### Modulated logics and flexible reasoning

DOI: http://dx.doi.org/10.12775/LLP.2008.012

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

[Arr70] Arrow, K.J., Social Choice and Individual Values, Yale University Press, New Haven and London, 2nd edition, 1970.

[BC81] Barwise, J., and R. Cooper. “Generalized quantifiers and natural language”, Linguistics and Philosophy 4 (1981), 159–219.

[BM77] Bell, J.L., and M. Machover. A Course in Mathematical Logic, Elsevier Science Publishers B. V., New York, 1977.

[Car50] Carnap, R., Logical Foundations of Probability, Routledge and Kegan Paul, London, 1950.

[CG99] Carnielli, W.A., and M.C.C. Grácio, “Modulated logics and uncertain reasoning”, in Abstracts of the 6th Kurt Gödel Colloquium, Barcelona, 1999.

[CS94] Carnielli, W.A., and A.M. Sette, “Default operators”, In Workshop on Logic, Language, Information and Computation (WOLLIC’94), Recife, PE, Brazil, 1994. UFPE.

[CV97] Carnielli, W.A., and P.A.S. Veloso, “Ultrafilter logic and generic reasoning”, in Computational Logic and Proof Theory, Lecture Notes in Computer Science 1289 (Proceedings of the 5th Kurt Gödel Colloquium), pages 34–53, Springer-Verlag, 1997.

[DW91] Doyle, J., and M. Wellman, “Impediments to universal preference-based default theories”, Artificial Intelligence 49 (1991), 97–128.

[Ebb85] Ebbinghaus, H.D., “Extended logics: the generalized framework”, in Model-Theoretic Logics, pages 25–76, Berlin, Springer-Verlag, 1985.

[Fey04] Fey, M., “May’s theorem with an infinite population”, Social Choice and Welfare 23 (2004), 2, 275–294. Online at http://www.springerlink.com/content/wu3t9leu4tph49vg/fulltext.pdf.

[Flu85] Flum, J., “Characterizing logics”, in Model-Theoretic Logics, pages 77–120, Berlin, Springer-Verlag, 1985.

[Göd31] Gödel, K., “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I”, Monatshefte für Mathematik und Physik 38 (1931), 173–198.

[Grá99] Grácio, M.C.C., Lógicas Moduladas e Raciocínio sob Incerteza, PhD thesis, IFCH-UNICAMP, Campinas, SP, Brazil, 1999. In Portuguese, 194 pp.

[Háj98] Hájek, P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.

[HM87] Hanks, S., and D. McDermott, “Nonmonotonic logic and temporal projection”, Artificial Intelligence 33 (1987), 3, 379–412.

[Kei70] Keisler, H. J., “Logic with the quantifier ‘there exist uncountably many’”, Annals of Mathematical Logic 1 (1970), 1–93.

[Kel55] Kelley, J.L., General Topology, D. Van Nostrand Company, New York, 1955.

[McC86] McCarthy, J., “Applications of circumscription to formalizing commonsense knowledge”, Artificial Intelligence 28 (1986), 89–116.

[Men87] Mendelson, E., Introduction to Mathematical Logic, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 3rd edition, 1987.

[Mos57] Mostowski, A., “On a generalization of quantifiers”, Fundamenta Mathematica, 44 (1957), 12–36.

[Pet79] Peterson, P.L., “On the logic of ‘few’, ‘many’, and ‘most’”, Notre Dame Journal Logic 20 (1979), 155–179.

[Pig06] Pigozzi, G., “Belief merging and the discursive dilemma: an argumentbased account to paradoxes of judgment aggregation”, Synthese 152 (2006), 2, 25–298.

[Poo91] Poole, D., “The effect of knowledge on belief: conditioning, specificity and the lottery paradox in default reasoning”, Artificial Intelligence 49 (1991), 281–307.

[Pop72] Popper, K.R., Objective Knowledge: An Evolutionary Approach, Clarendon Press, Oxford, 1972.

[PS04] Pacuit, E., and S. Salame, “Majority logic”, in Proceedings of the Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR’04), pages 598–605, AAAI Press, 2004, Whistler, Canada, June 2–5, 2004.

[Rei80] Reiter, R., “A logic for default reasoning”, Artificial Intelligence, 13 (1980), 81–132.

[Ren01] Reny, P.J., “Arrow’s theorem and the Gibbard-Satterthwaite theorem: a unified approach”, Economics Letters 1(2001), 70, 99–105.

[Res62] Rescher, N., “Plurality-quantification”, The Journal of Symbolic Logic 27 (1962), 373–374.

[RHV03] Rentería, C.J, E.H. Haeusler, and P.A.S. Veloso, “Nul: Natural deduction for ultrafilter logic”, Bulletin of the Section of Logic, 32 (2003), 4, 191–200.

[Sch95] Schlechta, K., “Defaults as generalized quantifiers”, Journal of Logic and Computation 5 (1995) 4, 473–494.

[SCV99] Sette, A.M., W.A. Carnielli, and P.A.S. Veloso, “An alternative view of default reasoning and its logic”, in Pratica: Proofs, types and categories, pages 127–158, Rio de Janeiro: PUC-RJ, Brazil, 1999.

[Sgr77] Sgro, J., “Completeness theorems for topological models”, Annals of Mathematical Logic 11 (1977), 173–193.

[Sla88] Slaney, J., “A note on ‘most’”, Analysis 48 (1988), 134–135.

[Tay05] Taylor, A.M., Social Choice and the Mathematics of Manipulation, Cambridge University Press, 2005.

[VC04] Veloso, P.A.S., and W.A. Carnielli, “Logics for qualitative reasoning”, in Logic, Epistemology, and the Unity of Science, volume 1, pages 487–526, Kluwer Academic Publishers, 2004. Preliminary version avaliable from CLE e-Prints (Section Logic) http://www.cle.unicamp.br/e-prints/abstract_3.htm.

[Vel99a] Veloso, P.A.S., “On ‘almost all’ and some presuppositions”, Manuscrito: Revista Internacional de Filosofia, XXII (1999), 2, 469–505. Special volume “Logic, Language and Knowledge: essays in honour of Oswaldo Chateaubriand Filho”, edited by L.C.P.D. Pereira and M.B. Wrigley.

[Vel99b] Veloso, P.A.S., “On ultrafilter logic and a missing axiom”, Bulletin of Sect. Logic, 28 (1999), 17–26.

[Vel02] Veloso, P.A.S., “On a logic for Oalmost all’ and Ogeneric’ reasoning” Manuscrito: Revista Internacional de Filosofia XXV (2002), 1, 191–271.

[Wey97] Weydert, E., “Rational default quantifier logic”, in Proceedings of the First International Joint Conference on Qualitative and Quantitative Practical Reasoning, pages 589–599, Springer-Verlag, 1997. Lecture Notes in Computer Science, vol. 1244.

[Zad65] Zadeh, L.A., “Fuzzy sets”, Information and Control, 8 (1965), 3, 338–353.

[Zim01] Zimmermann, H.-J., Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, Dordrecht, 4th edition, 2001.

ISSN: 2300-9802 (electronic version)