extremely successful in helping us to understand physics. It is now 

becoming clear that mathematics, and computation, have a similar role to play in the life 

sciences. 

In this paper, I will focus on two major problems - the development of pattern 

formation in the early embryo, and the processes involved in wound healing. Although 

seemingly very different, these two areas are connected by a unifying underlying theme, 

which is that both depend crucially on cellular response to signalling cues. Section 2 

contains a brief review of the role that modelling has played in pattern formation and 

morphogenesis in early embryonic development. This is a field with a history stretching 

back to the days of D’Arcy Thompson. In section 3,1 consider wound healing, a much 

more recent application of mathematics in the life sciences, and focus on a model that 

investigates scar tissue formation. Finally, section 4 discusses other areas in the life 

sciences where similar mathematical models have been used. 

2. Models For Developmental Biology 

Cell fate and position within the embryo can be strongly influenced by environmental 

factors. Therefore, to answer questions on pattern formation, one must really address the 

issue of how the embryo organises the complex spatiotemporal sequence of signalling cues 

necessary to develop structure in a controlled and coordinated manner. Structure can form 

through tissue movement and rearrangement. Theoretical studies in this area include the 

early purse-string model of Odell et al. (1981) for tissue folding in which, in response to a 

large deformation, cells were proposed to actively contract and in so doing cause a large 

deformation in neighbouring cells which, in turn, also contract, setting up a propagating 

contraction wave which leads to tissue folding. This model was applied to a variety of 

developmental problems, and provided the precursor to the “mechanochemical theory” of 

developmental patterning, developed by Murray, Oster and coworkers (for review, see 

Murray, 1993). This approach emphasised the link between tissue mechanics and chemical 

regulation, and has been applied 
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widely in both developmental biology and medicine. Subsequently, Weliky and Oster 

developed a discrete-cell modelling approach in which morphogenesis occurs via 

mechanical rearrangement of neighbours in an epithelial sheet. They assume that the 

boundary of the epithelial sheet is being pulled over the surface of the egg and show that 

the resultant model can produce many experimentally observed aspects of both Fundulus 

epiboly and notochord morphogenesis in Xenopus laevis (Weliky and Oster, 1990; Weliky 

et al., 1991). More recently, Davidson et al. (1995) used a computational finite element 

model to test various explanations for sea urchin invagination. 

In all these models individual cell movements within the tissue are determined by the 

balance of mechanical forces acting on the cell. Such models can exhibit tissue folding, 

thickening, invagination, exogastrulation and intercalation, and have been shown to 

capture many of the key aspects of processes such as gastrulation, neural tube formation, 

and ventral furrow formation in Drosophila, as well as those mentioned above. 

Models for tissue motion are not amenable to a mathematical analysis and tend to be 

highly computation-based. However, models for how cells differentiate can be addressed 

mathematically. Broadly speaking, there are two classes of such models. In one class, the 

chemical pre-pattern models, it is hypothesized that a chemical (morphogen) signal is set 

up in some way and cells respond to this signal by differentiating. In the other class, the 

cell movement models, it is hypothesized that cells respond to mechanochemical cues and 

form aggregates. Cells in high density aggregates are then assumed to differentiate. 

The simplest chemical pre-pattern model is the gradient model proposed by Wolpert 

(1969) in which a source-sink mechanism, coupled with diffusion and degradation, leads 

to a spatial gradient in a single morphogen. He proposed that this provided positional 

information for cells, which differentiated according to a series of threshold values. More 

complicated spatial patterns can be generated due to the reaction and diffusion of a number 

of chemicals. This phenomenon is known as diffusion-driven instability and was first 

proposed by Turing in a remarkable paper (Turing, 1952). The reaction kinetics he 

considered were stabilizing and diffusion is, of course, a homogenizing process. Yet 

combined in the appropriate way, these two stabilizing influences conspire to produce an 

instability which can result in spatially heterogeneous chemical profiles - a spatial pattern. 

This is an example of an emergent property. Such models can be described in partial 

differential equation form, or discretized and analysed as cellular automata (Bard, 1981). 

Turing’s original model considered linear reaction kinetics, with the result that any 

instability would lead to unbounded solutions. Since his seminal paper, many reaction-

diffusion models have been proposed with different types of kinetics. These models take 

the general form: 
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After many years of experimental effort, the first Turing patterns were finally 

observed in the chlorite-iodide-malonic acid starch reaction (CIMA reaction) (Castets et 

al., 1990; De Kepper et al., 1991). This has now been extensively modelled and one 

simplified version of the model (Lengyel and Epstein, 1991) takes the form: 

(6) 

(7) 

where u, v are the concentrations of iodide and chlorite, respectively and kr k2, k3 and c are 

positive constants (see Maini et al., 1997, for review and references 
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therein). General results on the patterning properties of reaction-diffusion equations can be 

found in the books by Britton (1986), Edelstein-Keshet (1988), Fife (1979), Grindrod 

(1996), Murray (1993) and Segel (1984). 

The gradient models and the Turing-type models differ in two crucial aspects 

(Nagorcka, 1989): In the gradient model, the chemical pre-pattern is set up by a simple 

process which can only produce a simple gradient. To use this gradient to generate 

complicated pattern, it is hypothesized that a complex series of thresholds exist and cells 

have the machinery to interpret multiple thresholds. In Turing’s model, complex spatial 

patterns arise due to a complex chemical interaction, but the interpretation of the pre-pattern 

is via a single threshold and is therefore simpler than that in the gradient model. 

The other class of models, namely cell movement models, assume that a spatial pattern 

arises in cell density, and cells then differentiate in a density- dependent manner. Cell 

aggregation occurs when the cell dispersing factors (for example, diffusion) are overcome 

by aggregating factors such as chemotaxis (movement up chemical gradients), or factors 

generated by the mechanical interaction of cells with the extracellular matrix (ECM) on 

which they move. These include haptotaxis (movement up adhesive gradients) or passive 

convection arising as the result of deformation of the ECM due to cell traction. Chemotactic 

models have been analysed by a number of authors and shown to lead to spatial pattern 

formation (see, for example, Keller and Segel, 1971; Maini et al., 1991). These models 

involve reaction and diffusion, but spatial patterning arises in this case due to the advective 

term introduced by chemotaxis. The typical model takes the form: 

where n(x, t), u(x, t) denote cell density and chemoattractant concentration, respectively, at 

position x and time t, Dn, Du are diffusion coefficients, f g are terms incorporating production 

and degradation and X(u) is the chemotactic sensitivity. 

The first partial differential equation model incorporating the role of mechanical cues 

in the formation of cell aggregation was proposed by Oster et al., (1983) and since then such 

models have been extensively studied (Murray, 1993). The mathematical equations of these 

models are quite different. They consist of conservation equations for cells and extracellular 

matrix, which take the general form of the equations above, but the main difference is the 

force- ralance equation, which is that for a visco-elastic material. 
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Other movement models hypothesize that cells move to minimize energy (Cocho et 

al., 1987a,b; Steinberg, 1970; Sulsky, 1984). Such models can be set up mathematically 

and solved to show cell sorting and patterning behaviour consistent with a number of 

experimentally observed phenomena. 

Turing considered the chemicals in his model to be growth hormones, so that the 

spatial pattern in chemical concentrations would result in spatially non- uniform growth 

and hence pattern. He applied his theory to account for whorled leaves and to growth-

induced shape changes in the early embryo which he proposed could account for 

gastrulation. Since his seminal paper, reaction- diffusion models have been proposed to 

accdlmt for a vast number of patterning processes in nature, too great to be completely 

reviewed here, so we consider a few examples to give a flavour of the applications. 

Gierer and Meinhardt (1972) used their model to account for pattern formation in 

Hydra and showed that it was consistent with several of its regenerative properties. 

Reaction-diffusion models have been proposed to account for compartmentalisation in 

insect development and to provide an explanation for the occurrence of various mutants 

(see Meinhardt, 1982, for review). However, for Drosophila it now appears that patterning 

is due to a cascade of protein interactions that are consistent with the gradient-type models 

and are not of Turing-type. 

Reaction-diffusion models have been applied to shell patterns (Meinhardt, 1995) and 

to butterfly wing pigmentation patterns (Nijhout, 1990). Reaction- diffusion and cell 

movement models have been applied to animal coat markings (Bard, 1981; Cocho et al., 

1987a,b; Murray, 1981; Murray and Myerscough, 1991) and to skeletal patterning in the 

limb, for which gradient models have also been proposed (see Maini and Solursh, 1991, 

for a critical review). In most of these cases it is difficult, biologically, to distinguish 

between models. For example, if one observes a chemical pattern or a cell aggregation 

pattern, is it the cause of cell differentiation or a result of it? 

Although these models are based on very different biological assumptions, many of 

them share common properties. For example, the patterning in reaction- diffusion and in 

many cell movement models arises from the interaction of the processes of short-range 

activation, long-range inhibition. On the one hand, this has the disadvantage of making it 

very difficult to use models to distinguish between mechanisms, on the other hand, it does 

mean that one can make general conclusions and predictions that are mechanism-

independent. This leads to the idea of developmental constraints which proposes that only 

certain patterns are possible, regardless of the mechanism (Oster and Murray, 1989). 

Figure 1 illustrates one such developmental constraint. 

A key property of many development processes is their robustness in the face of 

naturally occuring random fluctuations. This has been a major problem 
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for reaction-diffusion theory, as it is well-known that the patterns it produces are not robust 

(Bard and Lauder, 1974). In other words, Turing-type models can exhibit multiple stable 

solutions in large regions of parameter space. Recently it has been shown that boundary 

conditions can play a crucial role in stabilizing patterns. For example, if one chooses fixed 

boundary conditions for one chemical and zero flux boundary conditions for the other, then 

this reduces the number of admissible solutions and thus diminishes the regions in 

parameter space in which one obtains multiple stable solutions. In effect, the boundary 

conditions serve to select only certain patterns (Dillon et al., 1994). 

Figure 1. (a) Simulation of the cell-chemotaxis model (8)-(9) showing the effect of domain size on cell 

density concentration (arrow denotes increasing cell density). As the domain narrows, the 

diamond pattern changes to a simpler, wavy stripe pattern. This is an example of a 

developmental constraint, (b) Examples of diamond patterns on snakes (i) Crotalus 

adamanteus; (ii) Coluber hippocrepis (note the effect of the tapering domain). (Reproduced 

from Murray and Myerscough, 1991, with permission). 
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In higher dimensions, this problem becomes more acute as one now has the added 

problem of degeneracy. For example, for certain parameters, there may be two or more 

admissible solutions with the same linear growth rate and it is then not clear which solution 

is selected. Using nonlinear bifurcation analysis, Ermentrout (1991) showed that the 

nonlinear terms play a key role in pattern selection, with quadratic terms favouring spots, 

while cubic terms favour stripes. More recently, Benson et al., (1998) have shown how a 

spatially-varying parameter can unravel such degeneracies and select one pattern over 

another. The role of spatially-varying parameters has received little attention but they can 

play a crucial role in the patterning process. For example, Wolpert and Hombruch (1990) 

showed experimentally that double-anterior chick limb buds gave rise to two humeri, even 

though the size of the bud was the same as that of a normal limb bud, which only produces 

one humerus. This contradicts the standard Turing model, which predicts that patterning 

complexity is initimately linked to domain size. Maini et al., (1992) showed that a Turing 

model with spatially-varying diffusion coefficients could give rise to results that are 

consistent with Wolpert and Hombruch’s experiments. Results of dye-spreading 

experiments suggest that the hypothesis of spatially-varying diffusion is very plausible 

(Briimmer et al., 1991). 

In all the above applications, patterns occur simultaneously throughout the whole 

domain. However, in some cases, patterns arise as the result of propagation. For example, 

in the alligator embryo, the pigmentation stripes occur as a propagating pattern moving 

down the body from head to tail. Murray et al., (1990) have shown that a cell-chemotactic 

model of the form discussed above can give rise to such patterns. They were able to make 

predictions on how the number of stripes varies with the length of the embryo, and these 

were confirmed experimentally. 

3. Wound Healing 

The process of wound healing is extremely complex. For example, dermal wound 

healing involves the interaction of many cell types and occurs as a sequential cascade of 

overlapping processes (Jennings and Hunt, 1992). Immediately after injury, there is heavy 

bleeding but further blood loss is prevented by the constriction of blood vessels. The 

process of coagulation releases active substances and eventually a fibrin clot forms. 

Subsequently, fibroblasts begin to infiltrate the wound and dissolve the clot, replacing it 

with a collagen matrix. Wound closure occurs due to cell invasion and wound contraction. 

The latter may be enhanced by fibroblasts differentiating into myofibroblasts, a phenotype 

that can exert stronger traction forces. Cell movement, traction, and 
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secretion of collagen can all be influenced by chemical signals which, in turn, can be 

modifed by the cells. Epithelial wound healing tends to occur mainly due to cell invasion 

and proliferation and differs from dermal healing in that there is no scar tissue formation. 

Wound healing is obviously a highly complex nonlinear process and to gain insight 

to the whole, one has to start by focussing on particular aspects of the healing process. For 

example, we have explored the role of epidermal growth factor, and of electrical signalling 

in corneal wound healing (Dale et al., 1994, Gaffney et al., 1999a, 1999b), and have shown 

how the increase in the rate of healing depends on topical application of growth factor. We 

have considered a mechanochemical model for dermal wound contraction with the aim of 

understanding how fibroproliferative and fibrocontractive abnormal healing occurs. The 

model has been used to make predictions on how keliod scarring may be reduced (Olsen 

et al., 1996). 

Here, we review the results of some recent work (Dallon et al., 1999) which focusses 

on the role of alignment in wound healing. In normal, unwounded skin, collagen fibres are 

aligned in a cross-linked (basketweave) arrangement. Scar tissue, however, is 

characterised by a high degree of matrix alignment. Therefore, not only can scar tissue be 

disfiguring, it is also a weakness in the skin and can be easily damaged again. As 

fibroblasts enter the wound, they degrade the fibrin within the clot and secrete collagen. 

Collagen is extruded from cells so its orientation is determined by the direction of cell 

movement. At the same time, cells are encountering collagen fibres deposited by other 

cells and receiving directional cues in the form of contact guidance, causing cells to align 

with the fibres. However, cells also exert forces on the fibres, causing the fibres to change 

their orientation. Hence there is a complex feedback between cell direction and alignment 

of collagen fibres. Moreover, the composition of the matrix will affect the speed at which 

cells move through the wound. 

We have developed a model in which the cells are considered as discrete entities 

moving in a matrix, which is modelled as a continuum. With each cell is associated a speed 

and a direction, both of which can be modified by the matrix, as described above. Each 

point in the matrix has associated with it a density of fibrin, a collagen density and a vector 

representing collagen direction. These are modified due to interaction with the cell. This 

modelling framework allows us to examine the roles of each interaction and to investigate 

how alignment depends on the strength of each interaction. As a result, we can make 

experimentally testable predictions as to the outcome of varying different parameters. 

Figure 2 shows the results of a typical simulation. In this simulation, the effect of 

different cell speeds is investigated and the results show that increasing the cell speed 

results in an increase in collagen alignment. Hence, the model predicts that increasing the 

cell invasion speed will result in a greater degree of 
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scar tissue formation. This may explain the anti-scarring effect of neutralizing antibody to 

TGF-P (Shah et al., 1992). TGF-P acts as a chemottractant to fibroblasts and increases the 

speed at which they enter the wound, so reducing its amount will decrease cell speed and 

reduce alignment. This possible explanation is more fully explored in Dallon et al., (1999). 

This model has also been used to make predictions on the effects on alignment of the 

source of cells entering the wound (from the sides or from below), cell polarisation, and 

of including in the wounded region an area of aligned collagen. The model can also be 

extended to investigate the effects of cell proliferation and cell ageing. 

Figure 2. Results of numerical simulations of the model of Dallon et al., (1999) showing collagen fibre 

alignment as the result of increasing cell speed. Initially, the collagen is aligned randomly 

throughout the wound and then cells are introduced through the sides and the bottom of the 

wound. The results are for two different cell speeds, with speed increasing from (a) to (b). Note 

that there is more alignment in (b) than in (a). (Figure modified from Dallon et al., 1999 — see 

original paper for fuller details). 

Discussion 

In this paper my aim has been to show how mathematical modelling can be used to 

help understand the effects of complex, overlapping biological interactions. I have 

focussed on two seemingly very different phenomena and shown that they can be studied 

using similar types of mathematical techniques. 
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The study of pattern formation in biology has a long tradition, while the use of 

mathematical models to understand the processes of wound healing is a recent innovation. 

Although I have concentrated on two particular applications of mathematical models 

it is important to note that these types of models have been used in many different areas. 

Probably the best known example of pattern formation is the Belousov-Zhabotinsky 

reaction, in which bromate ions oxidise malonic acid in a reaction catalysed by cerium 

(which has the states Ce3+ and Ce4+) resulting in sustained periodic oscillations in the 

cerium ions. If, instead, the catalyst Fe2+ and Fe3+ and phenanthroline is used, the periodic 

oscillations are visualised as colour changes between reddish-orange and blue (for a 

review, see Johnson and Scott, 1996). This system can also exhibit a number of different 

types of wave structures such as propagating fronts, spiral waves, target patterns and 

toroidal scrolls and all these spatiotemporal phenomena have been studied by using models 

similar in form to (1) and (2) (Zaikin and Zhabotinskii, 1970, Winfree, 1972, 1974, Muller 

et al., 1985, Welsh et al., 1983, Zykov, 1987). Such oscillatory and wave-like patterns are 

characteristic of media that are termed excitable. Such media have the property that in 

order to propagate a signal, a sufficiently large stimulus is required to excite the system. 

Once excited, the medium is unable to respond for a period of time, known as the refractory 

period, to further stimuli. 

Excitable media are very common in physiology and one of the most widely- studied 

and important areas of wave propagation concerns the periodic electrical activity in the 

heart (Panfilov and Holden, 1997) which controls the muscle contractions that result in the 

heart beating. If this activity is disrupted, the waves break up and the heart no longer beats 

efficently, resulting in fibrillation and almost certain death. Understanding this 

phenomenon through mathematical modelling may help in the design of low voltage 

defibrillators. 

Excitable media also have a role to play in the aggregation of certain amoeboid 

species, such as the cellular slime mold, Dictyostelium discoideum. Under starvation 

conditions, these amoebae signal each other via cyclic AMP, resulting in the propagation 

of spiral waves of chemical. The amoebae, which are chemotactic to the chemical, move 

up gradients of cyclic AMP, resulting in the formation of aggregations. The formation of 

aggregates seems to be a vital component of the Dictyostelium discoideum life cycle, as it 

appears to be necessary to enable the cells to differentiate into a spore type, which can 

survive harsh conditions. 

In section 3, we studied a model for matrix alignment in wound healing. Alignment 

phenomena occur in a number areas, for example in fish schooling, insect swarming, and 

in the formation of bands of intercellular actin. These all occur as the result of entities 

signalling to each other and are therefore amenable to mathematical modelling. 
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In conclusion, mathematical modelling can be used as a tool to help understand 

phenomena across a broad range of disciplines within the life sciences. The role of a model 

is first, to exhibit the phenomena that are being modelled, then to make experimentally 

testable predictions. The outcome of these experiments can then be fed back into the model 

resulting in an improved model which can provide further predictions. This iterative 

process can only be accomplished in a genuinely interdisciplinary collaboration. 

The life sciences are the source of an enormous number of novel, exciting and 

challenging mathematical and computational problems. Can mathematics be as influential 

in the life sciences as it has been in physics? Only time will tell. 
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