Extended pregroup grammars applied to natural languages

Aleksandra Kiślak-Malinowska

DOI: http://dx.doi.org/10.12775/LLP.2012.012

Abstract


Pregroups and pregroup grammars were introduced by Lambek in 1999 [14] as an algebraic tool for the syntactic analysis of natural lan-guages. The main focus in that paper was on certain extended pregroup grammars such as pregroups with modalities, product pregroup grammars and tupled pregroup grammars. Their applications to different syntactic structures of natural languages, mainly Polish, are explored/shown here.

Keywords


pregroups; pregroup grammars; product pregroup grammars; tuple pregroup grammars

Full Text:

PDF

References


Buszkowski, W., “Lambek grammars based on pregroups”, Logical Aspects of Computational Linguistics, LNAI 2099, Springer, 2001, 95–109.

Buszkowski, W., “Sequent systems for compact bilinear logic”, Mathematical Logic Quarterly 49, 5 (2003): 467–474.

Buszkowski, W., and K. Moroz, “Pregroup grammars and context-free grammars”, pages 1–22 in: Computational Algebraic Approaches to Natural Language, Polimetrica, 2008.

Casadio, C., and J. Lambek, “An algebraic analysis of clitic pronouns in Italian”, pages 110–124 in: Logical Aspects of Computational Linguistics, LNAI 2099, Springer, 2001.

Casadio, C., “Applying pregroups to Italian statements and questions”, Studia Logica 87 (2007).

Casadio, C., “Agreement and cliticization in Italian: A pregroup analysis”, pages 166–177 in: Lecture Notes in Computer Science, LNCS 6031, Springer, 2010.

Fadda, M., “Toward flexible pregroup grammars”, pages 95–112 in: New Perspectives in Logic and Formal Linguistics, Bulzoni Editore, Roma, 2002.

Kiślak, A., “Pregroups versus English and Polish grammar”, pages 129–154 in: New Perspectives in Logic and Formal Linguistics, Bulzoni Editore, Roma, 2002.

Kiślak-Malinowska, A., “On the Logic of β-pregroups”, Studia Logica 87 (2007): 321–340.

Kiślak-Malinowska, A., “Polish language in terms of pregroups”, pages 145–172 in: Computational Algebraic Approaches to Natural Language, Polimetrica, 2008.

Kiślak-Malinowska, A., “Some aspects of Polish grammar in terms of tupled pregroups”, Linguistic Analysis (2010): 93–119.

Kusalik, T., “Product pregroups as an alternative to inflectors”, pages 173–190 in: Computational Algebraic Approaches to Natural Language, Polimetrica, 2008.

Lambek, J., “The mathematics of sentence structure”, The American Mathematical Monthly 65 (1958): 154–170.

Lambek, J., “Type grammars revisited”, pages 1–27 in: Logical Aspects of Computational Linguistics, A. Lecomte, F. Lamarche and G. Perrier (eds.), LNAI 1582, Springer, Berlin, 1999.

Lambek, J., “Type grammars as pregroups”, Grammars 4 (2001): 21–39.

Lambek, J., “Pregroups: a new algebraic approach to sentence structure”, pages 39–54 in: New Perspectives in Logic and Formal Linguistics, Bulzoni Editore, Roma, 2002.

Lambek, J., From word to sentence, Polimetrica, 2008.

Lambek, J., “Exploring feature agreement in French with parallel pregroup computations”, Journal of Logic, Language and Information (2009).

Moroz, K., “Algorithmic questions for pregroup grammrs”, PhD Thesis, Poznań 2010.

Stabler, E., “Tupled pregroup grammars”, pages 23–52 in: Computational Algebraic Approaches to Natural Language, Polimetrica, 2008.








Print ISSN: 1425-3305
Online ISSN: 2300-9802

Partnerzy platformy czasopism