Relevant Connexive Logic

Nissim Francez



In this paper, a connexive extension of the Relevance logic R→ was presented. It is defined by means of a natural deduction system, and a deductively equivalent axiomatic system is presented too. The goal of such an extension is to produce a logic with stronger connection between the antecedent and the consequent of an implication.


connexive extension of relevance logic; connexive logic; natural deduction; axiomatic system

Full Text:



Anderson, Alan R., and Nuel D. Belnap Jr., Entailment, vol. 1, Princeton University Press, N.J., 1975.

Avron, Arnon, “Simple consequence relations”, Information and Computation 92 (1991): 105–139. DOI:

Avron, Arnon, “Whither relevance logic”, Journal of Philosophical Logic 21, 3 (1992): 243–281. DOI:

Došen, Kosta, “The first axiomatization of relevant logic”, Journal of Philosophical Logic 21, 4 (1992): 339–356. DOI:

Dunn, J. Michael, and Greg Restall, “Relevance logic”, pages 1–136 in D.M. Gabbay and F. Guenther (eds.), Handbook of Philosophical Logic, vol. 6, 2nd edition, Kluwer, 2002. DOI:

Francez, Nissim, “Natural-deduction for two connexive logics”, IfCoLog Journal of Logics and their Application 3, 3 (2016): 479–504. Special issue on Connexive Logic.

Kneale, William, and Martha Kneale, The Development of Logic, Duckworth, London, 1962.

Mares. Edwin, “Negation”, pages 180–215 in L. Horsten and R. Pettigrew (eds.), The Continuum Companion to Philosophical Logic, Continuum International Publishing Group, London, New York, 2011.

Mares, Edwin D., “Relevance and conjunction”, Journal of Logic and Computation 22 (2012): 7–21. DOI:

McCall, Storrs, “A history of connexivity”, pages 415–449 in D .M. Gabbay, F.J. Pelletier and J. Woods (eds.), Handbook of the History of Logic, vol. 11: “Logic: Ahistory of its central concepts”, Elsevier, Amsterdam, 2012. DOI:

Omori, Hitoshi, “A simple connexive extension of the basic relevant logic BD”, IFCoLog Journal of Logic and their Applications, 3, 3 (2016): 467–b78. Special issue on Connexive Logic.

Plato, Jan Von, “Gentzen’s proof systems: Byproducts of the work of a genius”, The Bulletin of Symbolic Logic 18, 3 (2012): 313–367.

Priest, Graham, “Negation as cancellation, and connexive logic”, Topoi 18, 2 (1999): 141–148. DOI:

Restall, Greg, “Relevant and substructural logics”, in D. Gabbay and J. Woods (eds.), Handbook of the History of Logic, vol. 7, Logic and Modalities in the Twentieth Century, Elsevier, 2006. DOI:

Schroeder-Heister, Peter, “The categorical and the hypothetical: A critique of some fundamental assumptions of standard semantics”, Synthese 187, 3 (2012): 925–942. DOI:

Wansing, Heinrich, “Connexive modal logic”, in R. Schmidt, I. Pratt-Hartmann, M. Reynolds and H. Wansing (eds.), Advances in Modal Logic, vol. 5, College Publications, King’s College, London, 2005.

Wansing, Heinrich, “Connexive logic”, in E.N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Fall 2014 edition, 2014. Available at



Print ISSN: 1425-3305
Online ISSN: 2300-9802

Partnerzy platformy czasopism