The algebraic face of minimality
DOI: http://dx.doi.org/10.12775/LLP.1998.013
Abstract
Full Text:
PDFReferences
Blok, W., “Varieties of interior algebras”, Dissertation, University of Amsterdam, 1976.
Blok, W., D. Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society, vol. 77, AMS, 1989.
Blok,W., D. Pigozzi, “On the structure of varieties with equationally definable principal congruences”, Algebra Universalis 15 (1982): 195–227.
Chagrov, A. V., M. V. Zakharyaschev, Modal Logic, Oxford University Press, 1997.
Chang, C., H. Keisler, Model Theory, Amsterdam, 1973.
Fine, K., “Logics containing K4. Part II”, Journal of Symbolic Logic 50 (1985): 619–651.
Goldblatt, R., “Metamathematics of modal logic”, Reports on Mathematical Logic 6 (1976): 41–78, 7 (1976): 21–52.
Koppelberg, S., Handbook of Boolean Algebras, vol. 1, North-Holland, 1989.
Kracht, M., “An almost general splitting theorem for modal logic”, Studia Logica 49 (1990): 455–470.
Kraus, Lehmann and Magidor, “Nonmonotonic reasoning, preferential models and cumulative logics”, Artificial Intelligence 44 (1990): 167–207.
Henkin, Monk and Tarski, Cylindric Algebras. Part 1, Amsterdam, 1971.
Makinson, D., “Five faces of minimality”, Studia Logica 52 (1993): 339–379.
McKenzie R., “Equational bases and non-modular lattice varieties”, Transactions of the American Mathematical Society 174 (1972): 1–43.
Wolter, F., “The structure of lattices of subframe logics”, Annals of Pure and Applied Logic 86 (1977): 47–100.
Print ISSN: 1425-3305
Online ISSN: 2300-9802