### The critics of paraconsistency and of many-valuedness and the geometry of oppositions

DOI: http://dx.doi.org/10.12775/LLP.2010.004

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Béziau, J.-Y., “New light on the square of oppositions and its nameless corner”, Logical Investigations 10 (2003): 218–233.

Béziau, J.-Y., “Paraconsistent logic from a modal viewpoint”, Journal of Applied Logic 3 (2005): 7–14.

Béziau, J.-Y., “Paraconsistent logic! (A reply to Slater)”, Sorites 17 (2006).

Béziau, J.-Y., “Adventures in the paraconsistent jungle”, in: J.-Y. Béziau, W.A. Carnielli and D. Gabbay (eds.), Handbook of Paraconsistency, King’s Coledge, London, 2007.

Blanché, R., “Sur l’opposition des concepts”, Theoria 19 (1953).

Blanché, R., Structures intellectuelles. Essai sur l’organisation systématique des oncepts, Vrin, Paris, 1966.

Brown, B., “Yes, Virginia, there really are paraconsistent logics”, Journal of Philosophical Logic 28 (1999): 489–500.

Dutilh Novaes, C., “Contradiction: the real challenge for paraconsistent logic”, in: J.-Y. Béziau, W.A. Carnielli and D. Gabbay (eds.), Handbook of Paraconsistency, King’s College, London, 2007.

Frankowski, S., “p-consequence versus q-consequence”, Bulletin of the Section of Logic 33 (2004): 197–208.

Gardies, J.-L., Essai sur la logique des modalités, PUF, Paris, 1979.

Horn, L., A natural history of negation, UCP, Chicago, 1989.

Malinowski, G., “Towards the concept of logical many-valuedness”, Folia Philosophica 7 (1990): 97–103.

Moretti, A., “Geometry for modalities? Yes. Through n-opposition theory”, in: J.-Y. Béziau, A. Costa-Leite and A. Facchini (eds.), Aspects of Universal Logic, University of Neuchâtel, Neuchâtel, December 2004.

Moretti, A., “A graphical decision procedure and some paraconsistent theorems for the Vasil’evian logic IL2”, in: J.-Y. Béziau, W.A. Carnielli and D. Gabbay (eds.), Handbook of Paraconsistency, King’s College, London, 2007.

Moretti, A., The Geometry of Logical Opposition, PhD Thesis, University of Neuchâtel, Switzerland (March 2009).

Moretti, A., “The geometry of standard deontic logic”, Logica Universalis 3, 1 (2009).

Moretti, A., “A geometrical method for classifying and studying quantifiers and modalities” (draft).

Moretti, A., “Correcting McNamara’s ‘deontic dodecagon for DWE’: through NOT”, submitted to Logique et Analyse.

Paoli, F., “Quine and Slater on paraconsistency and deviance”, Journal of Philosophical Logic 32 (2003): 531–548.

Pellissier, R., “‘Setting’ n-opposition”, Logica Universalis 2 (2008).

Pellissier, R., “2-opposition and the topological hexagon”, in: J.-Y. Béziau and G. Payette (eds.), New perspectives on the square of opposition, Peter Lang, Bern, 2010.

Priest, G., “The logic of paradox”, Journal of Philosophical Logic, 8 (1979): 219–241.

Priest, G., An Introduction to Non-Classical Logic, CUP, Cambridge, 2001.

Restall, G., “Paraconsistent logics!”, Bulletin of the Section of Logic 26 (1997): 156–173.

Sesmat, A., Logique II, Hermann, Paris, 1951.

Shramko, Y., and H. Wansing, “Suszko’s thesis, inferential many-valuedness, and the notion of a logical system”, Studia Logica 88 (2008).

Slater, B.H., “Paraconsistent logics?”, Journal of Philosophical Logic, 24 (1995): 451–454.

Smessaert, H., “On the 3D visualisation of logical relations”, Logica Universalis 3, 2 (2009).

Suszko, R., “Remarks on Łukasiewicz’s three-valued logic”, Bulletin of the Section of Logic 4 (1975): 87–90.

Tsuji, M., “Many-valued logics and Suszko’s thesis revisited”,Studia Logica 60 (1998): 299–309.

ISSN: 2300-9802 (electronic version)