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Abstract. In this paper, we present two variants of Peirce’s Triadic Logic
within a language containing only conjunction, disjunction, and negation.
The peculiarity of our systems is that conjunction and disjunction are inter-
preted by means of Peirce’s mysterious binary operations Ψ and Φ from his
‘Logical Notebook’. We show that semantic conditions that can be extracted
from the definitions of Ψ and Φ agree (in some sense) with the traditional
view on the semantic conditions of conjunction and disjunction. Thus, we
support the conjecture that Peirce’s special interest in these operations is
due to the fact that he interpreted them as conjunction and disjunction,
respectively. We also show that one of our systems may serve as a suitable
base for an interesting implicative expansion, namely the connexive three-
valued logic by Cooper. Sound and complete natural deduction calculi are
presented for all systems examined in this paper.
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1. Introduction

In 1964 Fisch and Turquette published the paper [11] in which they
suggested an analysis of a three-page manuscript by Peirce from his
’Logical Notebook’. Alongside their analysis the authors published the
manuscript itself. This publication is important from a historical per-
spective, because it permits the claim that Peirce had been developing a
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three-valued logic long before Łukasiewicz’s publication on the same is-
sues [14, 15]. On one page of the manuscript (which is dated 23 February
1909) Peirce suggested a sketch of what he called a ‘Triadic Logic’:

Triadic logic is that logic which, though not rejecting entirely the Princi-
ple of Excluded Middle, nevertheless recognizes that every proposition,
S is P, is either true, or false, or else S has a lower mode of being such
that it can neither be determinately P, nor determinately not-P, but is
at the limit between P and not-P. [11]

Unfortunately, the manuscript gives no clue to what definition of con-
sequence relation (or validity) Peirce had in mind, hence we cannot
confidently claim that Peirce developed any completed logical theory.
However, despite this fact, he explicitly postulated three truth values:
V – «verum» (truth), F – «falsum» (falsity), L – «the limit». Moreover,
he was concerned with different operations which are explicitly defined
in terms of truth tables over the set of these truth values. Altogether
Peirce mentioned six1 binary operations: Φ, Ψ, Θ, Z, Υ and Ω. It
is worth noting that four of these operations were (re)discovered much
later, and became very widespread in the literature. Operations Θ and
Z are, in fact, disjunction and conjunction in the strong Kleene logic K3,
Lukasiewicz logic Ł3, Priest’s logic of paradox LP, Post’s logic P3, Dunn-
McCall logic RM3, etc. In turn, Ω and Υ are nothing other than con-
junction and disjunction in the week Kleene logics (Kw

3 and PWK) and
other related logics which can be grouped as infectious ones. However,
the remaining Φ and Ψ operations did not receive comparable attention
in the literature on many-valued logics. At the same time, exploring the
manuscript, we can observe that Peirce paid a lot of attention to these
very operations. Nevertheless, as rightfully claimed by Parks [24] in his
reply to Fisch and Turquette, we can find at least three little known
occurrences of operations, which coincide with Φ and Ψ, in the works
of Sobocinski [27]2, Cooper [9] and Belnap [5]. It is worth noting that
in these works the corresponding operations are used to interpret con-
junction and disjunction. Moreover, note that Ebbinghaus’s logic E3 of
nonsense [10] contains Φ as an interpretation of disjunction. In [12] Finn
and Grigolia studied some generalizations of the logics of significance,

1 In this paper we are primarily interested in binary operations, but we note that
Peirce also mentioned four unary operations.

2 By the way, Sobocinski’s paper was published long before [11].
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which contain Ψ as an interpretation of conjunctions. Not one of these
works referred to Peirce’s manuscript.

Some attempts to explain the nature of Peirce’s interest in Φ and
Ψ have been made in the literature. For example, Turquette in [31]
and [32] proposed that Peirce was motivated by issues regarding func-
tional completeness. It was shown in [31] that combining either Φ or
Ψ together with one of Peirce’s unary operations ′ or 8 (whose matrix
definitions coincide with Post’s cyclic negation and its dual) forms a
functionally complete set. Though we find this version interesting we do
not find it fully justified. If we take a look at the manuscript, it is easy
to observe that it contains no calculations showing that Peirce tried to
express some operations by means of the others. The most part of the
text consists of calculations by which Peirce probably tested Φ and Ψ
for the properties of associativity and commutativity. The only thing
that alludes to the link between Peirce’s operations and functional com-
pleteness is the occurrence of ′ and 8, which, as we said above, coincide
with Post’s negation and its dual. Of course, the occurrence of the latter
operations can hardly be explained only by claiming that Peirce treated
them as candidates for negation because their definitions do not reflect
any customary intuitions about this notion. But we find the shift from
such a coincidence to the claim that Peirce was seeking for a functionally
complete set of operations much harder to explain.3

In this paper, we try to answer the following question: is it possible
to claim that Peirce considered Φ and Ψ as candidates for disjunction
and conjunction, respectively? Answering this question should help us
to understand why these operations occupied him so much. As a re-
sult of such inquiry, we will provide a positive answer. Technically, we
present two versions of his Triadic Logic (one is paracomplete, the other
is paraconsistent), which can be classified as systems belonging to the
family of first-degree entailment logics; that is, those which are built
over a language containing only disjunction, conjunction, and negation.
We find this strategy quite reasonable, because, as is clear from Peirce’s
manuscript, he did not deal with any implication-like operations. In both
logics conjunction and disjunction are interpreted by means of Peirce’s
operations Ψ and Φ, respectively. Besides matrix semantics, we present
an equivalent one in terms of generalized truth values, which allows us
to work with customary semantic conditions in terms of the traditional

3 Some new and interesting research into Φ and Ψ was proposed recently in [18].
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categories of truth and falsity. The resulting truth and falsity conditions
for disjunction and conjunction, respectively, coincide with the tradi-
tional ones. In turn, the resulting truth condition for conjunction and
the falsity condition for disjunction are shown to be consistent with the
traditional ones. We provide a natural deduction formalization for both
logics and prove their completeness and soundness. Finally, we show
that Cooper’s logic from [9] can be seen as a connexive extension of
our paraconsistent variant of the Triadic Logic. We also equip it with
a sound and complete natural deduction calculus and briefly discuss its
relationships with other connexive logics.

2. Two Versions of Triadic Logic

2.1. Semantics

We fix a propositional language L containing conjunction, disjunction,
and negation. The notion of a formula is standard. The set of all propo-
sitional variables of L is denoted as P, the set of all its formulae as F .
By a logic we mean a pair 〈L,�〉, where L is the propositional language
defined above and � is a semantic consequence relation induced by some
semantic structure. A logic can be defined from the proof-theoretical
point of view if we replace � with its syntactical counterpart ⊢. Accord-
ing to Definition 3 below, we define TL1 = 〈L,�M1

〉 and TL2 = 〈L,�M2〉.
The abbreviation TL stands for «Triadic Logic».

Definition 1. A TL1-matrix for L is a tuple M1 = 〈VTL1
,DTL1

,OTL1
〉,

where: (a) VTL1 = {V,L,F}, (b) DTL1 = {V}, (c) for every n-ary
connective ⋄ of L, OTL1

contains a corresponding n-ary function f⋄:
VnTL1

→ VTL1 . The functions included in OTL1 are defined by means
of the following tables:

f¬ ϕ

F V

L L

V F

f∧ V L F

V V V F

L V L F

F F F F

f∨ V L F

V V V V

L V L F

F V F F

A TL1-valuation in a TL1-matrix M1 is a function v : F → VTL1 that
satisfies the following condition for every n-ary connective ⋄ of L and
ϕ1, . . . , ϕn ∈ F :

v(⋄(ϕ1, . . . , ϕn)) = f⋄(v(ϕ1), . . . , v(ϕn)).
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Definition 2. A TL2-matrix for L is a tuple M2 = 〈VTL2 ,ATL2 ,OTL2〉,
where: (a) VTL2 = {V,L,F}, (b) ATL2 = {F}, (c) for every n-ary
connective ⋄ of L, OTL2 contains a corresponding n-ary function f⋄:
VnTL2

→ VTL2 , and OTL2 = OTL1 . A TL2-valuation in a TL2-matrix M2 is
a function v : F → VTL2 that satisfies the following condition for every
n-ary connective ⋄ of L and ϕ1, . . . , ϕn ∈ F :

v(⋄(ϕ1, . . . , ϕn)) = f⋄(v(ϕ1), . . . , v(ϕn)).

Remark 1. As is clear from the definitions above, f∧, f∨, and f¬ are
Peirce’s Ψ, Φ and .̄ operations, respectively.

Remark 2. DTL1 and ATL2 are the sets of designated and anti-designated
values, respectively. We employ the notion of anti-designated values for
the following reason. Based on the manuscript only, we cannot extract a
definition of a consequence relation that is appropriate for Peirce. Thus,
the introduction of anti-designated values on a par with the designated
ones allows us to work with two standard (for the modern many-valued
logic) ways of defining a consequence relation. Indeed, it is easy to
observe that M1 contains the sole value V as designated, thereby leading
to a truth-preserving definition of the consequence relation. In turn, M2

contains F as an anti-designated value, thereby allowing us to define the
consequence relation via non-falsity preservation. Note, however, that
the latter strategy can be objected to. One may argue that we can replace
this definition simply by taking both {V,L} as designated. But, as far
as we can see, this contradicts Peirce’s idea that L represents something
not determinately true. Hence, we feel a bit of tension in treating L

as designated. Nevertheless, it is worth observing that Peirce had clear
views on the meaning of the consequence relation in general elsewhere.
For a detailed discussion see [16].

Definition 3. For any Γ ∪ {ϕ} ⊆ F :

(C1) Γ �M1
ϕ ⇐⇒ for every TL1-valuation v: if v(γ) ∈ DTL1 for every

γ ∈ Γ , then v(ϕ) ∈ DTL1 .
(C2) Γ �M2 ϕ ⇐⇒ for every TL2-valuation v: if v(γ) 6∈ ATL2 for every

γ ∈ Γ , then v(ϕ) 6∈ ATL2 .

Remark 3. In fact, TL2 is nothing other than the first-degree fragment
of Sobocinski’s logic from [27]. Recall that Sobocinski used f¬ and f∗

→

(presented below) as initial operations.
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f∗
→ V L F

V V F F

L V L F

F V V V

However, f∗
→ can be defined as f∗

→(ϕ, ψ) = f∨(f¬(ϕ), ψ). The converse
also holds, i.e., f∨ and f∧ are both definable by the use of f∗

→ and
f¬. Indeed, f∨(ϕ, ψ) = f∗

→(f¬(ϕ), ψ) and f∧(ϕ, ψ) = f¬(f∗
→(f¬(f¬(ϕ)),

f¬(ψ))). The operation f∗
→ is well-known as the implication of Dunn-

McCall logic RM3 (see [1]).

First of all, it is clear that TL1 and TL2 are paracomplete and para-
consistent, respectively. It is not difficult to show, using Definition 3,
that

• ϕ ∧ ∼ϕ �M1
ψ,

• ψ 2M1
ϕ ∨ ∼ϕ,

• ϕ ∧ ∼ϕ 6�M2 ψ,
• ψ �M2 ϕ ∨ ∼ϕ.

Now we turn to the more interesting properties of TL1 and TL2. Notice
that Simplification fails in TL1 and Addition fails in TL2. Again,
this may be easily shown, using Definition 3:

• ϕ ∧ ψ 2M1
ϕ,

• ϕ ∧ ψ 2M1
ψ,

• ϕ 6�M2 ϕ ∨ ψ,
• ψ 6�M2 ϕ ∨ ψ.

This feature relates TL1 and TL2 with the family of the weak Kleene
logics and the infectious ones in general [see, e.g., 4, 7, 22, 28]. We know
that Addition fails in Kw

3 , whereas Simplification fails in PWK. No-
tice that Kw

3 is paracomplete. Generally, for any paracomplete infectious
logic (in some precise sense of the term) it holds that Addition fails. In
turn, for any paraconsistent infectious logic, it holds that Simplifica-
tion fails. In the case of TL1 and TL2 the situation is the mirror image:
the paracomplete TL1 does not validate Simplification, whereas the
paraconsistent TL2 does not validate Addition. Interestingly, the fail-
ure of these logical principles within infectious logics is motivated by
philosophical intuitions about the nature of the consequence relation
and the epistemic status of truth value gaps and gluts. Hence, the ques-
tion about the existence of a rational connection between the absence
of Simplification and Addition within suggested versions of ‘Triadic
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Logic’ and the philosophical interpretation of Peirce’s intermediate truth
value L is of great interest.

The problems with Addition and Simplification, obviously, lead
to the problems with distributivity between conjunction and disjunction.
In this respect TL1 and TL2 are balanced. As a consequence, in both
logics, the same set of distribution laws fails. It is not difficult to show,
using Definition 3, that
• (ϕ ∧ ψ) ∨ (ϕ ∧ χ) 2x ϕ ∧ (ψ ∨ χ),
• ϕ ∧ (ψ ∨ χ) �x (ϕ ∧ ψ) ∨ (ϕ ∧ χ),
• (ϕ ∨ ψ) ∧ (ϕ ∨ χ) �x ϕ ∨ (ψ ∧ χ),
• ϕ ∨ (ψ ∧ χ) 2x (ϕ ∨ ψ) ∧ (ϕ ∨ χ),
• (ϕ ∨ ψ) ∧ χ 2x ϕ ∨ (ψ ∧ χ),
where x ∈ {M1,M2}.

In order to address our main question, it is instructive to formulate
the semantics of TL1 and TL2 in terms of generalized truth values.

Remark 4. Notice that Peirce’s truth values can be rewritten as elements
of {T, F,∅}, thereby transforming truth tables of negation, conjunction,
and disjunction into the following form.

f¬ ϕ

{F} {T}
∅ ∅

{T} {F}

f∧ {T} ∅ {F}
{T} {T} {T} {F}
∅ {T} ∅ {F}

{F} {F} {F} {F}

f∨ {T} ∅ {F}
{T} {T} {T} {T}
∅ {T} ∅ {F}

{F} {T} {F} {F}

On that understanding, it is easy to extract semantic conditions for ∧,
∨ and ¬ in terms of truth and falsity.

Definition 4. Let M = 〈{T, F,∅}, ξ〉 be a generalized truth values
model, where {T, F,∅} is the set of generalized truth values4, and ξ is a
valuation mapping P into {T, F,∅}. Thus, ξ can be extended to F by
means of the following semantic conditions:

(S1) T ∈ ξ(∼ϕ) ⇔ F ∈ ξ(ϕ),
(S2) F ∈ ξ(∼ϕ) ⇔ T ∈ ξ(ϕ),

4 This set of values can be seen as the set of all proper subsets of {T, F}.
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(S3) T ∈ ξ(ϕ ∧ ψ) ⇔ [T ∈ ξ(ϕ) and F 6∈ ξ(ψ)] or [T ∈ ξ(ψ) and F 6∈
ξ(ϕ)],

(S4) F ∈ ξ(ϕ ∧ ψ) ⇔ F ∈ ξ(ϕ) or F ∈ ξ(ψ),
(S5) F ∈ ξ(ϕ ∨ ψ) ⇔ [F ∈ ξ(ϕ) and T 6∈ ξ(ψ)] or [F ∈ ξ(ψ) and T 6∈

ξ(ϕ)],
(S6) T ∈ ξ(ϕ ∨ ψ) ⇔ T ∈ ξ(ϕ) or T ∈ ξ(ψ).

Using standard induction on the complexity of a formula ϕ, we can
prove the next lemma.

Lemma 1. Let ξ be a valuation. Then for any ϕ ∈ F it holds that:

(a) F /∈ ξ(ϕ) ⇒ T ∈ ξ(ϕ) or T /∈ ξ(ϕ),
(b) T /∈ ξ(ϕ) ⇒ F ∈ ξ(ϕ) or F /∈ ξ(ϕ).

Proof. Straightforward. As an example we consider only one case. Let
ϕ = ¬π and F /∈ ξ(¬π). Then, by (S2), we obtain T /∈ ξ(π). Applying
the inductive hypothesis we have F ∈ ξ(π) or F /∈ ξ(π), from which,
using (S1), we obtain the desired T ∈ ξ(¬π) or T /∈ ξ(¬π). Suppose that
T /∈ ξ(¬π). Then, by (S1), we have F /∈ ξ(π). Applying the inductive
hypothesis we have T ∈ ξ(π) or T /∈ ξ(π), and, using (S2), we obtain the
desired F ∈ ξ(¬π) or F /∈ ξ(¬π).

As to the consequence relations, they can be defined, as in the case of
matrix semantics, in two ways: either through the preservation of truth
or the preservation of non-falsity.

Definition 5. For any Γ ∪ {ϕ} ⊆ F :

(C3) Γ �a ϕ ⇔ for every ξ: if T ∈ ξ(γ) for every γ ∈ Γ , then T ∈ ξ(ϕ).
(C4) Γ �b ϕ ⇔ for every ξ: if F 6∈ ξ(γ) for every γ ∈ Γ , then F /∈ ξ(ϕ).

In order to prove the equivalence between the matrix and generalized
truth values semantics of TL1 and TL2, we first need to prove the next
lemma.

Lemma 2. Let v be a TL1-valuation (TL2-valuation), ξ be a valuation
in the generalized truth values model. Then for any ϕ ∈ F :

(a) v(ϕ) = V ⇔ T ∈ ξ(ϕ) and F /∈ ξ(ϕ),

(b) v(ϕ) = L ⇔ T /∈ ξ(ϕ) and F /∈ ξ(ϕ),

(c) v(ϕ) = F ⇔ T /∈ ξ(ϕ) and F ∈ ξ(ϕ).

Proof. By induction on the complexity of ϕ, using Definition 4, Defi-
nition 1, and Definition 2.
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Then we obtain the following theorem.

Theorem 1. For any Γ ∪ {ϕ} ⊆ F :

Γ �M1
ϕ ⇔ Γ �a ϕ and Γ �M2 ϕ ⇔ Γ �b ϕ.

Proof. Using Lemma 2, Definition 3, and Definition 5.

Thus, we have shown the equivalence between the two types of se-
mantics. Henceforth, we will use Γ �TL1 ϕ to denote that ϕ is a logical
consequence of the set of formulae Γ in TL1 with respect to Definition 5,
and analogously in the case of Γ �TL2 ϕ.

2.2. Conjunction? Disjunction?

As we can see from Definition 4, ∧ is characterized by the falsity condi-
tion (S4), which coincides with the traditional interpretation of conjunc-
tion, while ∨ is characterized by the truth condition (S6), which is, in
turn, standard for disjunction. Curiously, the truth of ∧ (S3) and falsity
of ∨ (S5) are defined in a rather unusual way. The meaning of ∧ and
∨ is halfway between the the meaning of conjunction and disjunction,
respectively. As to the traditional truth condition for conjunction and
the falsity condition for disjunction, they have the following form:

(S3∗) T ∈ v(ϕ ∧ ψ) ⇔ T ∈ v(ϕ) and T ∈ v(ψ),
(S5∗) F ∈ v(ϕ ∨ ψ) ⇔ F ∈ v(ϕ) and F ∈ v(ψ).

In the case of TL1 and TL2, these conditions are insufficient. Let us take
a closer look at ∧. The standard truth condition tells us that the truth
of conjunction is determined by the simultaneous truth of its conjuncts.
However, if we compare this interpretation with Peirce’s tables and se-
mantic conditions corresponding to them, it becomes clear that we are
dealing with a more general condition. In other words, ∧ is true, only if
one of its constituents is true, and the second is not false. In principle,
this interpretation agrees with the traditional view of the truth-condition
for conjunction.

In order to present (S3) and (S5) in a more compact form, let us
introduce a special notation. Let ϕ, ψ ∈ F and X, Y ∈ {ϕ, ψ}, where
X 6= Y . Then (S3)∗ can be rewritten as:

T ∈ ξ(ϕ ∧ ψ) ⇔ T ∈ ξ(X) and T ∈ ξ(Y ).
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Obviously, depending on the relationships between truth and falsity in
a given semantics, this condition may be transformed. For instance, if
we are working with a classical logic, then, in virtue of the equivalences
T ∈ ξ(ϕ) ⇔ F /∈ ξ(ϕ) and F ∈ ξ(ϕ) ⇔ T /∈ ξ(ϕ), we obtain:

T ∈ ξ(ϕ ∧ ψ) ⇔ T ∈ ξ(X) and T ∈ ξ(Y ) (s1)

or

T ∈ ξ(X) and F /∈ ξ(Y ) (s2)

or

F /∈ ξ(X) and F /∈ ξ(Y ) (s3).

In the case of TL1 and TL2, (S3) can be rewritten as:

T ∈ ξ(ϕ ∧ ψ) ⇔ T ∈ ξ(X) and F /∈ ξ(Y ).

We can see that this condition coincides with (s2). Hence, we can con-
clude that ∧ is characterized by the classical truth condition for con-
junction. Moreover, taking into account (S4), we can assert that ∧ is
conjunction in the traditional sense. Nevertheless, ∧ is more than just a
conjunction, because, despite the fact that (s2) allows us to derive (s1),
it also allows us to derive something more:

T ∈ ξ(ϕ ∧ ψ) ⇐⇒ T ∈ ξ(X) and F /∈ ξ(Y )

=⇒ T ∈ ξ(X) and T ∈ ξ(Y )

or

T ∈ ξ(X) and T /∈ ξ(Y ) (Lemma 1).

The right disjunct of the last statement is, of course, unacceptable as
a truth condition not only for classical conjunction but also for many
non-classical ones, even including conjunctions from the infectious log-
ics. However, two remarks should be made. Firstly, this condition is one
of many possible options, which is supplied in addition to the classical
one. Secondly, non-truth in the Triadic logic does not necessarily mean
falsity; the corresponding sentence can be neither determinately truth
nor determinately false, that is at the limit between truth and falsity,
as Peirce would have said. Thus, depending on which truth values are
treated as designated (or not treated as anti-designated) this condition
can conform with the traditional view to a greater or lesser extent. Nev-
ertheless, this condition challenges those who tend to say that Peirce
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perceived Ψ to have a conjunctive nature. It would be instructive to
address this issue in the context of Peirce’s philosophy, but we leave it
for future work.

An analogous argument can be established with respect to the falsity
condition for ∨. As a result, we obtain that ∨ is false, only if one of its
constituents is false, and the second if not true. This interpretation
also rather agrees with the traditional view on the falsity condition for
disjunction.

(S5∗) can be rewritten as

F ∈ ξ(ϕ ∨ ψ) ⇔ F ∈ ξ(X) and F ∈ ξ(Y ).

Again, if we work within the classical logic, using T ∈ ξ(ϕ) ⇔ F /∈ ξ(ϕ)
and F ∈ ξ(ϕ) ⇔ T /∈ ξ(ϕ), we obtain:

F ∈ ξ(ϕ ∨ ψ) ⇔ F ∈ ξ(X) and F ∈ ξ(Y ) (s1∗)

or

F ∈ ξ(X) and T /∈ ξ(Y ) (s2∗)

or

T /∈ ξ(X) and T /∈ ξ(Y ) (s3∗).

If we shift to TL1 and TL2, then (S5) is transformed into:

F ∈ ξ(ϕ ∨ ψ) ⇔ F ∈ ξ(X) and T /∈ ξ(Y ).

We can see that this condition coincides with (s2∗). From this, we can
conclude that ∨ is characterized by the classical falsity condition for
disjunction. Taking into account (S6) we can say that ∨ can be rightfully
treated as a disjunction. But again, ∨ is more than just a disjunction.
Besides (s1∗) and (s2∗) it allows to derive something more:

F ∈ ξ(ϕ ∨ ψ) ⇔ F ∈ ξ(X) and T /∈ ξ(Y )

⇒ F ∈ ξ(X) and F ∈ ξ(Y )

or

F ∈ ξ(X) and F /∈ ξ(Y ) (Lemma 1).

Analogously to the case of ∧, here we can see that besides the standard
falsity condition we obtain a non-standard one: F ∈ ξ(X) and F /∈ ξ(Y ).
But in contrast to the case of the non-standard truth condition for ∧,
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this condition seems to be not so extraordinary. Indeed, in virtue of
the fact that in Triadic logic non-falsity is not equivalent to truth, we
can rightfully (from the traditional point of view) assert the falsity of a
disjunction when one of its disjuncts is false, and another is not false.
This echoes the ‘infectious’ interpretation of truth value gaps and their
role in the epistemic status of disjunctive sentences (see [3, 22, 29, 30]
for the discussion on that topic).

3. Formalization

3.1. Natural deduction systems

In this section, we present natural deduction systems for TL1 and TL2.
We denote them as NTL1 and NTL2 , respectively.

Below is the list of the inference rules of NTL1 . The double line in
(R8)–(R10) says that the rules work in both directions.

(R1)
ϕ, ψ

ϕ ∧ ψ
(R2)

ϕ ∧ ψ

ϕ ∨ ψ
(R3)

ϕ ∧ ψ

ψ ∧ ϕ
(R4)

ϕ

ϕ ∧ (ψ ∨ ∼ψ)

(R5)
(ϕ ∨ ψ) ∧ χ

ϕ ∨ (ψ ∧ χ)
(R6)

ϕ

ϕ ∨ ψ
(R7)

ψ

ϕ ∨ ψ
(R8)

¬¬ϕ
ϕ

(R9)
¬(ϕ ∧ ψ)

¬ϕ ∨ ¬ψ
(R10)

¬(ϕ ∨ ψ)

¬ϕ ∧ ¬ψ
(R11)

ϕ,¬ϕ

ψ

(R12)
¬(ϕ ∨ ψ)

¬ϕ ∨ ¬ψ
(R13)

ϕ ∨ ψ, [ϕ]
χ
, [ψ]

χ

χ

In order to obtain NTL2 , it is sufficient to replace (R3), (R4), (R6), (R7),
(R11) and (R12) with:

(R14)
ϕ ∨ ψ

ψ ∨ ϕ
(R15)

ϕ ∧ ψ

ϕ
(R16)

ϕ ∧ ψ

ψ

(R17)
ϕ ∨ (ψ ∧ ¬ψ)

ϕ
(R18)

¬ϕ ∧ ¬ψ

¬(ϕ ∧ ψ)
(R19)

ϕ ∨ ¬ϕ

The notion of a proof (tree-shaped) is defined as usual for both systems.
Given a formula π, [π] denotes an assumption that should be discharged
after te application of the corresponding rule. It is worth noting that
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(R17) is derivable in NTL1 , while its dual counterpart (R4) is derivable
in NTL2 , as the following proof schemata show:

ϕ ∨ (ψ ∧ ¬ψ) [ϕ]
[ψ ∧ ¬ψ]

(R11)ϕ
(R13)ϕ

ϕ
(R19)

ψ ∨ ¬ψ
(R1)

ϕ ∧ (ψ ∨ ¬ψ)

It is worth observing that NTL1 and NTL2 have something in common
with the natural deduction systems of Ebbinghaus and Hałkowska logics
E3 and Z [see 25]. For example, the rule (R4) seems to be a variation of
the rules (∧I ′) and (∧I ′′) from [25].

3.2. Completeness and soundness

We use Henkin-style technique to prove the completeness of NTL1 and
NTL2 . Let us lay down some auxiliary notions.

Definition 6. Let Γ ⊆ F , and L be a logic. Then the set of formulae
Γ is a theory, only if it satisfies the following condition: if Γ ⊢L ϕ, then
ϕ ∈ Γ . Obviously, if ⊢L is a Tarskian-type consequence relation, then, in
virtue of its reflexivity, the converse also holds: if ϕ ∈ Γ , then Γ ⊢L ϕ.
A theory Γ is prime, only if for any ϕ, ψ ∈ F it holds that if ϕ∨ ψ ∈ Γ ,
then ϕ ∈ Γ or ψ ∈ Γ . A theory Γ is consistent, only if for any ϕ, ψ ∈ F
it holds that ϕ /∈ Γ or ¬ϕ /∈ Γ . A theory Γ is decisive, only if for any
ϕ, ψ ∈ F it holds that ϕ ∈ Γ or ¬ϕ ∈ Γ .

We define the notion of canonical valuation for TL1. For any con-
sistent prime theory T , let ξT be a TL1-canonical valuation, which is
defined by means of the following clauses (for any p ∈ P):

T ∈ ξT (p) ⇔ p ∈ T , F ∈ ξT (p) ⇔ ¬p ∈ T .

Now we prove the following lemma.

Lemma 3. TL1-canonical valuation ξT can be extended to F .

Proof. By induction on the complexity of a formula ϕ. The case where
ϕ = ¬π is proven in a standard way, using (R9). We consider the case
where ϕ = π1 ∧ π2. Suppose that T ∈ ξT (π1 ∧ π2). By Definition 4, we
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obtain two sub-cases (a) T ∈ ξT (π1) and F /∈ ξT (π2), or (b) T ∈ ξT (π2)
and F /∈ ξT (π1). The proofs of both sub-cases are analogous, so we
consider only (a). By the inductive hypothesis, we have π1 ∈ T and
¬π2 /∈ T . Suppose that π2 ∧ π1 /∈ T . Then, using the primeness of T ,
we have ¬π2 ∨ (π2 ∧ π1) /∈ T . Using the deductive closure of T and
subsequently applying (R5), (R3), and (R4), we obtain π1 /∈ T , thereby
getting a contradiction. Thus, π2 ∧ π1 ∈ T . Again, using the deductive
closure of T and (R3), we obtain the desired result π1 ∧ π2 ∈ T .

Now suppose that π1 ∧ π2 ∈ T . Since T is consistent, we have
∼(π1 ∧ π2) /∈ T . Using the deductive closure of T and subsequently
applying (R9), (R6), and (R7), we obtain ¬π1 /∈ T and ¬π2 /∈ T . From
this, by the inductive hypothesis, we have F /∈ ξT (π1) and F /∈ ξT (π2).
It remains to show that either T ∈ ξT (π1), or T ∈ ξT (π2). In this case,
using Definition 4, we’d obtain T ∈ ξT (π1∧π2). Suppose that π1 /∈ T and
π2 /∈ T . Then, using the primeness of T , we have π1 ∨ π2 /∈ T . But this,
in virtue of the deductive closure of T and (R2), leads to π1 ∧ π2 /∈ T ,
thereby producing a contradiction with the initial assumption. Then
either π1 ∈ T or π2 ∈ T . By the inductive hypothesis, we get T ∈ ξT (π1)
or T ∈ ξT (π2), which leads us to the desired result. Thus, we have shown
that T ∈ ξT (π1 ∧ π2) ⇔ π1 ∧ π2 ∈ T .

The statement F ∈ ξT (π1 ∧ π2) ⇔ ¬(π1 ∧ π2) ∈ T is proven in a
standard way, using (R9), (R6), (R7), and primeness of T .

Let us consider the case ϕ = π1 ∨ π2. Analogously to the previous
case, the statement T ∈ ξT (π1 ∨ π2) ⇔ π1 ∨ π2 ∈ T can be proven in a
standard way, using the primeness of T , (R6), and (R7). In fact, this is
possible because of the usual truth condition for ∨ and falsity condition
for ∧.

Suppose that F ∈ ξT (π1∨π2). By Definition 4 we have two sub-cases:
(a) F ∈ ξT (π1) and T /∈ ξT (π2), or (b) F ∈ ξT (π2) and T /∈ ξT (π1).
The proofs of these cases are analogous, so we, again, consider only one
of them. Let (b) F ∈ ξT (π2) and T /∈ ξT (π1). Then, by the inductive
hypothesis, we obtain ¬π2 ∈ T and π1 /∈ T . Suppose that ¬(π1∨π2) /∈ T .
Then, using the deductive closure of T and (R10), we have ¬π1∧¬π2 /∈ T .
Due to the primeness of T it holds that π1 ∨ (¬π1 ∧ ¬π2) /∈ T . Using
the deductive closure of T and subsequently applying (R5), (R3), and
(R4), we obtain ¬π2 /∈ T , thereby getting a contradiction. Therefore,
¬(π1 ∨ π2) ∈ T .

Suppose that ¬(π1 ∨ π2) ∈ T . Due to the consistency of T we have
π1 ∨ π2 /∈ T . Using the deductive closure of T and subsequently apply-
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ing (R6) and (R7), we obtain π1 /∈ T and π2 /∈ T . By the inductive
hypothesis, we have T /∈ ξT (π1) and T /∈ ξT (π2). It remains to show
that F ∈ ξT (π1) or F ∈ ξT (π2), because in this case, using Definition 4,
we’d obtain F ∈ ξT (π1 ∨π2). Suppose that ¬π1 /∈ T and ¬π2 /∈ T . Using
the primeness of T and (R12), we obtain ¬(π1 ∨π2) /∈ T . Contradiction.
Thus, ¬π1 ∈ T or ¬π2 ∈ T , which, by the inductive hypothesis, gives
F ∈ ξT (π1) or F ∈ ξT (π2). Therefore, we have proven the statement
F ∈ ξT (π1 ∨ π2) ⇔ ¬(π1 ∨ π2) ∈ T .

An analogous lemma is needed for TL2. We define a canonical valua-
tion θT over decisive theories instead of consistent ones. For any decisive
prime theory T , let θT be a TL2-canonical valuation, which is defined
by means of the following clauses (for any p ∈ P):

T /∈ θT (p) ⇔ ¬p ∈ T , F /∈ θT (p) ⇔ p ∈ T .

Now we extend this definition.

Lemma 4. TL2-canonical valuation θT can be extended to F .

Proof. Analogous to the proof of Lemma 3. The peculiarity consists
in that this particular proof requires the usage of inference rules which
are characteristic of NTL2 . The case where ϕ = ¬π is proven as usual,
using (R9). Consider the case ϕ = π1 ∧π2. Suppose that T /∈ θ(π1 ∧π2).
By Definition 4 we have (T /∈ θT (π1) or F ∈ θT (π2)) and (T /∈ θT (π2)
or F ∈ θT (π1)). We have four sub-cases. We consider only three of
them because the remaining one can be proven analogously. Let (a)
T /∈ θT (π1) and T /∈ θT (π2). By the inductive hypothesis, we have
¬π1 ∈ T and ¬π2 ∈ T . From this, using the deductive closure of T ,
(R1), and (R18), we obtain ¬(π1 ∧ π2) ∈ T . Let (b) T /∈ θT (π1) and
F ∈ θT (π1). By the inductive hypothesis, we obtain ¬π1 ∈ T and
π1 /∈ T . Suppose that ¬(π1 ∧π2) /∈ T . From this, since T is decisive, we
have π1 ∧ π2 ∈ T . Further, using the deductive closure of T and (R15),
we obtain π1 ∈ T , thereby getting a contradiction. Thus, ¬(π1∧π2) ∈ T .
Let (c) F ∈ θT (π1) and F ∈ θT (π2). By the inductive hypothesis, we
have π1 /∈ T and π2 /∈ T . Since T is prime we have π1 ∨ π2 /∈ T . From
this, using the deductive closure, of T and (R2), we obtain π1 ∧ π2 /∈ T .
But then, by the decisiveness of T , we obtain ¬(π1 ∧ π2) ∈ T . Thus, we
have proven the statement T /∈ θT (π1 ∧ π2) ⇒ ¬(π1 ∧ π2) ∈ T .

Now we prove ¬(π1 ∧ π2) ∈ T ⇒ T /∈ θT (π1 ∧ π2). We argue by
contraposition; that is, it is our goal to prove the statement T ∈ θT (π1 ∧
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π2) ⇒ ¬(π1 ∧ π2) /∈ T . Suppose T ∈ θT (π1 ∧ π2). By Definition 4
we obtain (a) T ∈ θT (π1) and F /∈ θT (π2) or (b) T ∈ θT (π2) and
F /∈ θT (π1). The proofs of both cases are identical, so we consider only
(a). Let T ∈ θT (π1) and F /∈ θT (π2). By the inductive hypothesis, we
have ¬π1 /∈ T and π2 ∈ T . Suppose that ¬(π1 ∧ π2) ∈ T . Then, using
π2 ∈ T , the deductive closure of T and subsequently applying (R9),
(R14), (R1), (R15), (R16), (R1), (R5), and (R17), we have ¬π1 ∈ T .
Contradiction. Thus, ¬(π1 ∧ π2) /∈ T .

The statement F /∈ θT (π1 ∧π2) ⇔ π1 ∧π2 ∈ T is proven in a standard
way, using (R1), (R15) and (R16).

Consider the case ϕ = π1 ∨ π2. The statement T /∈ θT (π1 ∨ π2) ⇔
¬(π1 ∨ π2) ∈ T is also proven in the standard way, suing (R10), (R15),
and (R16).

Let us prove the statement F /∈ θT (π1 ∨ π2) ⇒ π1 ∨ π2 ∈ T . Let
F /∈ θT (π1 ∨ π2). By Definition 4 we obtain (F /∈ θT (π1) or T ∈ θT (π2))
and (F /∈ θT (π2) or T ∈ θT (π1)). We have four sub-cases. Let (a)
F /∈ θT (π1) and F /∈ θT (π2). By the inductive hypothesis, we have
π1 ∈ T and π2 ∈ T . Using the deductive closure of T , (R1) and (R2), we
have π1 ∨π2 ∈ T . Let (b) F /∈ θT (π1) and T ∈ θT (π1). By the inductive
hypothesis, we have π1 ∈ T and ¬π1 /∈ T . Suppose that π1 ∨ π2 /∈ T .
Then, using the fact that T is decisive, we obtain ¬(π1 ∨ π2) ∈ T .
From this, using the deductive closure of T , (R10) and (R15), we obtain
¬π1 ∈ T . Contradiction. Thus, π1 ∨ π2 ∈ T . Let (c) T ∈ θT (π1)
and T ∈ θT (π2). By the inductive hypothesis, we obtain ¬π1 /∈ T and
¬π2 /∈ T . Since T is prime we have ¬π1 ∨ ¬π2 /∈ T . Since T is decisive
we have ¬(¬π1 ∨ ¬π2) ∈ T . From this, using the deductive closure of T
and subsequently applying (R10), (R15), (R16), (R8), (R1), and (R2),
we obtain π1 ∨ π2 ∈ T . The case where T ∈ θT (π2) and F /∈ θT (π2) can
be proven analogously to (b).

Now we prove the statement π1 ∨ π2 ∈ T ⇒ F /∈ θT (π1 ∨ π2). Again,
we argue by contraposition; that is, our goal is to prove F ∈ θT (π1 ∨
π2) ⇒ π1 ∨ π2 /∈ T . Let F ∈ θT (π1 ∨ π2). By Definition 4 we have (a)
F ∈ θT (π1) and T /∈ θT (π2) or (b) F ∈ θT (π2) and T /∈ θT (π1). Both
cases are proven in analogous manner, so as an example we consider only
(b). Let F ∈ θT (π2) and T /∈ θT (π1). By the inductive hypothesis, we
obtain π2 /∈ T and ¬π1 ∈ T . Suppose that π1 ∨ π2 ∈ T . Then, using
¬π1 ∈ T , the deductive closure of T and subsequently applying (R14),
(R1), (R5), and (R17), we obtain π2 ∈ T . Contradiction. Therefore,
π1 ∨ π2 /∈ T .
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The next step is to prove Lindenbaum’s lemma.

Lemma 5. For any Γ ∪ {ϕ} ⊆ F :

1. if Γ 0NTL1
ϕ, then there exists a consistent prime theory Γ

′

, such

that Γ ⊆ Γ
′

and Γ
′

0NTL1
ϕ.

2. if Γ 0NTL2
ϕ, then there exists a decisive prime theory Γ

′

, such that

Γ ⊆ Γ
′

and Γ
′

0NTL2
ϕ.

Proof. The proofs of both (1) and (2) are standard and, in fact, coin-
cide with the ones for K3 and LP, respectively. The reader may consult,
for example, [26] for details.

Using Lemma 3, Lemma 4 and Lemma 5 we can prove the following
completeness theorem.

Theorem 2. Let x ∈ {TL1,TL2}. For any Γ ∪ {ϕ} ⊆ F :

Γ �x ϕ ⇒ Γ ⊢Nx
ϕ.

Proof. As an example we consider the case of x = TL2. Let Γ 0NTL2
ϕ.

By Lemma 5 there exists a decisive prime theory Γ ′, such that Γ ⊆ Γ ′

and Γ ′
0NTL2

ϕ. Due to the reflexivity of ⊢NTL2
we get ϕ /∈ Γ ′. By

Lemma 4 we obtain that there exists a TL2-canonical valuation θΓ ′ such
that F /∈ θΓ ′(ψ) (for every ψ ∈ Γ ′) and F ∈ θΓ ′(ϕ). Then, by Definition
5, we obtain Γ ′

2TL2 ϕ. Since Γ ⊆ Γ ′ we have Γ 2TL2 ϕ, by the
monotonicity of �TL2 .

As to the soundness theorem, it can be proven in a standard manner
by checking that all inference rules are sound with respect to Definition 5.

Theorem 3. Let x ∈ {TL1,TL2}. For any Γ ∪ {ϕ} ⊆ F :

Γ ⊢Nx
ϕ ⇒ Γ �x ϕ.

In virtue of Theorem 1 we obtain the following corollary.

Corollary 1. For any Γ ∪ {ϕ} ⊆ F :

Γ �M1
ϕ ⇔ Γ ⊢NTL1

ϕ and Γ �M2 ϕ ⇔ Γ ⊢NTL2
ϕ.
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4. Cooper’s Logic of Ordinary Discourse
as a connexive extension of TL2

In 1968 Cooper presented the ‘Logic of Ordinary Discourse’ (henceforth,
OL) [9]. Surprisingly, this logic can be seen as an implicative expansion
of TL2. Consider the propositional language L→, which is obtained
through the expansion of L by →. Throughout this section, we will use
F to denote the set of all formulae of L→.

Definition 7. An OL-matrix M3 for L→ is obtained from TL2-matrix
M2 by adding the function f→.

f→ V L F

V V L F

L V L F

F L L L

An OL-valuation in an OL-matrix M3 is a function v : F → VOL that
satisfies the following condition for every n-ary connective ⋄ of L→ and
ϕ1, . . . , ϕn ∈ F :

v(⋄(ϕ1, . . . , ϕn)) = f⋄(v(ϕ1), . . . , v(ϕn)).

Remark 5. We use V, L and F so as to maintain a unified notation. Of
course, Cooper himself used different truth values. Nevertheless, they
rather conforming Peirce’s interpretation: T (‘true’), F (‘false’) and G
(‘gap’) instead of V, F and L, respectively.

The consequence relation in M3 is defined according to (C2) from
Definition 3. The notion of validity is defined in a standard way: for any
ϕ ∈ F , ϕ is called valid in M3, only if there is no such OL-valuation v
in M3, that v(ϕ) = F.

In order to obtain a generalized truth values semantics for OL, it is
sufficient to enrich Definition 4 with the following semantic conditions
for implication.

(S7) T ∈ v(ϕ → ψ) ⇔ if T ∈ v(ϕ) then T ∈ v(ψ),
(S8) F ∈ v(ϕ → ψ) ⇔ if T ∈ v(ϕ) then F ∈ v(ψ).

(S7) represents the traditional truth-condition for implication, whereas
(S8) represents the falsity condition for connexive implication in the style
of Wansing [34]. Let us denote the resulting model by MOL. The defi-
nition of the consequence relation remains unchanged (see Definition 5),
we only add the notion of validity with respect to the generalized truth
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values models. A formula ϕ is valid in a generalized truth values model
MOL, only if F /∈ ξ(ϕ) holds for every valuation ξ in MOL. Let us use
�OL to denote the corresponding consequence relation. It can be easily
proved, using an argument analogous to Lemma 2 and Theorem 1, that
the two semantics for OL just defined are equivalent; we leave the details
to the interested reader.

Cooper’s logic is remarkable since from one side it is linked with
Peirce’s Φ and Ψ operations, and from the other with connexive logics,
a family of systems which is enjoying a resurgence of popularity in the
recent literature. As far as we know, Cooper himself was not aware of
any of these connections.

The reader familiar with the state of art in the field of connexive
logics may have noticed that the definition of f→ coincides with the im-
plication of Cantwell’s logic CN from [6]. It also occurred in Olkhovikov’s
logic LImp from [19, 20] and Omori’s dialetheic version of the logic of
paradox dLP from [21]. This definition, as is well known, (in the presence
of standardly defined negation) guarantees the validity of characteristic
principles of connexive implication:

(ϕ → ψ) → ¬(ϕ → ¬ψ), (Boethius Thesis I)

(ϕ → ¬ψ) → ¬(ϕ → ψ), (Boethius Thesis II)

¬(ϕ → ¬ϕ), (Aristotle Thesis I)

¬(¬ϕ → ϕ). (Aristotle Thesis II)

Despite the fact that Olkhovikov was concerned with f→ much earlier
than Cantwell, the discovery of this operation is usually associated with
the latter. Notice, however, that Cooper’s paper was published forty
years earlier than Cantwell’s one. It is also worth mentioning that
Cooper’s paper, though written independently, was published around
the same time when the issues concerning connexive logics had been
under active discussion through the works of McCall [17] and Angell [2].
Moreover, in [9] Cooper cited his Ph.D. dissertation [8], written in 1964,
which is two years earlier than McCall’s [17]. Cooper was, perhaps, the
first to introduce explicitly f→, and this fact seems to be little known
since we cannot find any references to it either in the recently revised
entry on connexive logic [33] at Stanford Encyclopedia of Philosophy or
in recently published overviews from the special issues on connexive logic
[35] and [23]. At the same time, however, the link between Cooper’s logic
and Peirce’s Φ and Ψ was well discussed for example in [13].
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A natural deduction system for OL (we call it NOL) can be obtained
from NTL2 by adding the following rules:

(R20)
ϕ → ψ, ϕ

ψ
(R21)

¬(ϕ → ψ), ϕ

¬ψ

[ϕ]
.
.
.
ψ

(R22)
ϕ → ψ

[ϕ]
.
.
.

¬ψ
(R23)

¬(ϕ → ψ)

Boethius Theses andAristotle Theses can be easily proven in NOL.
We show some examples below:

[ϕ → ψ] [ϕ]
(R20)

ψ
(R8)

¬¬ψ
(R23)

¬(ϕ → ¬ψ)
(R22)

(ϕ → ψ) → ¬(ϕ → ¬ψ)

[¬ϕ]
(R8)¬¬¬ϕ
(R8)¬ϕ

(R23)
¬(¬ϕ → ϕ)

[ϕ]
(R8)¬¬ϕ

(R23)
¬(ϕ → ¬ϕ)

Remark 6. A simple natural deduction system NCN, formalizing Cant-
well’s CN, can be obtained from NOL by replacing (R2), (R5), (R14),
(R17), (R18) with (R6) and (R7). Correspondingly, a natural deduction
system NMC, formalizing the ‘material connexive logic’ MC [33], can be
obtained from NCN by dropping (R19).

In order to prove the adequacy of NOL with respect to the generalized
truth values semantics, we, first, run through the completeness theorem.
It is sufficient to take care of an additional case which arises in the
context of Lemma 4. In turn, Lemma 5 remains unchanged.

Additional Case of Lemma 4. Recall that the proof of Lemma 4 is by
induction on the complexity of a formula ϕ. So, if we are working within
L→, then we need to consider the remaining case, namely ϕ = π1 → π2.
Let us prove the statement ¬(π1 → π2) /∈ T ⇒ T ∈ θT (π1 → π2).
Suppose that ¬(π1 → π2) /∈ T and T /∈ θT (π1 → π2). Since T is
decisive we obtain π1 → π2 ∈ T . By (S7) we have T ∈ θT (π1) and
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T /∈ θT (π2). Using the inductive hypothesis, we obtain ¬π1 /∈ T and
¬π2 ∈ T . From ¬π1 /∈ T , by the decisiveness of T , follows π1 ∈ T .
Moreover, using the deductive closure of T , ¬π1 /∈ T and (R21), we get
π1 /∈ T or ¬(π1 → ¬π1) /∈ T . The first disjunct leads to contradiction,
hence ¬(π1 → ¬π1) /∈ T . From this, due to (R23), we have π1 0

¬¬π1, thereby getting a contradiction, because T is closed under (R8).
Thus, we have proven the statement ¬(π1 → π2) /∈ T ⇒ T ∈ θT (π1 →
π2), which, by contraposition, gives us the desired result. Suppose that
¬(π1 → π2) ∈ T . Our goal is to show T /∈ θT (π1 → π2). Suppose
that T ∈ θT (π1 → π2). Obviously due to the impossibility of gluts we
obtain also F /∈ θT (π1 → π2). From T ∈ θT (π1 → π2), using (S7),
we have T /∈ θT (π1) or T ∈ θT (π2). From F /∈ θT (π1 → π2), using
(S8), we have T ∈ θT (π1) and F /∈ θT (π2). Since T /∈ θT (π1) leads
to contradiction we are working with T ∈ θT (π2). From T ∈ θT (π1),
by the inductive hypothesis, we have ¬π1 /∈ T . From T ∈ θT (π2), by
the inductive hypothesis, we have ¬π2 /∈ T . From the latter, using
the deductive closure of T and (R21), we obtain ¬(π1 → π2) /∈ T or
π1 /∈ T . Both cases lead to contradiction: the first contradicts the initial
assumption, the second contradicts the fact that T is decisive. Therefore,
T /∈ θT (π1 → π2).

Suppose that F /∈ θT (π1 → π2). From this, using (S8), we have
T ∈ θT (π1) and F /∈ θT (π2). By the inductive hypothesis we have
¬π1 /∈ T and π2 ∈ T . Since T is decisive we obtain π1 ∈ T . Hence,
using the deductive closure of T and (R22), we obtain π1 → π2 ∈ T . Let
us prove the converse. Suppose that π1 → π2 ∈ T and F ∈ θT (π1 → π2).
Due to the impossibility of gluts, we have T /∈ θT (π1 → π2), from which,
by (S7), we obtain T ∈ θT (π1) and T /∈ θT (π2). Using the inductive
hypothesis, we have ¬π1 /∈ T and ¬π2 ∈ T . In turn, from F ∈ θT (π1 →
π2), by (S8), we have T /∈ θT (π1) or F ∈ θT (π2). Obviously, the first
sub-case leads to contradiction, hence we have F ∈ θT (π2) and, by the
inductive hypothesis, π2 /∈ T . From this, using the deductive closure of
T and (R20), we obtain π1 → π2 /∈ T or π1 /∈ T . Both cases lead to
contradiction: the first contradicts the initial assumption, whereas the
second contradicts fact that T is decisive.

Thus, holding in mind this case and using Lemma 5, the completeness
result can be easily proven.

Theorem 4. For any Γ ∪ {ϕ} ⊆ F : Γ �OL ϕ ⇒ Γ ⊢NOL ϕ.
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The soundness part is straightforward as usual.

Theorem 5. For any Γ ∪ {ϕ} ⊆ F : Γ ⊢NOL ϕ ⇒ Γ �OL ϕ.

From Theorem 4 and Theorem 5 we obtain the corollary.

Corollary 2. For any Γ ∪ {ϕ} ⊆ F : Γ �OL ϕ ⇔ Γ ⊢NOL ϕ.

5. Concluding remarks

In this work, we were concerned with two ways of reconstructing Peirce’s
Triadic Logic. We obtained two systems, TL1 and TL2, which can be
classified as members of the first-degree entailment family. Both logics
are equipped with two kinds of semantics: matrix and generalized truth
values ones. The characteristic feature of the former is that it contains
the mysterious binary operations Φ and Ψ from Peirce’s manuscript,
which we used to interpret disjunction and conjunction, respectively.
The point of introducing a semantics of the latter kind is in that it allows
us to give a positive answer to the main question of our paper, namely:
is it possible to claim that Peirce considered Φ and Ψ as candidates for
disjunction and conjunction, respectively? As it was shown in Section
2.2, the semantic conditions for ∧ and ∨ within both TL1 and TL2 allow
the derivation of conditions which are consistent with the traditional
view of the truth and falsity conditions for conjunction and disjunction.

Besides the main question, we obtained some interesting technical
results. We equipped TL1 and TL2 with sound and complete natural
deduction calculi. It turned out that TL2 may serve as a convenient
base for obtaining a connexive extension, coinciding with the little-known
three valued logic OL by Cooper. The resulting system can be seen as a
weakening of Cantwell’s logic CN. We presented a sound and complete
natural deduction calculus for OL, from which it is also possible to obtain
simple natural deduction calculi for CN and MC (see Remark 6).

As to the future work, we find it promising to investigate TL1, TL2

and their possible generalizations in relation to the family of infectious
logics. As we remarked in Section 2.1, some distinctive features of TL1

and TL2 are related to the failure of Addition and Simplification,
which, in turn, is also essential for many infectious logics. Thus, the
issues concerning the characterization of logical consequence, epistemic
interpretations of truth value gaps, informativeness of disjunction and
conjunction are of great interest here.
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Last but not least, it would be interesting to explore an application
of Peirce’s diagrammatic (graphical) technique to OL. It is known that
Peirce’s thoughts on existential graphs were very much interspersed with
those pages that are devoted to the triadic logic in his ‘Logical Notebook’
and written in the very same weeks and days. Thus, this would be an
interesting problem for a separate and detailed study.
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