Syntactic Proofs for Yablo’s Paradoxes in Temporal Logic

Ahmad Karimi

DOI: http://dx.doi.org/10.12775/LLP.2019.020

Abstract


Temporal logic is of importance in theoretical computer science for its application in formal verification, to state requirements of hardware or software systems. Linear temporal logic is an appropriate logical environment to formalize Yablo’s paradox which is seemingly non-self-referential and basically has a sequential structure. We give a brief review of Yablo’s paradox and its various versions. Formalization of these paradoxes yields some theorems in Linear Temporal Logic (LTL) for which we give syntactic proofs using an appropriate axiomatization of LTL.


Keywords


non-self-referential paradox; Yablo’s paradox; linear temporal logic; syntactic proofs

Full Text:

PDF

References


Barrio, E.A., 2010, “Theories of truth without standard models and Yablo’s sequences”, Studia Logica 96 (3): 375–391. DOI: http://dx.doi.org/10.1007/s11225-010-9289-8

Barrio, E.A., and B. Da Ré, 2018, “Truth without standard models: Some conceptual problems reloaded”, Journal of Applied Non-Classical Logics 28 (1): 122–139. DOI: http://dx.doi.org/10.1080/11663081.2017.1397326

Barrio, E.A., and L. Picollo, 2013, “Notes on w -inconsistent theories of truth in second-order languages”, The Review of Symbolic Logic 6 (4): 733–741. DOI: http://dx.doi.org/10.1017/S1755020313000269

Beall, J.C., 2001, “Is Yablo’s paradox non-circular?”, Analysis 61 (3): 176–187. DOI: http://dx.doi.org/10.1093/analys/61.3.176

Brandenburger, A., and H.J. Keisler, 2006, “An impossibility theorem on beliefs in games”, Studia Logica 84 (2): 211–240. DOI: http://dx.doi.org/10.1007/s11225-006-9011-z

Bringsjord, S., and B. van Heuveln, 2003, “The ‘mental eye’ defence of an infinitized version of Yablo’s paradox”, Analysis 63 (1): 61–70. DOI: http://dx.doi.org/10.1093/analys/63.1.61

Bueno, O., and M. Colyvan, 2003a, “Yablo’s paradox and referring to infinite objects”, Australasian Journal of Philosophy 81 (3): 402–412. DOI: http://dx.doi.org/10.1080/713659707

Bueno, O., and M. Colyvan, 2003b, “Paradox without satisfaction”, Analysis 63 (2), 152–156. DOI: http://dx.doi.org/10.1093/analys/63.2.152

Cieśliński, C., 2013, “Yablo sequences in truth theories”, pages 127–138 in K. Lodaya (ed.), Indian Conference on Logic and Its Applications, Springer, Berlin, Heidelberg. DOI: http://dx.doi.org/10.1007/978-3-642-36039-8_12

Cieśliński, C., and R. Urbaniak, 2013, “Gödelizing the Yablo sequence”, Journal of Philosophical Logic 42: 679–695. DOI: http://dx.doi.org/10.1007/s10992-012-9244-4

Forster, T., and R. Goré, 2016, “Yablo’s paradox as a theorem of modal logic”, Logique et Analyse 59 (253): 283–300.

Karimi, A., 2017, “A non-self-referential paradox in epistemic game theory”, Reports on Mathematical Logic 52: 45–56. DOI: http://dx.doi.org/10.4467/20842589RM.17.002.7140

Karimi, A., and S. Salehi, 2014, “Theoremizing Yablo’s paradox”, Preprint arXiv:1406.0134.

Karimi, A., and S. Salehi, 2017, “Diagonal arguments and fixed points”, Bulletin of the Iranian Mathematical Society 43 (5): 1073–1088.

Ketland, J., 2004, “Bueno and Colyvan on Yablo’s paradox”, Analysis 64 (2): 165–172. DOI: http://dx.doi.org/10.1093/analys/64.2.165

Ketland, J., 2005, “Yablo’s Paradox and w -Inconsistency”, Synthese 145 (3): 295–302. DOI: http://dx.doi.org/10.1007/s11229-005-6201-6

Kröger, F., and S. Merz, 2008, “Temporal logic and state systems”, Springer.

Leach-Krouse, G., 2014, “Yablifying the Rosser sentence”, Journal of Philosophical Logic 43 (5): 827–834. DOI: http://dx.doi.org/10.1007/s10992-013-9291-5

Luna, L., 2009, “Yablo’s paradox and beginningless time”, Disputatio 3 (26): 1–8. DOI: http://dx.doi.org/10.2478/disp-2009-0002

Picollo, L.M., 2013, “Yablo’s paradox in second-order languages: Consistency and unsatisfiability”, Studia Logica 101 (3): 601–617. DOI: http://dx.doi.org/10.1007/s11225-012-9399-6

Pnueli, A., 1977, “The temporal logic of programs”, pages 46–57 in 18th Annual Symposium on Foundations of Computer Science (SFCS’77) IEEE Computer Society. DOI: http://dx.doi.org/10.1109/SFCS.1977.32

Priest, G., 1997, “Yablo’s paradox”, Analysis 57 (4): 236–242. DOI: http://dx.doi.org/10.1093/analys/57.4.236

Sorensen, R.A. 1998, “Yablo’s paradox and kindred infinite liars”, Mind 107 (425): 137–155. DOI: http://dx.doi.org/10.1093/mind/107.425.137

Yablo, S., 1985, “Truth and reflection”, Journal of Philosophical Logic 14: 297–349. DOI: http://dx.doi.org/10.1007/BF00249368

Yablo, S., 1993, “Paradox without self-reference’, Analysis 53: 251–252. DOI: http://dx.doi.org/10.1093/analys/53.4.251

Yablo, S., 2004, “Circularity and paradox”, pages 139–157 in T. Bolander, V.F. Hendricks and S.A. Pedersen (eds.), Self-Reference CSLI Publications. http://www.mit.edu/~yablo/circularity&paradox.pdf

Yatabe, S., 2011, “Yablo-like paradoxes and co-induction”, pages 90–103, chapter 8, in Y. Onada, D. Bekki and E. McCready (eds.), New Frontiers in Artificial Intelligence, JSAI-isAI 2010, vol. 6797 of Lecture Notes in Computer Science, Springer. DOI: http://dx.doi.org/10.1007/978-3-642-25655-4_8








Print ISSN: 1425-3305
Online ISSN: 2300-9802

Partnerzy platformy czasopism