Pieces of mereology

Andrzej Pietruszczak

DOI: http://dx.doi.org/10.12775/LLP.2005.014

Abstract


In this paper we will treat mereology as a theory of some structures that are not axiomatizable in an elementary language (one of the axioms will contain the predicate ‘belong’ (‘∈’) and we will use a variable ranging over the power set of the universe of the structure). A mereological structure is an ordered pair M = <M,⊑>, where M is a non-empty set and ⊑ is a binary relation in M, i.e., ⊑ is a subset of M × M. The relation ⊑ is a relation of being a mereological part (instead of ‘<x,y> ∈ ⊑’ we will write ‘xy’ which will be read as “x is a part of y”). We formulate an axiomatization of mereological structures, different from Tarski’s axiomatization as presented in [10] (Tarski simplified Leśniewski’s axiomatization from [6]; cf. Remark 4). We prove that these axiomatizations are equivalent (see Theorem 1). Of course, these axiomatizations are definitionally equivalent to the very first axiomatization of mereology from [5], where the relation of being a proper part ⊏ is a primitive one.

Moreover, we will show that Simons’ “Classical Extensional Mereology” from [9] is essentially weaker than Leśniewski’s mereology (cf. Remark 6).


Keywords


mereology; mereological structures; axioms of mereology; collective sets; mereological sets; mereological fusions; mereological parts

Full Text:

PDF

References


Breitkopf, A., “Axiomatisierung einiger Begriffe aus Nelson Goodmans The Structure of Appearance”, Erkenntnis 12, 229–247.

Eberle, R., “Some complete calculi of individuals”, NDJFL 8 (1967), 267–278.

Goodman, N. The Structure of Appearance, Cambridge Massachusetts 1951.

Leonard, H. S., N. Goodman, “The calculus of individuals and its uses”, Journal of Symbolic Logic, vol. 5, 2 (1940), 45–55. DOI: http://dx.doi.org/10.2307/2266169

Leśniewski, S., “O podstawach matematyki. Rozdział IV”, Przegląd Filozoficzny XXXI (1928), 261–291. English version: “On the foundations of mathematics. Chapter IV”, pp. 226–263 in: Collected Works, S.J. Surma, J.T. Srzednicki and D.I. Barnett (eds.), PWN – Kluwer Academic Publishers, Dordrecht, 1991.

Leśniewski, S., “O podstawach matematyki. Rozdziały VI-IX”, Przegląd Filozoficzny XXXIII (1930), 77–105. English version: “On the fundations of mathematics. Chapters VI-IX”, pp. 313–349 in: Collected Works, S.J. Surma, J.T. Srzednicki and D.I. Barnett (eds.), PWN – Kluwer Academic Publishers, Dordrecht, 1991.

Pietruszczak, A., “Kawałki mereologii” (Pieces of Mereology), pp. 357–374 in: Logika & Filozofia Logiczna. FLFL 1996–1998, J. Perzanowski and A. Pietruszczak (eds.), Nicolaus Copernicus University Press, Toruń 2000.

Pietruszczak, A., Metamereologia (Metamereology), Nicolaus Copernicus University Press, Toruń 2000.

Simons, P. M., Parts. A Study in Ontology, Oxford 1987.

Tarski, A., “Les fondements de la géometrie des corps”, pp. 29–30 in: Księga Pamiątkowa Pierwszego Zjazdu Matematycznego, Kraków 1928. English translation: “Foundations of the geometry of solid”, pp. 24–29 in: Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford 1956.

Tarski, A., “Zur Grundlegung der Booleschen Algebra. I”, Fundamenta Mathematicae 24, 177–198. English translation “On the foundations of Boolean algebra”, pp. 320–341 in: Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford 1956.








Print ISSN: 1425-3305
Online ISSN: 2300-9802

Partnerzy platformy czasopism