A deductive-reductive form of logic: General theory and intuitionistic case

Piotr Łukowski

DOI: http://dx.doi.org/10.12775/LLP.2002.004

Abstract


The paper deals with reconstruction of the unique reductive counterpart of the deductive logic. The procedure results in the deductive-reductive form of logic. This extension is illustrated on the base of intuitionistic logics: Heyting’s, Brouwerian and Heyting-Brouwer’s ones.

Full Text:

PDF

References


Łukowski, P., “A reductive approach to Ł-decidability”, Bulletin of the Section of Logic 28/3, 79–84 (1999).

Rauszer, C., “Semi-Boolean algebras and their applications to intuitionistic logic with dual operations”, Fundamenta Mathematicae LXXXIII, 219–249 (1974).

Rauszer, C., “An algebraic and Kripke-style approach to a certain extension of intuitionistic logic”, Dissertationes Mathematicae CLXVII, PWN Warszawa 1980.

Tarski, A., “Über einige fundamentale Begriffe der Metamathematik”, Compt. Rend. Séances Soc. Sci. Lett. Varsovie, cl. III, 23, pp. 22–29.

Wójcicki, R., “Dual counterparts of consequence operation”, Bulletin of the Section of Logic 2/1, 54–57 (1973).

Wójcicki, R., “Theory of logical calculi: basic theory of consequence operations”, Synthese Library vol. 199, Kluwer Academic Publishers 1988.








Print ISSN: 1425-3305
Online ISSN: 2300-9802

Partnerzy platformy czasopism