Spheres, cubes and simple

Stefano Borgo

DOI: http://dx.doi.org/10.12775/LLP.2013.013

Abstract


In 1929 Tarski showed how to construct points in a region-based first-order logic for space representation. The resulting system, called the geometry of solids, is a cornerstone for region-based geometry and for the comparison of point-based and region-based geometries. We expand this study of the construction of points in region-based systems using different primitives, namely hyper-cubes and regular simplexes, and show that these primitives lead to equivalent systems in dimension n ≥ 2. The result is achieved by adopting a single set of definitions that works for both these classes of figures. The analysis of our logics shows that Tarski’s choice to take sphere as the geometrical primitive might be intuitively justified but is not optimal from a technical viewpoint.


Keywords


Mereogeometry; geometry of solids; hyper-cube; regular simplex; sphere, mereology

Full Text:

PDF

References


N. Asher and L. Vieu, “Toward a geometry of common sense: A semantics and a complete axiomatization of mereotopology” International Joint Conference on Artificial Intelligence (IJCAI 1995), Morgan Kaufmann, 1995, pp. 846–852.

M. Aurnague, L. Vieu, and A. Borillo, “La représentation formelle des concepts spatiaux dans la langue”, in M. Denis (ed.), Langage et Cognition Spatiale, Paris, 1997, pp. 69–102.

B. Bennett, A.G. Cohn, P. Torrini, and S.M. Hazarika, “A foundation for region-based qualitative geometry”, in W. Horn (ed.), European Conference on Artificial Intelligence (ECAI’00), IOS press, 2000, pp. 204–208.

B. Bennett, “A categorical axiomatisation of region-based geometry”, Fundamenta Informaticae, 46 (2001): 145–158.

S. Borgo, N. Guarino, and C. Masolo, “Towards an ontological theory of physical objects”, in IMACS-IEEE/SMC Conference on Computational Engineering in System Applications (CESA 96), Symposium on Modelling, Analysis and Simulation, volume 1, Lille, France, 1996, pp. 535–540. Gerf EC Lille – Cite’ Scientifique.

S. Borgo and C. Masolo, “Full mereogeometries”, The Review of Symbolic Logic, 3 (2010), 4: 521–567.

A.G. Cohn, B. Bennett, J.M. Gooday, and N.M. Gotts, “Rcc: a calculus for region based qualitative spatial reasoning”, GeoInformatica, 1 (1997): 275–316.

A.G. Cohn, B. Bennett, J.M. Gooday, and N.M. Gotts, “Representing and reasoning with qualitative spatial relations”, in O. Stock (ed.), Spatial and Temporal Reasoning, Kluwer, Dordrecht, 1997, pp. 97–134.

A.G. Cohn, “Qualitative shape representation using connection and convex hulls”, in P. Amsili, M. Borillo, and L. Vieu (eds.), Time, Space and Movement: Meaning and Knowledge in the Sensible World, part C, IRIT, 1995, pp. 3–16.

A.G. Cohn, “A hierarchical representation of qualitative shape based on connection and convexity”, in S. Hirtle and A. Frank (eds.), Spatial Information Theory: A Theoretical Basis for GIS, Springer, 1995, pp. 311–326.

A.G. Cohn and J.Renz, “Qualitative spatial representation and reasoning”, in F. van Harmelen et al (eds.), Handbook of Knowledge Representation, Elsevier, 2007, pp. 551–596.

E. Davis, “The expressivity of quantifying over regions”, Journal of Logic and Computation, 16 (2006): 891–916.

T. De Laguna, “Point, line, and surface. A sets of solids”, The Journal of Philosophy, 19 (1922): 449–461.

M. Donnelly, “An axiomatic theory of common-sense geometry”, PhD Thesis, 2001.

P. Forrest, “Mereotopology without mereology”, Journal of Philosophical Logic, 39 (2010): 229–254. WoS

G. Gerla, “Pointless geometries”, in F. Buekenhout (ed.), Handbook of Incidence Geometry, Elsevier, 1995, pp. 1015–1031.

G. Gerla and R. Volpe, “Geometry without points”, American Mathematical Monthly, 92 (1985): 707–711. CrossRef

E. Glibowski, “The application of mereology to grounding of elementary geometry”, Studia Logica, 24 (1969): 109–127.

R. Gruszczyński and A. Pietruszczak, “Full development of Tarski’s geometry of solids”, Bulletin of Symbolic Logic, 14, (2008), 4: 481–540.

M.J. Greenberg, “Old and new results in the foundations of elementary plane Euclidean and non-Euclidean geometry”, American Mathematical Monthly, 117 (2010): 198–219. CrossRef ; WoS

H.N. Gupta, Contributions to the axiomatic foundations of geometry, PhD thesis, University of California, Berkeley, 1965.

D. Hilbert and P. Bernays, Grundlagen der Mathematik II, volume 50 of Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 2nd edition, 1970.

D. Hilbert, Foundations of Geometry (revised and enlarged by P. Bernays), The Open Court Publishing Company, La Salle, Illinois, 2nd edition, 1971.

S. Leśniewski, Collected Works, Kluwer, Dordrecht, 1991.

J. Nicod, La Géométrie dans le monde sensible, Presse Universitaire de France, Paris, 1924.

V. Pambuccian, “A logical look at characterizations of geometric transformations under mild hypotheses”, Indagationes Mathematicae, 11 (2000): 453–462.

V. Pambuccian, “Fragments of Euclidean and hyperbolic geometry”, Sci. Math. Japan, 53 (2001): 361–400.

V. Pambuccian, “Sphere tangency as single primitive notion for hyperbolic and Euclidean geometry”, Forum Mathematicum, 15 (2003), 6: 943–947.

V. Pambuccian, “Axiomatizations of Euclidean geometry in terms of points, equilateral triangles or squares, and incidence”, Indagationes Mathematicae, 15 (2004), 3: 413–417.

K. Prazmowski, “Various systems of primitive notions for Euclidean geometry based on the notion of circle”, Bull. Polish Acad. Sci. Math., 31 (1983): 23–29.

I. Pratt, “First-order qualitative spatial representation languages with convexity”, Spatial Cognition and Computation, 1 (1999), 2: 181–204.

R.M. Robinson, “Binary relations as primitive notions in elementary geometry”, in L. Henkin, P. Suppes, and A. Tarski (eds.), The Axiomatic Method, with Special Reference to Geometry and Physics, pp. 68–85, North Holland, 1959.

P. Roeper, “Region-based topology”, Journal of Philosophical Logic, 26 (1997): 251–309.

D. Scott, “A symmetric primitive notion for Euclidean geometry”, Indagationes Mathematicae, 18 (1956): 457–461.

W. Schwabhäuser, W. Szmielew, and A. Tarski, Metamathematische Methoden in der Geometrie, Springer-Verlag, Berlin, 1983.

T.F. Sullivan, “Affine geometry having a solid as primitive”, Notre Dame Journal of Formal Logic, 12 (1971): 1–61.

T.F. Sullivan. “The name solid as primitive in projective geometry”, Notre Dame Journal of Formal Logic, 13 (1972): 95–97.

T.F. Sullivan, “The geometry of solids in Hilbert spaces”, Notre Dame Journal of Formal Logic, 14 (1973): 575–580.

L. Szczerba, “Tarski and geometry”, The Journal of Symbolic Logic, 51 (1986), 4: 907–912.

A. Tarski, “A general theorem concerning primitive notions of Euclidean geometry” Indagationes Mathematicae, 18 (1956): 468–474.

A. Tarski, “Foundations of the geometry of solids”, in J. Corcoran (ed.), Logic, Semantics, Metamathematics, Oxford University Press, Oxford, 1956, pp. 24–30. Translation of: “Les fondaments de la géométrie des corps”, in Księga Pamiątkowa Pierwszego Polskiego Zjazdu Matematycznego, 1929, pp. 29–33.

A. Tarski, “What is elementary geometry?”, in L. Henkin, P. Suppes, and A. Tarski (eds.), The Axiomatic Method, with Special Reference to Geometry and Physics, North Holland, 1959.

A. Tarski and S. Givant, “Tarski’s system of geometry”, Bulletin of Symbolic Logic, 5 (1999), 2: 175–214.

J. van Benthem, The Logic of Time, Kluwer, Dordrecht, 1983.








ISSN: 1425-3305 (print version)

ISSN: 2300-9802 (electronic version)

Partnerzy platformy czasopism