Vitamin D concentration effect in health care and sport performance

Lora Georgieva, Katarzyna Żołądkiewicz, Walery Żukow



The molecular structure of Vitamin D is closely allied to that of classical steroids such as cholesterol. Technically Vitamin D is a seco-steroid hormone. Vitamin D3 (cholecalciferol) is normally produced by exposure to sunlight of the precursor (7-dehydrocholesterol), present in the skin. Vitamin D supplementation vary between 200 IU to 1000 IU. Serum levels of 25(OH)D are generally consider as a indicator of Vitamin D status.

Vitamin D plays an essential role in healthcare, related not only with developing and maintaining a healthy skeleton. Its adequate supplementation reduce even the risk of caries and oral infections. Furthermore Vitamin D as a steroid hormone, modulates many gene transcription and has anti-inflammatory and cardiovascular protective effect. Uncertainly low serum levels of 25(OH)D are associated with misbalance in lipid profile and dyslipidemia, sacropenia and muscle weakness. Its insufficiency is also a risk factor for enhanced reception of pain, risk of type 2 diabetes, and often falls occurrences.

Adequate Vitamin D status is protective against musculoskeletal disorders, infection disease, depression, diabetes mellitus, autoimmune diseases and neurocognitive dysfunctions.

In sport activities and athletic population adequate serum levels of 25(OH)D increase muscle strength, and physical performance, and should be monitored.


vitamin D; athletic performance; 25(OH)D; supplementation; insufficiency; athlete

Full Text:



Norman, A.W., Bouillon, R. (2010). Vitamin D nutritional policy needs a vision for the future., Exp. Biol. Med. 235, 1034–1045.

Lanteri, P., Lombardi, G., Colombini, A., Banfi, G. (2013). Vitamin D in exercise: Physiologic and analytical concerns., Clinica Chimica Acta 415, 45–53.

Haussler, M.R., Jurutka, P.W., Mizwicki, M., Norman, A.W. (2011). Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)2vitamin D3: genomic and non-genomic mechanisms., Best Pract. Res. Clin. Endocrinol. Metab. 25, 543–559.

DeLuca, H.F. (2004) Overview of general physiologic features and functions of vitamin D., Am. J. Clin. Nutr. 80 (Suppl), 1689S–1696S.

Nagpal, S., Na, S., Rathnachalam, R. (2005). Noncalcemic actions of vitamin D receptor ligands., Endocr. Rev. 26 (5), 662–687, doi:

Li, J., Byrne, M.E., Chang, E., et al. (2008). 1 alpha,25-Dihydroxyvitamin D 3 hydroxylase in adipocytes., J. Steroid Biochem. Mol. Biol. 112 (1–3), 122–126, doi:

Ryynänen, J., Neme, A., Tuomainen, T.-P., et al. (2014). Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals., Mol. Nutr. Food Res. 58, 2036–2045, doi:

Tomlinson, P.B., Joseph, Angioi, C.M. (2015). Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis., Journal of Science and Medicine in Sport 18, 575–580.

Putman M.S., Pitts, S.A., Milliren, C.E., et. al. (2013). A Randomized Clinical Trial of Vitamin D Supplementation in Healthy Adolescents., Journal of Adolescent Health 52, 592e598.

Vieth, R. (2006). What is the optimal vitamin D status for health?., Prog Biophys Mol Biol 92:26e32.

Heaney, R.P. (2008) Vitamin D: Criteria for safety and efficacy., Nutr Rev 66-(Suppl 2):S178e81.

Cheng, S, Tylavsky, F, Kroger H, et al.(2003). Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls., Am J Clin Nutr 78:485e92.

Institute of Medicine (1997). Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride., Washington, DC: The National Academic Press.

Wagner, C.L., Greer, F.R. (2008). Prevention of rickets and vitamin D deficiency in infants, children, and adolescents., Pediatrics 122:1142e52.

Institute of Medicine (2011). Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The National Academic Press.

Larson-Meyer, D.E., Willis, K.S.(2010) Vitamin D and athletes., Curr Sports Med Rep 9:220-6.

Verkaik-Kloosterman, J., Seves, S.M., Ocké, M.C. (2017). Vitamin D concentrations in fortified foods and dietary supplements intended for infants: Implications for vitamin D intake., Food Chemistry 221, 629–635.

Holick, M.F. (1996). Vitamin D and bone health., J. Nutr. 126 (4 Suppl), 1159S–1164S.

Suzuki, T., Kwon, J., Kim, H., et al. (2008). Low serum 25-hydroxyvitamin D levels associated with falls among Japanese community-dwelling elderly., J. Bone Miner. Res. 23 (8), 1309–1317.

Lips, P. (2006). Vitamin D physiology., Prog. Biophys. Mol. Biol. 92, 4–8.

Zamboni, M., Zoico, E., Tosoni, P., et al. (2002). Relation between vitamin D, physical performance, and disability in elderly persons., J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 57, M7–M11.

Snijder, M.B., van Schoor, N.M., Pluijm, S.M., van Dam, R.M., Visser, M., Lips, P. (2006). Vitamin D status in relation to one-year risk of recurrent falling in older men and women., J. Clin. Endocrinol. Metab. 91, 2980–2985.

Lips, P. (2001). Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications., Endocr. Rev. 22, 477–501.

Mascarenhas, R., Mobarhan, S. (2004). Hypovitaminosis D-induced pain., Nutr. Rev. 62, 354–359.

Puts, M.T., Visser, M., Twisk, J.W., Deeg, D.J., Lips, P. (2005). Endocrine and inflammatory markers as predictors of frailty., Clin. Endocrinol. (Oxf.) 63, 403–411.

Artaza-Artabe, I., et. al. (2016). The relationship between nutrition and frailty: Effects of protein intake, nutritional supplementation, vitamin D and exercise on muscle metabolism in the elderly. A systematic review., Maturitas 93, 89–99.

Mellanby, M., Pattison, C.L., (1928). The action of Vitamin D in preventing the spread and promoting the arrest of caries in children., Br. Med. J. 2 (3545) 1079–1082.

Alshouibi, E.N., Kaye, E.K., Cabral, H.J., Leone, C.W., Garcia, R.I. (2013). Vitamin D and periodontal health in older men., J. Dent. Res. 92 (8), 689–693.

Krall, E.A, Wehler, C., Garcia, R.I., Harris, S.S., Dawson-Hughes, B. (2001). Calcium and

vitamin D supplements reduce tooth loss in the elderly., Am. J. Med. 111 (6), 452–456.

Grant, W.B. (2011). A review of the role of solar ultraviolet-B irradiance and vitamin D in reducing risk of dental caries., Dermatoendocrinology 3 (3), 193–198.

Wimalawansa, S.J. (2016). Non-musculoskeletal benefits of vitamin D., Journal of Steroid Biochemistry & Molecular Biology,

Deepak, K., Gupta, M.D., Thomas, J., Wang, M.D. (2016). A Role for Vitamin D Supplementation?, Journal of the American college of Cardiology 67, 22,

Li, Y.C., Kong, J., Wei, M., Chen, Z.F., Liu, S.Q., Cao, L.P. (2002). 1,25-Dihydroxyvitamin D(3) is a negative endocrinesystemic regulator of the renin-angiotensin system., J Clin Invest 110:229–38.

Semba, R.D., Houston, D.K., Bandinelli, S., et al. (2010). Relationship of 25-hydroxyvitamin D with all-cause and cardiovasculardisease mortality in older community-dwelling adults., Eur. J. Clin. Nutr. 64 (2), 203–209.

Chen, Y., Kong, J., Sun, T., et al. (2011) 1,25-Dihydroxyvitamin D3 suppresses inflammation-induced expression of plasminogen activator inhibitor-1 by blocking nuclear factor-kappaB activation., Arch. Biochem. Biophys. 507 (2), 241–247.

Timms, P.M., Mannan, N., Hitman, G.A., et al. (2002) Circulating MMP9, vitamin D and variation in the TIMP-1response with VDR genotype: mechanisms for inflammatory damage inchronic disorders?, QJM 95 (12), 787–796.

Somjen, D., Weisman, Y., Kohen, F., et al. (2005). 25-hydroxyvitamin D3-1alpha-hydroxylase is expressed in human vascular smooth muscle cells and is upregulated by parathyroid hormone and estrogenic compounds., Circulation 111 (13), 1666–1671.

Bodyak, N., Ayus, J.C., Achinger, S., et al. (2007) Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals., Proc Natl Acad Sci USA 104:16810–5.

Green, J.J., Robinson, D.A., Wilson, G.E., et al. (2006). Calcitriol modulation of cardiac contractile performance via protein kinase., C. J Mol Cell Cardiol, 41:350–9

Chavan, C.B., Sharada K., Rao, H.B., Narsimhan, C. (2007). Hypocalcemia as a cause of reversible cardiomyopathy with ventricular tachycardia., Ann Intern Med, 146:541–542

Xiang, W., Kong, J., Chen, S., et al. (2005). Cardiac hypertrophyin vitamin D receptor knockoutmice: role of the systemic and cardiacrenin-angiotensin systems., Am J Physiol Endocrinol Metab; 288:E125–32.

Lepsch, J., Eshriqui, I., Farias, D.R.., el. al. (2017). Association between early pregnancy vitamin D status and changes in serum lipid profiles throughout pregnancy., Metabolism Clinic and Experimental 70, 85-9.

Charlton, F., Tooher, J., Rye, K.A., Hennessy, A. (2014). Cardiovascular risk, lipids and pregnancy: preeclampsia and the risk of later life cardiovascular disease., Heart Lung Circ 23:203–12.

Emet, T., Ustüner, I., Güven, S.G., et al. (2013). Plasma lipids and lipoproteins during pregnancy and related pregnancy outcomes., Arch Gynecol Obstet, 288:49–55.

Carbone, L.D., Rosenberg, E.W., Tolley, E.A., et al. (2008). 25- Hydroxyvitamin D, cholesterol, and ultraviolet irradiation., Metabolism, 57:741–8.

Lee, S., Ahuja, V., Masaki, K., Evans, R.W., Barinas-Mitchell, E.J., Ueshima, H. (2016). A significant positive association of vitamin D deficiency with coronary artery calcification among middle-aged men: for the ERA JUMP study., J Am Coll Nutr, 17:1–7.

Lind, L., Hanni, A., Lithell, H., Hvarfner, A., Sorensen, O.H., Ljunghall, S. (1995). Vitamin D is related to blood pressure and other cardiovascular risk factors in middle-aged men., Am J Hypertens, 8:894–901.

Reddy Vanga, S., Good, M., Vacek, J.L. (2010) Role of Vitamin D in Cardiovascular Health., Am J Cardiol, 106:798–805

Farid, K.F., Zhao, D., Martin, S.S. et. al. (2017). Serum vitamin D and change in lipid levels over 5 y: The Atherosclerosis Risk in Communities study., Nutrition 38, 85–93

Hirani, V. (2012). Vitamin D status and pain: analysis from the Health Survey for England among English adults aged 65 years and over., Br. J. Nutr. 107 (7), 1080–1084.

Parker J.H.O., Dutton, D., Mavrodaris, A., Stranges, S., Kandala, N.B., Clarke, A., Franco, O.H. (2010). Levels of vitamin D and cardiometabolic disorders: systematic review and meta-analysis., Maturitas 65, 225–236.

Afzal, S., Bojesen, S.E., Nordestgaard, B.G. (2013). Low 25-hydroxyvitamin D and risk of type 2 diabetes: a prospective cohort study and metaanalysis., Clin. Chem. 59(2), 381–391.

Mitri J., Muraru, M.D., Pittas, A.G. (2011). Vitamin D and type 2 diabetes: a systematic review., Eur. J. Clin. Nutr. 65 (9), 1005–1015.

Lee, D.M., Tajar, A., Pye, S.R., et al. (2012). Association of hypogonadism with vitamin d status: the european male ageing study., Eur. J. Endocrinol. 166 (1), 77–85.

Tepper, S., Shahar, D.R., Geva, D., Ish-Shalom, S. (2016). Differences in homeostatic model assessment (HOMA) values and insulin levels after vitamin D supplementation in healthy men: a double-blind randomized controlled trial., Diabetes Obes. Metab. 18 (6), 633–637.

Shab-Bidar, S., Neyestani, T.R., Djazayery, A. (2015). Vitamin D receptor Cdx-2-dependent response of central obesity to vitamin D intake in the subjects with type 2 diabetes: a randomised clinical trial., Br. J. Nutr. 114 (9), 1375–1384.

Kobza, V.M., Fleet, J.C., Zhou, J., (2013). Vitamin D status and resistance exercise training independently affect glucose tolerance in older adults., Nutrition Research 33, 349-357

MacLaughlin, J., Holick, M.F. (1985). Aging decreases the capacity of human skin to produce vitamin D 3., J Clin Invest, 76(4):1536–8.

Alvarez, J.A., Ashraf, A.P., Hunter, G.R., Gower, B.A. (2010). Serum 25-hydroxyvitamin D and parathyroid hormone are independent determinants of whole-body insulin sensitivity in women and may contribute to lower insulin sensitivity in African Americans., Am J Clin Nutr, 92(6):1344–9.

Evans, W.J., Campbell, W.W. (1993). Sarcopenia and age-related changes in body composition and functional capacity., J Nutr, 123(2 Suppl):465–8.

Baumgartner, R.N., Koehler, K.M., Gallagher, D., et al. (1998). Epidemiology of sarcopenia among the elderly in New Mexico., Am J Epidemiol, 147(8):755–63.

Janssen, I., Heymsfield, S.B., Ross, R. (2002). Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability., J Am Geriatr Soc, 50(5):889–96.

Dhesi, J.K., Bearne, L.M., Moniz, C., et al. (2002). Neuromuscular and psychomotor function in elderly subjects who fall and the relationship with vitamin D status., J Bone Miner Res, 17(5):891–7.

Bischoff-Ferrari, H.A., Dietrich, T., Orav, E.J., et al. (2004). Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or = 60 years., Am J Clin Nutr, 80(3):752–8.

Visser, M., Deeg, D.J., Lips, P. (2003). Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam., J Clin Endocrinol Metab 2003;88(12):5766–72.

Wicherts, I.S., van Schoor N.M., Boeke A.J., et al. (2007). Vitamin D status predicts physical performance and its decline in older persons., J Clin Endocrinol Metab, 92(6):2058–65.

Bischoff, H.A., Borchers, M., Gudat, F., et al. (2001). In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J, 33:19–24.

Bauer, J.M., Verlaan, S., Bautmans, I., (2015). Effect of a Vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-bind, placebo-controlled trail., J. Am Med Die Assoc 16:740-747, doi:10.1016/j.jamda.2015.05.021

Ziambaras, K., Dagogo-Jack, S. (1997). Reversible muscle weakness in patients with vitamin D deficiency. West J Med, 167:435–9.

Bischoff-Ferrari, H.A., Dawson-Hughes, B., Staehelin, H.B., et al. (2009). Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomized controlled trials., BMJ 339, b3692.

World Health Organization, WHO Global Report on Falls Prevention in Older Age, (2007).

Close, J., Ellis, M., Hooper, R., Glickman, E., Jackson, S., Swift, C., (1999). Prevention of falls in the elderly trial (PROFET): a randomized controlled trial., Lancet 353 (9147), 93–97 (9).

Tinetti M.E, Williams, C.S. (1998). The effect of falls and fall injuries on functioning in community-dwelling older persons., J. Gerontol. A. Biol. Sci. Med. Sci. 53 (2), (M112-9).

Smith L.M., Gallagher, J.C., Suiter, C. (2017). Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: A randomized clinical trial., Journal of Steroid Biochemistry and Molecular Biology,

Neupane, S.P., Lien, L., Hilberg, T., Bramness, J.G. (2013). Vitamin D deficiency in alcohol-use disorders and its relationship to comorbid major depression: a cross-sectional study of inpatients in Nepal, Drug Alcohol Depend., 133 (2), 480–485.

Rastmanesh, R., Beauchet, O., Annweiler, C. (2012). Vitamin D deficiency and depression: causal relationship or artifact?, Biofactors 38 (5), 317–319.

Moy, F.M., Hoe, V.C., Hairi, N.N., Vethakkan, S.R., Bulgiba, A. (2016). Vitamin D deficiency and depression among women from an urban community in a tropical country., Public Health Nutr, 1-7.

Hock, A.D. (2014). Review: Vitamin D3 deficiency results in dysfunctions of immunity with severe fatigue and depression in a variety of diseases., In Vivo 28 (1), 133–145.

Boonen, S., Bischoff-Ferrari, H.A., Cooper, C., et al. (2006). Addressing the musculoskeletal 464 components of fracture risk with calcium and vitamin D: a review of the evidence., Calcif Tissue Int 78:257–70.

Dawson-Hughes, B. (2008). Serum 25-hydroxyvitamin D and functional outcomes in the elderly., Am J Clin Nutr 88:537S–40S.

Holick, M. (2007). Vitamin D deficiency., N Engl J Med 357:266–281.

Constantini, N., Arieli, R., Chodick, G., et al. (2010). High prevalence of vitamin D insufficiency in athletes and dancers., Clin J Sport Med 20(5):368–371.

Solomon, A., Bouloux, P. (2006). Modifying muscle mass—the endocrine perspective., J Endocrinol 191:349–360.

Houston, D., Tooze, J., Hauman, D., et al. (2011). Change in 25-hydroxyvitamin D and physical performance in older athletes., J Gerontol Ser A: Biol Sci Med Sci 66A:430–436.

Bischoff, H., Stahelin, H., Urscheler, S., et al. (1999). Muscle strength in the eldery: is relation to vitamin D metabolites., Arch Phys Med Rehabil 80:54–58.

Hamilton, B. (2010). Vitamin D and human skeletal muscle., Scand J Med Sci Sports, 20:182–190.

Ward, K., Das, G., Berry, J. et al. (2009). Vitamin D status and muscle function in post-menarchal adolescent girls., J Clin Endocrinol Metab, 94:559–563.

Foo, L., Zhang, Q., Zhu, K., et al. (2009). Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in Chinese adolescent girls., J Nutr, 139:1002–1007.

Latham, N., Anderson, C., Reid, I. (2003). Effects of vitamin D supplementation on strength, physical performance and falls in older persons: a systematic review., J Am Geriatr Soc, 51:1219–1226.

Galan, F., Ribas, J., Sánchez-Martinez, P.M., (2012). Serum 25-hydroxyvitamin D in early autumn to ensure vitamin D sufficiency in mid-winter in professional football players., Clinical Nutrition 31, 132e136

Cannell, J.J., Hollis, B.W., Sorenson, M.B., Taft, T.N., Anderson, J.J. (2009). Athletic performance and vitamin D., Med. Sci. Sports Exerc. 41 (5), 1102–1110.

Samuel, L., Borrell, L.N. (2013). The effect of body mass index on optimal vitamin D status in U.S. adults: The National Health and Nutrition Examination Survey 2001-2006., Annals of Epidemiology 23, 409e414

Darr, R.L., Savage, K.J., Baker, M., (2016). Vitamin D supplementation affects the IGF system in men after acute exercise., Growth Hormone & IGF Research 30–31, 45–51

Suikkari, A.M.., Sane, T., Seppälä, M., et al. (1989). Prolonged exercise increases serum insulin-like growth factor-binding protein concentrations., J. Clin. Endocrinol. Metab. 68 (1), 141–144.

Giovannucci, E., Liu, Y., Rimm, E.B., et al. (2006). Prospective study of predictors of vitamin D status and cancer incidence and mortality in men., J. Natl. Cancer Inst. 98 (7), 451–459.

Ebid, A.A., El-Shamy, S.M., Amer, M.A. (2017). Effect of vitamin D supplementation and isokinetic training on muscle strength, explosive strength, lean body mass and gait in severely burned children: A randomized controlled trial., Burns 43, 357-365

Gmiat, A., Mieszkowski, J., Prusik, K., et. al. (2017). Changes in pro-inflammatory markers and leucine concentrations in response to Nordic Walking training combined with vitamin D supplementation in elderly women. Biogerontology, 18(4), 535-548.

Annweiler, C., Schott, A.M., Berrut, G., et. al. (2010). Vitamin D and ageing: neurological issues., Neuropsychobiology 62:139–50.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019. Zgodnie z Rozporządzeniem ministra nauki i szkolnictwa wyższego z dnia 22 lutego 2019 r. w sprawie ewaluacji jakości działalności naukowej (w szczególności art. 12 ust. 1 pkt 1 w zw. z art. 8 pkt 2), czasopismo Pedagogy and Psychology of Sport ewaluowane jest punktacją w wysokości 5 punktów. e-ISSN: 2450-6605 Numer DOI: 10.12775/PPS Indexing: Index Copernicus Master List DOAJ ERIH Plus Polska Bibliografia Naukowa PBN Akademicka Platforma Czasopism Naukowych Google Scholar BASE CrossRef WorldCat Arianta Baidu Scholar J-Gate JournalTOCs Microsoft Academic POL-index

Partnerzy platformy czasopism