
Logic and Logical Philosophy
Volume 30 (2021), 227–280

DOI: 10.12775/LLP.2020.021

Oliver Tatton-Brown

Semantics and Completeness for Schematic Logic

Abstract. This paper gives a semantics for schematic logic, proving sound-
ness and completeness. The argument for soundness is carried out in onto-
logically innocent fashion, relying only on the existence of formulae which
are actually written down in the course of a derivation in the logic. This
makes the logic available to a nominalist, even a nominalist who does not
wish to rely on modal notions, and who accepts the possibility that the
universe may in fact be finite.

Keywords: logic; nominalist; schematic logic; semantics; completeness

1. Introduction

Physics still gives us no guarantee that the universe is infinite. We do not
know whether the universe will last indefinitely, and the assumption that
spacetime is continuous is a useful one but not one we can be sure is true
(see Maddy, 1997, pp. 146–152, for a careful discussion). This presents a
problem for a nominalist one who does not believe in abstract entities.
As discussed in (Burgess and Rosen, 1997, p. 83) there are two ways
nominalists normally respond to this: to either resort to talk of what
is possible, or to bank on the assumption that the universe is in fact
infinite in some respect (such as due to space being continuous).

Each of these options has its downsides. Regarding the first option,
there are similar controversies around the status of what isn’t but could
be as around abstract objects, in particular concerning how we can know
about what could be if it is never to be found in our universe. Regarding
the second, to base one’s philosophy on a physical hypothesis which

Received January 14, 2020. Revised October 28, 2020. Published online November 3, 2020

© 2020 by Nicolaus Copernicus University in Toruń

http://dx.doi.org/10.12775/LLP.2020.021

228 Oliver Tatton-Brown

may (not implausibly) turn out to be false would be better avoided if
possible.1

This paper avoids the dilemma for the nominalist by investigating
how far one can go without taking either option: by accepting that our
concrete world may be all there is, and that it may be finite. In this we
follow in the footsteps of the original (modern) nominalists Quine and
Goodman. As Quine says:

[. . .] long ago, Goodman and I got what we could in the way of mathe-
matics, or more directly metamathematics, on the basis of a nominalist
ontology and without assuming an infinite universe. We could not get
enough to satisfy us. But we would not for a moment have considered
enlisting the aid of modalities. The cure would in our view have been
much worse than the disease. (Quine, 1999, p. 397)

We will see that even on this restrictive possibility, we can justify a
certain fragment of second order logic known as schematic logic. This is
a fragment of predicative second order logic which in effect allows one to
make predicative Π1

1 statements (but not Σ1
1 statements or Π1

n statements
for n > 1). We give an ontologically innocent semantics for the logic, and
prove a completeness theorem the first time a completeness theorem
has been proved for it, to the author’s knowledge.

It would not be difficult to give a substitutional semantics for the
logic it is a fragment of predicative second order logic. However that
would require belief in an infinity of linguistic entities to serve as sub-
stitutions. Here we show that we can do one better, and use the logic
while only relying on the existence of formulae that we actually write
down (in the course of a derivation).

The semantics is inspired by remarks of Lavine’s (inspired in turn
by remarks of Hilbert: see Lavine, 1998, pp. 189–203) about the use
of variables as placeholders, which can later be taken to mean other
expressions. As he says for the case of schematic arithmetic,

If ‘c’ stands for a numeral, then, given a proof that 1 + c = c + 1,
one does not infer 1 + 3 = 3 + 1 by substituting ‘3’ for ‘c’. The letter
‘c’ is not a variable. What one does instead is specify that c is the

1 This is not at odds with the strategy of for instance (Field, 1980). When one
is trying to nominalise a scientific theory that involves infinitely many objects, it is
reasonable to give a nominalist alternative that also involves infinitely many objects.
But it is preferable not to rest one’s philosophy on the assumption that some such
theory (involving infinitely many objects) is correct.

Semantics and completeness for schematic logic 229

numeral ‘3’. That amounts to substituting ‘3’ for ‘c’ in the entire proof
of 1 + c = c+ 1, which results in a proof of 1 + 3 = 3 + 1 in which ‘c’
does not occur.

However Lavine never went into the details of how this connects to and
justifies the formalism, for instance why one would be able to deduce
multiple different substitution instances of a statement such as 1 + c =
c+1. Additionally his approach does not quite work for the second order
case, where one substitutes a formula ψ(x1, . . . , xn) for occurrences of a
placeholder P : there may be collisions between quantifiers and variables
in ψ and in any formula containing P . Instead, we work out a semantics
based on taking a placeholder P to mean a given open formula. We
prove a soundness and completeness theorem for the logic in terms of
this semantics. Though we address the second order case, one could give
a similar (and much simpler) account of the use of first order schematic
variables along the lines given here.

This schematic logic is not the only logic available to a nominalist.
They may accept plural logic, as using the quantifier “there are” can
be argued not to rely on any abstract entities, or indeed any entities
beyond the objects the first order variables range over. This allows an
interpretation of monadic second order logic, but does not allow the use
of second order variables of arity 2 or higher, unless a pairing function
is available; and if the universe is finite then no such pairing function
can exist. To use predicative second order logic, based on a substitu-
tional interpretation, would require there to exist an infinity of linguistic
entities, which is the kind of assumption we wish to avoid.

Thus the availability of schematic logic is an advance for a nomi-
nalist, allowing them an otherwise unavailable portion of second order
reasoning. If they also accept plural logic, then they can combine the
two, allowing them to make statements which in effect have arbitrary
complexity in terms of first order and monadic second order quantifiers,
and a string of leading universal second order quantifiers for variables of
arity at least 2.

The semantics and completeness theorem also has implications be-
yond nominalism. One is that since schematic logic is ontologically in-
nocent it becomes available as an arena for formalizing mathematics
at minimal cost, and does a better job of formalizing some aspects of
mathematical practice than first order logic does. When working in first
order logic one has to regard certain statements as axiom schemes or

230 Oliver Tatton-Brown

theorem schemes; so in fact one is not working in first order logic at all,
but in a metatheory for it (where one can make statements about these
infinite lists of axioms or theorems). In schematic logic these statements
are handled natively as axioms and theorems, as they should be. Fur-
thermore since the logic is ontologically innocent and has a complete
semantics, it avoids the drawbacks of second order logic as a candidate
setting for mathematics. Its credentials in this regard are discussed in
Section 9.

Also, a number of authors have taken schematic logic to be use-
ful when discussing issues of determinacy: Lavine (1998, pp. 224–240)
advocates a schematic second order set theory as a foundation for math-
ematics, which (he argues) avoids the problem of scepticism about non
standard models; McGee (1997, pp. 56–62) gives another argument using
schematic logic which aims to rule out non standard models of arithmetic,
and of set theory; and Parsons (2007, pp. 290–293) discusses unpublished
work of Lavine along similar lines for the case of arithmetic. In all these
cases the arguments would be aided by an interpretation of schematic
logic which does not rely on substitution instances in some language,
since the point of the schematic variables is to capture a kind of open-
endedness, not limited to any particular language. The interpretation
of schematic logic given here naturally fits with these ideas of open-
endedness, and the entailment relation for the logic (with respect to
which it is complete) has this open-endedness built in. These points are
discussed in Section 10.

2. Motivating idea

Consider the following argument.

Suppose that everything which is austerulous is boscaresque.
Suppose also that everything which is boscaresque is caprizant.
Then if something is austerulous, it is boscaresque; and since it is
boscaresque, it is caprizant. Thus everything which is austerulous
is caprizant. In conclusion, if everything which is austerulous is
boscaresque, and everything which is boscaresque is caprizant,
then everything which is austerulous is caprizant.

If the words involved are meaningful, this is a valid argument, and to
recognise it as valid one does not need to know what “austerulous”,
“boscaresque” and “caprizant” mean. If we made the argument to some-

Semantics and completeness for schematic logic 231

one, and they were confused and asked for the meanings of these terms,
we could reply “It doesn’t matter. They are adjectives” (and be justified
in doing so).

With the great majority of words we use, there will be subtleties to
their meaning that we do not grasp. Even an apparently straightforward
word like “blue” will have a much more nuanced meaning to someone
with a well developed understanding of optics and the workings of vision
in the brain than to most people. That does not make the rest of us any
less able to use the word as we do. To use it in any particular case, we
need only know enough about its meaning to use it correctly in that case.
In some cases, like in the above argument, the knowledge required re-
duces to a bare minimum: their grammatical category. Additional infor-
mation might be interesting, and might make us better able to appreciate
and use the conclusion, but is not required to follow the argument itself.

Thus we can say the following.

Suppose that everything which is A is B. Suppose also that
everything which is B is C. Then if something is A, it is B;
and since it is B, it is C. Thus everything which is A is C. In
conclusion, if everything which is A is B, and everything which is
B is C, then everything which is A is C. Oh, and by the way, by
A I mean “scary”, by B I mean “in Australia”, and by C I mean
“far away”.

This is a valid argument. Nothing is lost by using A, B and C as ad-
jectives meaning certain longer adjectives. One can follow the argument
as it is given, understanding that A, B and C are adjectives from the
context, and not needing to know their meaning beyond that: then, once
their meaning is given, we can understand the conclusion more fully.

We could even write down the main body of the argument

Suppose that everything which is A is B. Suppose also that
everything which is B is C. Then if something is A, it is B;
and since it is B, it is C. Thus everything which is A is C. In
conclusion, if everything which is A is B, and everything which
is B is C, then everything which is A is C.

one day on a piece of paper, and leave it there; then on a later day, even
on a different piece of paper, write down

Oh, and by the way, by A I mean “scary”, by B I mean “in
Australia”, and by C I mean “far away”.

232 Oliver Tatton-Brown

Thus we would be able to conclude that

If everything which is scary is in Australia, and everything which
is in Australia is far away, then everything which is scary is far
away.

We might subsequently want to reach a similar conclusion but with
different A, B and C. We could at this point find our original piece of
paper with the main body of the argument on it and photocopy it; then
write

Oh, and by the way, by A I mean “gold plated”, by B I mean
“overpriced”, and by C I mean “desirable”.

Thus we could conclude that

If everything which is gold plated is overpriced, and everything
which is overpriced is desirable, then everything which is gold
plated is desirable.

Of course the photocopying of the original piece of paper is of no epis-
temic significance. We could with equal validity, instead of photocopying
it, simply say

Earlier I wrote down an argument using A, B and C, and later
decided that by A I meant “scary”, by B I meant “in Australia”
and by C I meant “far away”. However that is no longer the case:
now by A I mean “gold plated”, by B I mean “overpriced” and
by C I mean “desirable”.

Thus we could again conclude that

If everything which is gold plated is overpriced, and everything
which is overpriced is desirable, then everything which is gold
plated is desirable.

Having thus drawn a second conclusion from the main argument,
by reinterpreting A, B, and C, we need not see the original conclusion
(concerning scary things and Australia) as being in any way undermined.
Who is to say that we cannot make two different arguments at two
different times, the first meaning one thing by A, B and C and the
second meaning another, with these two arguments just happening to
employ a common sequence of symbols (the main body of the argument)
previously written down on a piece of paper?

Semantics and completeness for schematic logic 233

Note that in carrying out an argument like this there is no mention of
thinking in advance of some particular totality of things for A, B and C
to range over; we simply write down an argument in which they appear,
and later decide to regard them as meaning certain things.

The ability to make an argument employing certain placeholders
like A, B and C in the above and later decide to mean certain things by
them, is the basic idea motivating schematic logic here. Schematic logic
is first order logic supplemented by placeholder variables P , Q, . . . , each
of fixed arity:2 the arity is the number of terms which go together with
a placeholder variable to give an atomic formula, and we can signify that
P has arity n by writing Pn if the context does not make this clear. The
distinctive feature of the logic is the substitution rule for the placeholder
variables. This allows us to deduce φ[ψ(x1, . . . , xn)|Pn] from φ, where
φ[ψ(x1, . . . , xn)|P] is φ but with P (x1, . . . , xn) “replaced by the formula
ψ(x1, . . . , xn)”. In other words, each occurrence of P (t1, . . . , tn) in φ

(with t1, . . . , tn terms) is replaced by ψ[t1|x1, . . . , tn|xn].

The idea is that when we carry out a suitable derivation in schematic
logic, we can take ourselves to be implicitly arguing in the fashion de-
scribed above. We use placeholder letters P , Q and so on which are
initially uninterpreted, and are then free at a later point in the deriva-
tion to take the letter P to have a particular meaning for instance
that P (x1, . . . , xn) says that ψ(x1, . . . , xn), which justifies us in deduc-
ing φ[ψ(x1, . . . , xn)|P] from φ. In line with the above discussion we are
still free to subsequently take P to mean something else; so further down
in the derivation we could take P (y1, . . . , yn) to say that θ(y1, . . . , yn),
and deduce φ[θ(y1, . . . , yn)|P] as another consequence.

As we go we will formalize this and see how it leads to a natural
justification for the use of schematic logic.

Before proceeding we will quickly address one worry about the idea
of arguing using placeholders with unspecified meanings, and then stip-
ulating meanings for them. The worry is that some meanings that the
placeholders could be given might lead to invalid conclusions. For in-
stance if we give an argument involving repeated modus ponens using
placeholders, and then take the placeholders to mean something involv-
ing a vague predicate such as “small” or “heap”, we may run into dubious
conclusions. This is a reasonable point, but is not really an objection to
the use of placeholders as such. Once we become wary of carrying out re-

2 They are placeholder variables in that we can vary what we take them to mean.

234 Oliver Tatton-Brown

peated modus ponens involving vague predicates, then for any argument
involving repeated modus ponens to be valid we should really phrase
it more carefully: maybe prefacing it with a premise that the notions
involved are sharp (do not have vagueness about what they apply to).3

We can do exactly the same for an argument involving placeholders; for
instance we could say

All predicates in A,B,C,D,E are sharp. We have that A, and
that if A then B, and that if B then C, and that if C then
D, and that if D then E. Thus by modus ponens, B; again
by modus ponens, C; again by modus ponens, D; and finally by
modus ponens, E.

Having given this placeholder argument with the sharpness premise, we
can only take each of A, . . . , E to mean something involving sharp pred-
icates; otherwise the sharpness premise will not be satisfied. In this
way our response to problems of vagueness for placeholder arguments
can be exactly the same as the response for arguments not involving
placeholders. The same goes for other troublesome semantic issues, such
as self reference.

3. Meaning stipulations

The basic idea behind schematic logic here is that we can make a state-
ment φ which contains placeholder variables P1, . . . , Pn and later take
these placeholder variables to have certain meanings (which we stipulate
at that point). To prove a soundness theorem in these terms for the logic
we need to formally represent this situation, of taking Pi in φ to have
some given meaning. We do that in this section, defining the notion of
unparametrized meaning stipulation, and then the more general notion
of parametrized meaning stipulation. We will show how to adjust the
definition of satisfaction to use these notions. We will use λ, µ, . . . to
denote meaning stipulations.

First, more about the syntax of schematic logic. The signature of a
language in schematic logic is the same as in the first order case (we can
allow languages with or without equality), and terms are formed as in
the first order case. For every arity n 0, we have a countably infinite
stock of placeholder variables of that arity. We usually signify these

3 If one is an epistemicist then this is not needed.

Semantics and completeness for schematic logic 235

variables using capital letters P , Q, Applying a placeholder variable
P of arity n to terms t1, . . . , tn gives an atomic formula P (t1, . . . , tn).
Atomic formulae are also given by applying relation symbols to terms
in the usual way. Further formulae are built out of atomic formulae
as usual by conjunction, disjunction, implication, negation and (first
order) quantification. We use FV(φ) to denote the set of free first order
variables of φ, and Plc(φ) to denote the set of its placeholder variables.

To simplify the argument, we will only formalize the notion of “mean-
ing stipulation” for a situation in which a structure for the language
is given: the idea being that we only need to provide for a situation
in which our language actually has some particular interpretation (and
more generality than this is superfluous). One could take a different
approach if desired. A structure for the language is the same as in the
first order case (a set equipped with constants, functions and relations
corresponding to the symbols in the signature of the language). We will
use variables a, b, . . . to range over the structure’s base set.

Now for the formalization of the notion of “meaning stipulation”. If A
is a structure for the language, an unparametrized meaning stipulation

over A is a function µ such that:
• Domain(µ) is a finite set S of placeholder variables
• For each Q in S, if n is the arity of Q then µ(Q) is a subset of An

(an n-arity relation on A).
We will often leave out the reference to A when its identity is unimpor-
tant or understood.

We say that µ covers a placeholder P if P ∈ Domain(µ), covers
a set X of placeholders if X ⊆ Domain(µ), and covers a formula φ

if Plc(φ) ⊆ Domain(µ). We also phrase this by saying that µ is an
unparametrized meaning stipulation for P , X or φ respectively.

It is important to be clear that the fact that we define these µ as
certain functions, which take subsets or relations on A as their values,
does not require us to be Platonists or to believe in any infinite totali-
ties. When one works in a set theoretic metalanguage, every object one
defines is technically a set even the symbols occurring in the signature
of an object language are really just sets. This does not require one
to actually believe in sets, since the fact that one is using sets to play
these roles is inessential: any other kind of object that allowed one to
carry out equivalent reasoning could be used instead. Set theory is just
a well established and familiar metatheory. Here µ is representing an
act, or series of actions, that we take, determining the meanings of the

236 Oliver Tatton-Brown

placeholders Q. If we had a theory that allowed direct reasoning about
such actions then we could use that in place of set theory.

The values µ(Q) that µ takes represent the extensions of the prop-
erties or relations that are stipulated. It will be clear that the only
extensions needed for soundness are those corresponding to meaning
stipulations actually made (or that can be taken to be implicitly made)
in the course of a derivation in the logic. There is no need to quantify
over an infinite totality of meanings, formulae or sets to serve as the
value of such a µ.

There will likely be many subsets of A, and relations on A, that could
not be obtained in this way (so that not all “unparametrized meaning
stipulations for φ over A”, as defined above, represent meaning stipula-
tions we could actually make). We will see later in Section 7 a narrower
but also more complicated definition of definable meaning stipulation

that could be used throughout instead, making clear that only properties
and relations that are explicitly definable are needed.4 Even if one only
worked with definable meaning stipulations, it would still be convenient
to use their extensions rather than syntactic representatives. Thinking
in terms of extensions helps when setting up ways that the meaning of
one formula can depend on meanings given to placeholders in another
formula, as we will see in the next section.

To define satisfaction we use first order variable assignments v over a
structure A as in the first order case. If t is a term then the interpretation
of t in A under a variable assignment v is the same as in the first order
case, and is denoted v(t). If a ∈ A we write v(a|x) for the variable
assignment which agrees with v everywhere except maybe at x, where it
takes value a.

We now define satisfaction for formulae of schematic logic in terms
of unparametrized meaning stipulations in the obvious way. Satisfaction
is a relation between a structure A, a variable assignment v over A, a
formula φ and an unparametrized meaning stipulation µ for φ, denoted:
A, v, µ � φ. It is defined by recursion on φ in the usual manner, with
an extra clause for atomic statements containing placeholder variables.
This clause is the obvious one:

A, v, µ � P (t1, . . . , tn) if and only if (v(t1), . . . , v(tn)) ∈ µ(P).

4 The definition in Section 7 is actually a narrower version of the notion of
parametrized meaning stipulation, which we will see below.

Semantics and completeness for schematic logic 237

The clause for other atomic statements is the usual one µ is irrelevant.
In the recursive clauses one just passes µ down to the level below, for
instance

A, v, µ � ∀xφ if and only if for every a ∈ A, we have A, v(a|x), µ � φ.

Note that if φ′ is a subformula of φ and µ is an unparametrized meaning
stipulation for φ then it is also an unparametrized meaning stipulation
for φ′, so the recursion is well defined.

Note that, as in the first order case, the values the variable assignment
takes only matters for variables which are free in the formula. If v and
u are variable assignments that agree on the free variables of φ, then for
all µ we have A, v, µ � φ if and only if A, u, µ � φ. If the free variables
of φ are amongst x1, . . . , xn then for each a1, . . . , an ∈ A we will use
A, xi 7→ ai, µ � φ to denote the situation that for all variable assignments
v with v(xi) = ai, we have A, v, µ � φ; or equivalently that there exists
a variable assignment v with v(xi) = ai, such that A, v, µ � φ.

Similarly, satisfaction only depends on the values a meaning stipula-
tion gives to placeholder variables that actually occur in the formula: if
µ and λ are unparametrized meaning stipulations for φ which agree on
Plc(φ) then A, v, µ � φ if and only if A, v, λ � φ.

Also as in the first order case if the terms ti are free for xi in φ (no xi
appearing in the scope of a quantifier which binds a variable of ti) then
A, v, µ � φ[t1|x1, . . . , tn|xn] if and only if A, v(v(t1)|x1, . . . , v(tn)|xn),
µ � φ.

Finally note that if φ is actually a placeholder free statement, then
the above is equivalent to the normal notion of satisfaction: if we use
�1 to denote normal first order satisfaction, then for any A, v and µ we
have A, v, µ � φ if and only if A, v �1 φ.

The employment of structures and variable assignments here is simi-
lar to in the case of first order logic, so in as much as the use of first order
logic is ontologically innocent we have (as far as the use of this notion of
satisfaction goes) no reason to think any different of this semantics for
schematic logic.

As well as the notion of unparametrized meaning stipulation, we also
need the notion of parametrized meaning stipulation. This represents a
situation in which we have stated what a placeholder means in terms
of values that certain parameters can take. For instance we might state
that P (x) means that x is a descendant of a particular man, without

238 Oliver Tatton-Brown

specifying who this particular man is. We can later finish determining
what P means by giving the identity of the man in question. There
is no problem with determining the meaning of P in stages like this,
and using it while its meaning is only partially determined (as there
is no problem using it when it is just a placeholder with completely
unspecified meaning). Similarly we can state the meaning of P in terms
of a statement φ with free variables, in which case the meaning of P
depends on the values those variables take, as parameters.

Formally, ifA is a structure for the language, a parametrized meaning

stipulation over A is a function λ with domain Am for some m 0, such
that for all a1, . . . , am in A, λ(a1, . . . , am) is an unparametrized meaning
stipulation (over A). We also require that for all a, b ∈ Am, λ(a) and
λ(b) have the same domain the same finite set of placeholders for which
they determine meanings. We say that λ covers a given placeholder if
it is in this set. We say that λ covers a set of placeholders if it covers
every placeholder in that set, and that it covers a formula if it covers
every placeholder in that formula. Again we also phrase these by saying
that λ is a parametrized meaning stipulation for the placeholder, set of
placeholders or formula respectively.

Thus what meanings λ assigns to placeholders depends on m objects
from A, the values taken by parameters for the meanings of the place-
holders. This is similar to the way that the meaning (and truth) of a
statement with free variables depends on the values those variables take.

Note that parametrized meaning stipulations are in effect a special
case of parametrized meaning stipulations, since we have an obvious
correspondence between parametrized meaning stipulations with domain
A0 and unparametrized meaning stipulations: if λ has domain A0 then
λ applied to the empty list is an unparametrized meaning stipulation
(and we identify these).

Since unparametrized meaning stipulations are essentially a special
case of parametrized meaning stipulation, we will often just use the term
meaning stipulation for parametrized meaning stipulations (which in-
cludes unparametrized meaning stipulations).

We extend the notion of satisfaction to parametrized meaning stipu-
lations in a straightforward manner. Let A be a structure, v a variable
assignment, φ a formula and λ a parametrized meaning stipulation for
φ over A. Let the domain of λ be Am. Then A, v, λ � φ if and only if
for all a1, . . . , am in A, A, v, λ(a1, . . . , am) � φ.

Semantics and completeness for schematic logic 239

Thus in essence we take asserting a statement in which placeholders
have parametrized meaning stipulations to be equivalent to asserting the
universal closure over the parameters of these placeholders. This is much
like how asserting a statement φ(x), with x free, plays the same role as
asserting ∀xφ(x) (as long as x is not free in any premise).

Again for placeholder free φ this is equivalent to the normal notion
of satisfaction: for any A, v and λ we have A, v, λ � φ if and only if
A, v �1 φ.

4. The substitution rule

The difference between the deductive system of schematic logic and that
of first order logic is the presence of a substitution rule for placeholder
variables. The idea is that if we have obtained a formula φ with a
placeholder P , then we can take P (x1, . . . , xn) to mean ψ and substitute
ψ for P in φ appropriately. We will discuss the exact form this rule
takes, seeing two slightly different versions of it. We will then explain
how it arises naturally from the motivating idea, and prove a soundness
lemma for it in terms of the semantics of the previous section.

4.1. Versions of the rule

It will be convenient to denote a formula ψ with distinguished distinct
variables x1, . . . , xn as ψ(x1, . . . , xn). This could be coded for instance
as a pair (ψ, (x1, . . . , xn)). The xi are not actually required to occur in ψ.
We will also denote a list of free variables x1, . . . , xn by ~x, so ψ(~x) denotes
a formula ψ with distinguished free variables x1, . . . , xn for some n.

We present two slightly different versions of the substitution rule,
which differ in the conditions on when a substitution is valid. The need
for conditions here is similar to in the case of ∀-elimination: to deduce
φ[t|x] from ∀xφ, we need that t be free for x in φ, or in other words that
no free occurrence of x in φ can lie in the scope of a quantifier that binds
a variable of t.

The first version of the substitution rule we present is what we call the
narrow version. This is the version given by Shapiro (2000, pp. 68–69).
Suppose φ is a formula, Pn a placeholder variable, and ψ(x1, . . . , xn)
another formula (possibly containing placeholders) with distinguished
variables x1, . . . , xn, where n is the arity of P . We say that ψ(~x) is
substitutable for P in φ in the narrow sense if wherever P (t1, . . . , tn)

240 Oliver Tatton-Brown

occurs in φ, with the ti any terms, we have that each ti is free for xi in
ψ (see the previous paragraph), and if also ψ(~x) is free for P in φ in the

narrow sense by which we mean that if u is a free variable of ψ, then
no occurrence of P in φ lies in the scope of a quantifier that binds u.

If these conditions are satisfied, then the substitution of ψ(~x) for P
in φ, written φ[ψ(~x)|P], is defined (in the narrow sense). We obtain it
by replacing every occurrence of P (t1, . . . , tn) in φ, for any terms t1, . . . ,
tn, by ψ[t1|x1, . . . , tn|xn].

There is an issue with this formulation of the substitution rule how-
ever. Consider the placeholder formulation of the axiom of separation,

φsep = ∀z ∃y ∀x (x ∈ y ↔ (x ∈ z ∧ P (x))).

Suppose we wanted to draw a consequence from this, for instance to form
the set of nonempty members of z. We would most naturally do this by
taking P (x) to mean that x is nonempty, and thus substituting ψ(x) for
P where ψ is “x 6= ∅”. The problem is that by the above formulation of
the substitution rule the substitution φsep[ψ(x)|P] is not defined ψ(x)
is not substitutable for P in the narrow sense. This is because ψ(x) is
not free for P in φ in the narrow sense, since P occurs in the scope of
the quantifier ∀x, and x is free in ψ.

The above substitution rule is too dogmatic in this respect: nothing
“goes wrong” when we substitute ψ(x) for P in φsep. The result of
carrying out the substitution (if it was allowed) would be

θ = ∀z ∃y ∀x (x ∈ y ↔ (x ∈ z ∧ (x 6= ∅)))

which is exactly what is intended. One could obtain θ by a substitution
in the narrow sense by taking ψ′ to be “x′ 6= ∅” and substituting ψ′(x′)
for P in φsep, which is a valid substitution in the narrow sense. However
having to relabel x in this way is an irritation.

Thus we define a second version of the substitution rule, the wide

version. The definition of substitutability is the same except that we do
not take variables in ~x into account when deciding whether ψ(~x) is free
for P in φ. Thus we define ψ(~x) to be substitutable for P in φ in the

wide sense if wherever P (t1, . . . , tn) occurs in φ, with the ti any terms,
we have that each ti is free for xi in ψ, and if also ψ(~x) is free for P

in φ in the wide sense, i.e. if for every free variable u of ψ which is not
one of the xi we have that no occurrence of P in φ lies in the scope
of a quantifier which binds u. If this is satisfied then the substitution

Semantics and completeness for schematic logic 241

of ψ(~x) for P in φ is defined as before by replacing every occurrence of
P (t1, . . . , tn) in φ, for any terms t1, . . . , tn, by ψ[t1|x1, . . . , tn|xn]. We
again denote it by φ[ψ(~x)|P].

In a sense the difference between these is not important: we can
always relabel, as in the above example with φsep.

Proposition 1. If the substitution of ψ(~x) for P in φ is defined in
the wide sense, then there is a formula ψ′(~x′) such that the substitu-
tion of ψ′(~x′) for P in φ is defined in the narrow sense, and such that
φ[ψ′(~x′)|P] = φ[ψ(~x)|P] (the former defined in either sense, the latter in
the wide sense).

Proof. Let ψ(x1, . . . , xn) be substitutable for P in φ in the wide sense.
Let x′

1, . . . , x
′
n be variables not occurring in ~x or ψ or φ, and let ψ′ be the

formula ψ[x′
1|x1, . . . , x

′
n|xn]. Then for every occurrence of P (t1, . . . , tn)

in φ, each ti is free for xi in ψ, so each ti is free for x′
i in ψ′. If u is a

free variable of ψ′ which isn’t one of the x′
i then there is no occurrence

of P in φ in the scope of a quantifier that binds u (by the definition of
substitutability in the wide sense); and if u is one of the x′

i, then there is
no quantifier binding u in φ, so there is certainly no occurrence of P in φ
in the scope of a quantifier that binds u. Thus ψ′(~x′) is substitutable for
P in φ in the narrow sense. Finally, φ[ψ′(~x′)|P] is obtained by replacing
every occurrence of P (t1, . . . , tn) in φ by ψ′[t1|x′

1, . . . , tn|x′
n], which is

just ψ[t1|x1, . . . , tn|xn]. Thus indeed φ[ψ′(~x′)|P] = φ[ψ(~x)|P].

The converse to this is obviously true since substitutability in the nar-
row sense implies substitutability in the wide sense. Thus we have that
one can obtain the same results by using either version of the substitu-
tion rule. However the wide version can definitely be more convenient
it can avoid the need to relabel variables before using the rule, as in the
φsep example. This extra flexibility will be helpful at points, for instance
when proving the completeness theorem in Section 8 (though of course
completeness does not rely on using the wide version of the substitution
rule, as it cannot by this lemma).

Thus we will work with the wide version of substitutability and the
substitution rule. Soundness results still of course apply to uses of the
narrow version of the substitution rule, and if one dislikes the slight
extra complication in the definition of the wide version then one can
use the narrow version when working in the logic if one wishes. We
will sometimes refer to the wide version of the substitution rule as the

242 Oliver Tatton-Brown

single substitution rule to distinguish it from the multiple substitution
rule defined below.

We make a few notes about this substitution rule and our use of it.
The first is just that when it is not important we will not always mention
the list of xi, and will sometimes just write the substitution as φ[ψ|P]
for brevity.

Secondly, if there are actually no occurrences of P in φ, then any ψ
is substitutable for P in φ and φ[ψ(~x)|P] is always defined, just being φ.

Thirdly, if ψ does not contain Q, and ψ(~x) is substitutable for P
in φ, then for any θ(~y) we have that θ(~y) is substitutable for Q in φ if
and only if it is substitutable for Q in φ[ψ(~x)|P]. This is clear from the
definition of substitutability, since Q is in the scope of the same first
order quantifiers in φ[ψ(~x)|P] as it is in φ, and is applied to the same
terms in φ[ψ(~x)|P] as it is in φ.

Now we generalize the substitution rule to one for multiple substi-
tutions, as follows. Suppose φ is a formula, P1, . . . , Pm are distinct
placeholder variables, and ψ1(x1

1, . . . , x
1
n1

), . . . , ψn(xm1 , . . . , x
m
nm

) are for-
mulae with distinguished variables. Then the multiple substitution

φ[ψ1(x1
1, . . . , x

1
n1

)|P1, . . . , ψm(xm1 , . . . , x
m
nm

)|Pm],

is defined iff φ[ψi(x
i
1, . . . , x

i
ni

)|Pi] is defined for each i, in which case

φ[ψ1(x1
1, . . . , x

1
n1

)|P1, . . . , ψm(xm1 , . . . , x
m
nm

)|Pm],

is obtained from φ by replacing each occurrence of Pi(t1, . . . , tni
) in φ by

ψi[t1|xi1, ..., tni
|xini

], for each i and each t1, . . . , tni
. One does not then go

on and for instance replace any occurrences of Pj in ψi[t1|xi1, . . . , tni
|xini

].

We will sometimes write ~ψ|~P for the set {(ψ1(~x1), P1), . . . , (ψm(~xm),

Pm)}, and use φ[~ψ|~P] as shorthand for φ[ψ1(~x1)|P1, . . . , ψm(~xm)|Pm].
Note that if each ψi contains none of the Pi, then if φ[ψ1|P1, . . . ,

ψm|Pm] is defined then so is φ[ψ1|P1] . . . [ψm|Pm], by the note just before
this definition of multiple substitutions. In this case the two are equal.

Then we can argue that we do not need to add the multiple substi-
tution rule as a rule in our deductive system, as we can use iteration of
the single substitution rule instead.

Proposition 2. If φ[ψ1(x1
1, . . . , x

1
n1

)|P1, . . . , ψm(xm1 , . . . , x
m
nm

)|Pm] can
be obtained from φ by a multiple substitution then it can be obtained
by repeated uses of the single substitution rule.

Semantics and completeness for schematic logic 243

Proof. Let Q1, . . . , Qm be placeholders that are distinct from each
other and the Pi, that do not occur in φ or any of the ψi, and such that
Qi has the same arity as Pi. Let ψ′

i be ψi with every occurrence of Pi
replaced by Qi. Then for each i, ψ′

i(
~xi) is substitutable for Pi in φ since

ψi(~xi) is. Thus φ[ψ′
1(~x1)|P1, . . . , ψ

′
m(~xm)|Pm] is defined, and since each

ψ′
i contains none of the Pi we have

φ[ψ′
1(~x1)|P1, . . . , ψ

′
m(~xm)|Pm] = φ[ψ′

1(~x1)|P1] . . . [ψ′
m(~xm)|Pm]

as noted before the proposition. Thus φ[ψ′
1(~x1)|P1, . . . , ψ

′
m(~xm)|Pm] can

be reached from φ by repeated uses of the single substitution rule. Now
for each i let θi = Pi(y

i
1, . . . y

i
ni

) with the yij any distinct variables.
Then there are no quantifiers in θi and no free variables beyond the
yij so from the definition of the wide version of the substitution rule

we have that θi(~yi) is substitutable for Qi in any formula (this is one
example of the usefulness of the wider version of the substitution rule).

Further, for any χ we have that χ[θi(~yi)|Qi] is just χ[Pi|Qi], the re-
sult of replacing Pi by Qi everywhere it appears. Substituting each of
these θi(~xi) for Qi one by one into φ[ψ′

1(~x1)|P1, . . . , ψ
′
m(~xm)|Pm] gives

us φ[ψ′
1(~x1)|P1, . . . , ψ

′
m(~xm)|Pm][P1|Q1 . . . Pm|Qm], which is easily seen

to be φ[ψ1(~x1)|P1, . . . , ψm(~xm)|Pm] as required.

4.2. Semantics of substitution

We have already seen the idea behind the use of the substitution rule: we
make an argument involving a placeholder P with unspecified meaning,
and are later free to stipulate P to mean what we like. In the formal
setting if P has arity n then we stipulate its meaning in terms of a
formula with n free variables, saying for instance that P (x1, . . . , xn)
means ψ(x1, . . . , xn). If φ is a statement we have derived containing P ,
this allows us to deduce φ[ψ(~x)|P].

Importantly we allow that ψ itself the formula being used to specify
P ’s meaning can contain placeholder variables. In the same way that
we can give an argument in which P ’s meaning is unspecified, we can give
a meaning stipulation for P which uses a placeholder variable Q with
currently unspecified meaning. We can then later specify Q’s meaning,
and thus finish specifying P ’s meaning. There is nothing to prevent
us from giving the meaning of P in stages like this, and nothing to
prevent us from using it while its meaning is only partially determined

244 Oliver Tatton-Brown

(in the same way there is nothing to prevent us using it when meaning
is completely unspecified).

This is much like the situation with parametrized meaning stipula-
tions discussed in the previous section. However the two cases play very
different roles when arguing for the soundness of schematic logic, so we
distinguish them. When we specify that a placeholder P in φ means
ψ(x1, . . . , xn), and ψ itself contains placeholder variables, we say that
we have given a meaning dependence of φ on ψ: we have stipulated that
the meaning of φ depends on the meaning of ψ, so that when we specify
the meaning of ψ we will then have also specified the meaning of φ.

Formally, if A is a structure, by a meaning dependence over A we
just mean a function g whose domain and range are sets of meaning stip-
ulations over A. If a is a formula, a placeholder or a set of placeholders,
and the same is true of b, then a meaning dependence g is a meaning

dependence of a on b if g maps every meaning stipulation for b over A to
a meaning stipulation for a over A. g embodies how once we have given
a (parametrized) meaning stipulation for b, we will have done the same
for a.

We represent how the meaning of placeholders in x depends on the
meaning of placeholders in y by showing how the extensions of the former
meanings depend on the extensions of the latter meanings i.e. how
the values g(µ) gives to a placeholder depend on the values µ gives to
placeholders.

As with the definitions of meaning stipulations, the use of functions
here does not require us to believe in Platonism they just formally
represent acts we take. Also, not all such functions actually represent
meaning dependencies that we could bring about. We are really only
interested in certain examples of meaning dependencies that arise from
the use of the substitution rule. We will now work towards defining these.

To start, let P be a placeholder with arity n, and ψ(x1, . . . , xn)
a formula (with distinguished variables x1, . . . , xn). We will show we
can obtain a meaning stipulation for P from a meaning stipulation
for ψ, which corresponds to the idea of taking P (x1, . . . , xn) to mean
ψ(x1, . . . , xn). Let y1, . . . , yp be variables distinct from each other and
the xi, such that (FV(ψ) \ {x1, . . . , xn}) ⊆ {y1, . . . , yp}. Let λ be a
meaning stipulation for ψ, with domain Aq. Then we define a meaning
stipulation δ

~y,λ
ψ(~x)|P for P only with domain Ap+q as follows. We define

Semantics and completeness for schematic logic 245

δ
~y,λ
ψ(~x)|P (b1 . . . bp, c1, . . . , cq)(P) to be

{(a1, . . . , an) ∈ An | A, xi 7→ ai, yj 7→ bj , λ(c1, . . . , cq) � ψ}.

Note that the value of δ~y,λψ(~x)|P (b1 . . . bp, c1, . . . , cq)(P) only depends on
those of the bi that correspond to yi that actually occur free in ψ.
Indeed letting J be the set of j such that yj occurs free in ψ, if we

have that bj = b′
j for j ∈ J then δ

~y,λ
ψ(~x)|P (b1 . . . bp, c1, . . . , cq)(P) =

δ
~y,λ
ψ(~x)|P (b′

1 . . . b
′
p, c1, . . . , cq)(P) for all c1, . . . , cq.

This definition exactly matches the informal idea: we have that P
applies to a1, . . . , an if and only if ψ(x1, . . . , xn) holds of them. The
resulting meaning stipulation for P is parametrized, with parameters
corresponding to the parameters of the meaning stipulation for ψ, and
the free variables of ψ. If φ is any formula only containing the placeholder
P , then δ

~y,λ
ψ(~x)|P is a parametrized meaning stipulation for φ.

We will use these δ~y,λψ(~x)|P to obtain meaning dependencies correspond-
ing to the substitution rule. We actually treat the case of multiple substi-
tutions, which is not needed for the soundness theorem, Theorem 10, but
is useful for the conservativeness and completeness results in Sections 7
and 8.

So suppose that we have distinct placeholders Pn1

1 , . . . , Pnm
m , and

formulae ψ1(x1
1, . . . , x

1
n1

), . . . , ψm(xm1 , . . . , x
m
nm

). If we have a meaning
stipulation λ that covers every ψi, then we can take each Pi in some
formula φ to mean ψi(~xi), and obtain the meaning stipulations δ~y,λ

ψi(~xi)|Pi

for Pi for each i. We then want to put these together to obtain a mean-
ing stipulation for φ. There may be leftover placeholders in φ too
placeholders beyond P1, . . . , Pm. We can potentially use λ to give these
meanings too if it covers them.

Thus suppose we have q ∈ N, q 1, with variables y1, . . . , yp dis-
tinct from each other and all the xij, such that for each i, (FV(ψi) \
{xi1, . . . x

i
ni

}) ⊆ {y1, . . . , yp}. Then if λ is a meaning stipulation for
⋃m
i=1 Plc(ψi), with domain Aq, with S the set of placeholders it covers,

we define g~y~ψ|~P
(λ) to be the meaning stipulation with domain Ap+q which

covers the set S ∪ {P1, . . . , Pm} of placeholders with

• g
~y
~ψ|~P

(λ)(b1 ... bp, c1, ..., cq)(Pi) = δ
~y,λ

ψi(~xi)|Pi

(b1 ... bp, c1, ..., cq)(Pi)

• g
~y
~ψ|~P

(λ)(b1 ... bp,c1, ..., cq)(Q)=λ(c1, ..., cp)(Q) for Q ∈ S\{P1, ..., Pm}

246 Oliver Tatton-Brown

Thus g~y~ψ|~P
(λ) is a meaning stipulation for {P1, . . . , Pm} ∪

⋃m
i=1 Plc(ψi)

for each meaning stipulation λ for
⋃m
i=1 Plc(ψi), so g

~y
~ψ|~P

is a meaning

dependence of {P1, . . . , Pm}∪
⋃m
i=1 Plc(ψi) on

⋃m
i=1 Plc(ψi). In fact these

are the only meaning dependencies that we are interested in (so one could
give a narrower definition of meaning dependence if one wished).

As with δ
~y,λ

ψi(~xi)|Pi

(b1 . . . bp, c1, . . . , cq)(Pi), the value of

g
~y
~ψ|~P

(λ)(b1 . . . bp, c1, . . . , cq)(Pi)

only depends on those bj that correspond to yj that are actually free in
ψi. Indeed letting J be the set of j such that yj occurs free in ψi, if we
have that bj = b′

j for j ∈ J then

g
~y
~ψ|~P

(λ)(b1 . . . bp, c1, . . . , cq)(Pi) = g
~y
~ψ|~P

(λ)(b′
1 . . . b

′
p, c1, . . . , cq)(Pi)

for all c1 . . . cq . We also have that if Q is a placeholder variable that isn’t

one of the Pi and is covered by g
~y
~ψ|~P

(λ) then g
~y
~ψ|~P

(λ)(b1 . . . bp, c1, . . . ,

cq)(Q) only depends on c1 . . . cq: for any b1 . . . bp, b
′
1 . . . b

′
p, c1 . . . cq we

have

g
~y
~ψ|~P

(λ)(b1 . . . bp, c1, . . . , cq)(Q) = g
~y
~ψ|~P

(λ)(b′
1 . . . b

′
p, c1, . . . , cq)(Q).

We now turn back to the case of a single rather than multiple substi-
tution, which is what’s needed for the soundness theorem. When m = 1
and ~ψ|~P is just {ψ(~x)|P}, we write g~yψ(~x)|P for g~y~ψ|~P

. Now if we use the

substitution rule to deduce φ[ψ(~x)|P] from φ, then every placeholder

in φ is either P or appears in φ[ψ(~x)|P], and so g
~y
ψ(~x)|P is a meaning

dependence of φ on φ[ψ(~x)|P]. We can take any use of the substitution
rule to be implicitly setting up a meaning dependence in this way. So
that the meaning dependence is determined by the use of the substi-
tution rule, we will assume some canonical ordering of the first order
variables, and let gψ(~x)|P be g~y

ψ(~x)|P where y1, . . . , ym is the ordering of

FV(ψ) \ {x1, . . . , xn} according to this canonical order; this gψ(~x)|P is
what we take to be implicit in uses of the substitution rule.

One point about the above that should be made explicit is that when
we substitute ψ(x1, . . . , xn) for P in φ, we allow that ψ itself can contain
the placeholder P . We can then stipulate some other meaning for occur-
rences of P in ψ, or φ[ψ(~x)|P], for instance that P in φ[ψ(~x)|P] means

Semantics and completeness for schematic logic 247

χ(z1, . . . , zn). This is not inconsistent. The whole point of placeholders
is that we are free to stipulate our own meanings for them, and there
is nothing to stop us from giving different meanings to occurrences of
a placeholder in different statements (even if one of the statements is
used to give a meaning to occurrences of the placeholder in the other).
This is not completely unlike how a word can have multiple senses, and
in some situations it could even be possible to explain one sense of a
word by employing another: “well in the biblical sense, ‘know’ means,
you know, to get to know someone sexually”. One could if one wanted
avoid occurrences of a placeholder variable in meaning stipulations for
other occurrences of the same variable, but it would make the deduc-
tive system and the soundness theorem more complicated, and be an
unnecessary inconvenience.

We now prove a soundness lemma for the substitution rule in terms
of these meaning dependencies g~y~ψ|~P

.

Lemma 3. Suppose that φ is a formula, and that Pn1

1 , . . . , Pnm
m are

distinct placeholders and ψ1(~x1), . . . , ψm(~xm) formulae such that ψi(~xi)
is substitutable for Pi in φ for each i. Let y1, . . . , yp be distinct from
each other and all the xij such that for each i, (FV(ψi) \ {xi1, . . . x

i
ni

}) ⊆
{y1, . . . , yp}. Let λ be a meaning stipulation for (Plc(φ)\{P1, . . . , Pm})∪
⋃

i Plc(ψi) over A. Then for any variable assignment v, we have

A, v, λ(~c) � φ[~ψ|~P] iff A, v, g
~y
~ψ|~P

(λ)(v(y1), . . . , v(yp),~c) � φ.

In particular if A, v, g~y~ψ|~P
(λ) � φ then A, v, λ � φ[~ψ|~P].

Proof. Fix structure A, distinct placeholder variables Pn1

1 , . . . , Pnm
m ,

formulae ψ1(~x1) . . . ψm(~xm), and meaning stipulation λ for ψ1(~x1) . . .
ψm(~xm). Let the domain of λ be Aq, and fix c1, . . . , cq ∈ A. Let y1, . . . , yp
be distinct from each other and all the xij such that for each i, (FV(ψi) \
{xi1, . . . x

i
ni

}) ⊆ {y1, . . . , yp}. We prove first that for all φ in which each

ψi(~xi) is substitutable for Pi, and such that λ is a meaning stipulation
for (Plc(φ) \ {P1, . . . , Pm}) ∪

⋃

i Plc(ψi), we have

A, v, λ(~c) � φ[~ψ|~P] iff A, v, g
~y
~ψ|~P

(λ)(v(y1), . . . , v(yp),~c) � φ.

for all variable assignments v over A. The proof is by induction on φ.

248 Oliver Tatton-Brown

If φ is an atomic formula not containing a placeholder, then this is
trivial: φ[ψ1(~x1)|P1, . . . , ψm(~xm)|Pm] is just φ, and the meaning stipu-
lations in both clauses are irrelevant to its satisfaction.

Suppose that φ is an atomic formula Q(s1, . . . , sk) with Q distinct

from the Pi. Then φ[ψ1(~x1)|P1, . . . , ψm(~xm)|Pm] is just φ, so the conclu-

sion follows from the fact that λ(~c) and g~y~ψ|~P
(λ)(v(y1), . . . , v(yp),~c) agree

on all placeholders in φ (as noted after the definition of satisfaction in
Section 3, if λ and λ′ agree on the placeholders in φ then A, v, λ � φ if
and only if A, v, λ′

� φ).

Suppose that φ is an atomic formula Pi(t1, . . . , tni
). Then

φ[~ψ|~P] = ψi[t1|xi1, . . . , tni
|xini

]

so A, v, λ(~c) � φ[~ψ|~P] iff A, v, λ(~c) � ψi[t1|xi1, . . . , tni
|xini

] iff
A, v(v(t1)|xi1, . . . , v(tni

)|xini
), λ(~c) � ψi iff (v(t1), . . . , v(tni

)) ∈ {(a1, . . . ,

ani
) ∈ Ani | A, xi 7→ ai, yi 7→ v(yi), λ(~c) � ψ} iff (v(t1), . . . , v(tni

)) ∈

g
~y
~ψ|~P

(λ)(v(y1), . . . , v(yp),~c)(Pi) iff A, v, g
~y
~ψ|~P

(λ)(v(y1), . . . , v(yp),~c) �

P (t1, . . . , tni
) iff A, v, g

~y
~ψ|~P

(λ)(v(y1), . . . , v(yp),~c) � φ as desired.

The cases of the propositional connectives are easy.

Suppose that φ is of the form ∀z θ. Let i be such that Pi does occur
in φ. Then it is in the scope of a quantifier that binds z, so by the
definition of ψi(~xi) being substitutable for Pi in φ, if z is free in ψi then
it is one of the xij . In particular if z is free in ψi then it is not one of the
yi. Thus for any a ∈ A, for any of the yj which are free in ψi, we have
v(a|z)(yj) = v(yj). Thus we have that

g
~y
~ψ|~P

(λ)(v(a|z)(y1), . . . , v(a|z)(yp),~c)(Pi)

is equal to

g
~y
~ψ|~P

(λ)(v(y1), . . . , v(yp),~c)(Pi)

by the remark after the definition of g~y~ψ|~P
. For any Q which occurs in φ

but is none of the Pi, we have that g~y~ψ|~P
(λ)(v(a|z)(y1), . . . , v(a|z)(yp),~c)

and g
~y
~ψ|~P

(λ)(v(y1), . . . , v(yp),~c) also agree on Q. Thus they agree on

every placeholder in φ (and in θ).

Semantics and completeness for schematic logic 249

Thus

A, v, λ(~c) � ∀z θ[~ψ|~P]

iff for all a ∈ A, A, v(a|z), λ(~c) � θ[~ψ|~P]

iff for all a ∈ A, A, v(a|z), g~y~ψ|~P
(λ)(v(a|z)(y1), . . . , v(a|z)(yp),~c) � θ

(by the induction hypothesis for θ)

iff for all a ∈ A, A, v(a|z), g~y~ψ|~P
(λ)(v(y1), . . . , v(yp),~c) � θ

iff A, v, g
~y
~ψ|~P

(λ)(v(y1), . . . , v(yp),~c) � ∀z θ

as desired.

The case of existential quantifiers is similar.

That finishes the induction, giving the first conclusion. The second
conclusion now follows immediately. Suppose that A, v, g~y~ψ|~P

(λ) � φ.

Then for any ~c, we have A, v, g~y~ψ|~P
(λ)(v(y1), . . . , v(yp),~c) � φ, so that we

obtain that A, v, λ(~c) � φ[~ψ|~P]. Thus A, v, λ � φ[~ψ|~P], as required.

5. The deductive system

The deductive system in schematic logic is a normal first order deductive
system supplemented by the substitution rule for placeholder variables.
It is formulated here as a natural deduction system. The syntax of
formulae of schematic logic is as described at the start of Section 3.

We use a natural deduction system rather than a Hilbert style system
like that of (Shapiro, 2000, pp. 68–69) since we want a deductive system
which one could plausibly work in. To write out an actual derivation in
a standard Hilbert style deductive system is a tremendous chore; instead
one standardly works in a metatheory, using the deduction theorem to
demonstrate that a derivation exists. The idea behind schematic logic
here is that we can see ourselves as licensed to make substitutions based
on meaning stipulations that are implicit in uses of the substitution
rule. This would be undermined if we did not work in the logic itself and
instead had to appeal to a metatheorem to demonstrate the existence
of a derivation. Also, if one was using a metatheorem to demonstrate
that a derivation existed, rather than constructing an actual derivation
oneself, then one would have to have some way of understanding this

250 Oliver Tatton-Brown

kind of existence claim about derivations. This is potentially awkward
for a nonmodal nominalist. One could try to use a nominalist approach
to syntax, but this would require limiting one’s talk to derivations of at
most a certain finite length (if the universe was finite). It is better to
avoid these complications and use a natural deduction system. There is
still of course a question about how the formal derivations relate to the
kind of informal derivations one would actually produce in practice, but
this is a less threatening question for natural deduction than for Hilbert
style deductive systems.

The relation between our natural deduction system and the Hilbert
style system of (Shapiro, 2000, pp. 68–69) is discussed later in the section.

The main subtlety about formulating schematic logic in natural de-
duction is that there are two roles premises can play. One can treat a
premise containing schematic variables in a similar way to how one would
treat a premise in second order logic with free second order variables.
Otherwise one can treat a premise containing schematic variables in a
similar way to how one would treat its universal closure in second order
logic. We call the former a specific premise, and the latter a general
premise. The fact that there are these two different roles premises can
play in natural deduction for schematic logic was pointed out by Heck
(2011, pp. 274–282). He did not go into the details of how the deduc-
tive system would work however. We spell the details out here so we
can prove our ontologically innocent soundness theorem, and later the
completeness theorem.

We saw examples of specific premises earlier in Section 2, where we
said:

Suppose that everything which is A is B. Suppose also that
everything which is B is C. Then if something is A, it is B;
and since it is B, it is C. Thus everything which is A is C. In
conclusion, if everything which is A is B, and everything which
is B is C, then everything which is A is C.

In this case A, B and C have unspecified meaning throughout the ar-
gument. As a result we can take them to have meanings of our choice
afterwards, and deduce as a consequence what we obtain by substituting
these meanings for A, B and C in the conclusion of the argument (as we
did back in Section 2). Note that in this case →-introduction is valid as
usual going from Γ, φ ⊢ ψ to Γ ⊢ φ → ψ. However we cannot use the
substitution rule on the placeholders in the course of the argument, as

Semantics and completeness for schematic logic 251

the placeholders are required to have some constant meaning throughout
it (though we can use the substitution rule on the conclusion of the ar-
gument afterwards, having applied →-introduction as many times as we
needed). Premises of this kind are analogous to premises in second order
logic with free second order variables. They are called specific premises
to distinguish them from general premises, which act as though they
have the universal closure interpretation.

We now turn to these general premises. Suppose we had established
some statement with placeholders, without specifying any meaning for
the placeholders. This need not be via a deductive argument. For in-
stance we could argue for induction over the natural numbers

φind = (P (0) ∧ ∀x (P (x) → P (S(x)))) → ∀xP (x)

by saying “if P holds for 0, and it holds for S(x) whenever it holds for
x, then it holds for 0, and thus also for S(0), and thus also for S(S(0))
and so on on, and thus for all natural numbers”. Having established this,
we can go on to take P to have a meaning of our choice (setting aside
worries like the Sorites paradox), and obtain substitution instances of
φind by appropriately substituting that meaning for P . This is called a
general premise, since its role is analogous to a universally closed premise
in second order logic.

Importantly, we do not actually have to have established this state-
ment of induction to reason like this: we can reason hypothetically as

though it had been established with no meaning specified for its place-
holders. We can then draw hypothetical consequences of it, reasoning
using the substitution rule on it. If at some later time we do manage to
establish the statement without specifying a meaning for its placeholders,
then we can drop it as an assumption and regard all these consequences
as true.

When working from a general premise, we cannot use →-introduction
to discharge the assumption. For instance if P is an arity 1 placeholder
then for any φ we can deduce φ(0) from P (0) if we make the latter
a general premise. Even φ(0) = ¬P (0) can be deduced. But if we
discharge the premise P (0) via →-introduction in this case we obtain
P (0) → ¬P (0), which we would then have established with no premises
(since the premise was discharged). Thus we would have established
P (0) → ¬P (0) without specifying a meaning for P , so we could deduce
any statement φ(0) → ¬φ(0) as a consequence, which is absurd and
quickly leads to a contradiction.

252 Oliver Tatton-Brown

Thus we have two importantly different kinds of premises. There are
the general premises Γ which we suppose we have established without
specifying a meaning for their placeholders; this allows us to use the sub-
stitution rule on these statements, but we cannot use →-introduction on
them. Then there are specific premises ∆ which will have some constant
unspecified meaning throughout the argument; we cannot use the sub-
stitution rule on their placeholders but can use →-introduction on them.
We will denote a formula φ with a set Γ of general premises and a set ∆
of specific premises associated with it by (Γ; ∆) ⇒ φ.

Now for the notion of derivation in schematic logic. This is intended
to be something that would be convenient to actually write out, so a
derivation is a finite sequence of formulae rather than a tree. Each line
is either a premise or is deduced from previous lines by one of the below
rules of inference. We take each formula occurring in the derivation to
be labelled with its line number, and with the kind of inference used to
infer it: what the rule of inference was, what the previous lines used as
premises of this rule were, and which line served as which premise of the
rule. We equivocate between the line i and the formula at that line φi
where this will not cause confusion.

Each line φ also has associated with it a set Γ of lines which are
general premises, and a set ∆ of lines which are specific premises the
sets of premises used to infer that line, as discussed above. We can write
the line as (Γ; ∆) ⇒ φ to signify this. The inference rules show how
the premises of the conclusion depend on the premises of the lines it is
inferred from, so these sets Γ and ∆ are determined for each line by the
derivation (with its labels); otherwise one could take the line numbers
of premises in Γ and ∆ to also be labels on φ.

The rules are standard, except that we have these two different sets
of premises, of which only the specific premises can be discharged. We
also have the substitution rule for placeholder variables which do not
appear in any specific premise.

For premises, we can infer any formula φ from φ as a premise of either
type: we have the two rules

({γ};∅) ⇒ γ (∅; {γ}) ⇒ γ

These can be used for any line of the proof, to introduce a premise. Then
we have the rule of weakening, where if ∆′ ⊆ ∆ and Γ′ ⊆ Γ then

(Γ′; ∆′) ⇒ φ

(Γ; ∆) ⇒ φ

Semantics and completeness for schematic logic 253

We then have introduction and elimination rules for the various bits
of logical vocabulary. We write for instance ∆, φ for ∆ ∪ {φ}.

(Γ; ∆) ⇒ φ (Γ; ∆) ⇒ ψ
∧-I

(Γ; ∆) ⇒ φ ∧ ψ

(Γ; ∆) ⇒ φ ∧ ψ
∧-E

(Γ; ∆) ⇒ φ

(Γ; ∆) ⇒ φ ∧ ψ
∧-E

(Γ; ∆) ⇒ ψ

(Γ; ∆) ⇒ φ
∨-I

(Γ; ∆) ⇒ φ ∨ ψ

(Γ; ∆) ⇒ ψ
∨-I

(Γ; ∆) ⇒ φ ∨ ψ

(Γ; ∆) ⇒ φ ∨ ψ (Γ; ∆, φ) ⇒ χ (Γ; ∆, ψ) ⇒ χ
∨-E

(Γ; ∆) ⇒ χ

(Γ; ∆, φ) ⇒ ψ
→-I

(Γ; ∆) ⇒ φ → ψ

(Γ; ∆) ⇒ φ → ψ (Γ; ∆) ⇒ φ
→-E

(Γ; ∆) ⇒ ψ

(Γ; ∆, φ) ⇒ ψ (Γ; ∆, φ) ⇒ ¬ψ
¬-I,E

(Γ; ∆) ⇒ ¬φ

For the quantifier rules, recall that a term t is free for a variable x

in formula φ if there is no free occurrence of x in φ in the scope of a
quantifier that binds a variable of t.

(Γ; ∆) ⇒ φ
∀-I

(Γ; ∆) ⇒ ∀xφ
if x is not free in any member of Γ or ∆

(Γ; ∆) ⇒ ∀xφ
∀-E

(Γ; ∆) ⇒ φ[t|x]
if t free for x in φ

(Γ; ∆) ⇒ φ[t|x]
∃-I

(Γ; ∆) ⇒ ∃xφ
if t free for x in φ

(Γ; ∆) ⇒ ∃xφ (Γ; ∆, φ) ⇒ ψ
∃-E

(Γ; ∆) ⇒ ψ

if x is not free in ψ or
any member of Γ or ∆

To make the logic classical we have double negation elimination:

(Γ; ∆) ⇒ ¬¬φ
¬¬C

(Γ; ∆) ⇒ φ

Finally we have the substitution rule:

254 Oliver Tatton-Brown

(Γ; ∆) ⇒ φ
Subst

(Γ; ∆) ⇒ φ[ψ(~x)|P]

if ψ(~x) is substitutable (in the wide sense) for P in φ,
and P does not appear in any member of ∆

In the rules where multiple previous lines are used as premises, we
number these premises left to right; so (Γ; ∆) ⇒ φ∨ψ is the first premise
in ∨-elimination, (Γ; ∆) ⇒ χ the second and so on.

A derivation is a finite sequence of formulae each of which is either
a premise, or is deduced from previous line(s) by one of the above rules
of inference. As discussed before the description of the rules, we take
each formula in the derivation to be labelled with information such as
its line number and how it was inferred. Each formula also has a set of
assumptions of each type associated with it by the above rules.

If there is a derivation with (Γ; ∆) ⇒ φ as its last line, then we say
that (Γ; ∆) ⇒ φ is derivable (equivalently if there is a derivation with
(Γ; ∆) ⇒ φ as any line). We write this by (Γ; ∆) ⊢ φ. We write just
Γ ⊢ φ if (Γ;∅) ⊢ φ.

Note that it is obvious from Proposition 1 that we would obtain
the same notion of derivability if we had used the narrow definition of
substitutability instead.

Shapiro’s system for schematic logic (Shapiro, 2000, pp. 68–69) differs
from the one here in that it is formulated as a Hilbert style deductive
system. It also employs function variables, and has a special rule relating
function variables to relation variables. If one removes the schematic
function variables and the special rule for them from D2− (a minor
change) then the result has an equivalent derivability relation to the
relation Γ ⊢ φ.

It is straightforward to show for our deductive system that whenever
a specific premise is used, a general premise could have been used instead.

Proposition 4. Suppose that ∆ and Λ are disjoint sets of formulae,
and that (Γ; ∆ ∪ Λ) ⊢ φ. Then (Γ ∪ Λ; ∆) ⊢ φ.

Proof. This is an easy induction on derivation length, that for all
derivations, if the last line is of the form (Γ; ∆ ∪ Λ) ⇒ φ then there
is a derivation (of the same length, using the same inference rules but
with different premises) of (Γ ∪ Λ; ∆) ⇒ φ.

Thus by the above proposition whenever Γ; ∆ ⊢ φ then Γ ∪ ∆ ⊢ φ.

Semantics and completeness for schematic logic 255

Before proving a version of the cut rule for this deductive system we
prove some preliminary results.

If D is a derivation by the significant length of D we mean the number
of lines of D which are not inferred by the weakening rule. By an easy
induction on D we obtain:

Proposition 5. If D is a derivation then is a derivation D′ of the same
significant length as D, where every line of D′ is of the form (Γ′; ∆′) ⇒ φ

with (Γ; ∆) ⇒ φ a line of D and Γ′, ∆′ finite subsets of Γ, ∆ respectively,
and where if (Γ; ∆) ⇒ φ is a line of D then there is a line (Γ′; ∆′) ⇒ φ

of D′ with Γ′, ∆′ finite subsets of Γ, ∆.

Furthermore, we have:

Proposition 6. LetD be a derivation of (Γ; ∆) ⇒ φ, let x be a variable,
and let y be a variable not appearing in D. Then there is a derivation
D′ of

({γ[y|x] | γ ∈ Γ}; {δ[y|x] | δ ∈ ∆}) ⇒ φ[y|x].

the same length as D, whose every line is inferred by the same rule as
in D, and with the same premises and conclusions but with y substituted
for x in them.

Proof. This is an easy induction on D. The most subtle case is that
where the last line of D is (Γ; ∆) ⇒ φ[ψ(~x)|P], inferred by the substi-
tution rule from (Γ; ∆) ⇒ φ. In this case by the induction hypothesis
replacing every x with y in every previous line of D gives a derivation of

({γ[y|x] | γ ∈ Γ}; {δ[y|x] | δ ∈ ∆}) ⇒ φ[y|x].

Then letting ~x = (x1, . . . , xn), if x is one of the xi then we reach final
line

({γ[y|x] | γ ∈ Γ}; {δ[y|x] | δ ∈ ∆}) ⇒ φ[ψ(~x)|P][y|x].

by substituting ψ(~x) for P in φ[y|x]; and if x is not one of the xi, we
reach final line

({γ[y|x] | γ ∈ Γ}; {δ[y|x] | δ ∈ ∆}) ⇒ φ[ψ(~x)|P][y|x].

by substituting ψ[y|x](~x) for P in φ[y|x].

256 Oliver Tatton-Brown

If φ is a formula and P and Q are placeholder variables of the same
arity, by φ[Q|P] we mean the result of replacing P by Q everywhere it
appears in φ. Moreover, by an easy induction on D we obtain:

Proposition 7. Let D be a derivation of (Γ; ∆) ⇒ φ, let P be a
placeholder variable, and let Q be a placeholder variable of the same
arity as P not appearing in D. Then there is a derivation D′ of

({γ[Q|P] | γ ∈ Γ}; {δ[Q|P] | δ ∈ ∆}) ⇒ φ[Q|P].

which is the same as D but with P replaced by Q in every formula (in
premises and conclusions of lines and uses of inference rules).

Proposition 8. Let P be a placeholder variable, and let Q be a place-
holder variable of the same arity n as P . Let x1, . . . , xn be any distinct
variables, and let ψ be the formula Q(x1, . . . , xn). Then for any φ, ψ(~x)
is substitutable (in the wide sense) for P in φ, and φ[ψ(~x)|P] = φ[Q|P].

Proof. For any φ, ψ(~x) is substitutable (in the wide sense) for P in
φ since ψ contains no quantifiers and variables beyond the xi (this is
an example of the usefulness of the wide version of the substitution
rule). Carrying out the substitution φ[ψ(~x)|P] results in replacing every
occurrence of P (t1, . . . , tn) in φ by ψ[ti|xi], i.e. replacing every occurrence
of P (t1, . . . , tn) in φ by Q(t1, . . . , tn), i.e. results in φ[Q|P].

Now we prove our version of the cut rule. First, if Γ, ∆, X and Y

are sets of formulae, we write (Γ; ∆) ⊢ (X ;Y) if (Γ;∅) ⊢ θ for all θ ∈ X ,
and (Γ; ∆) ⊢ θ for all θ ∈ Y .

Proposition 9. Suppose Γ, ∆, X , Y are sets of formulae and φ a
formula. Then if (X ;Y) ⊢ φ and (Γ; ∆) ⊢ (X ;Y), then (Γ; ∆) ⊢ φ.

Proof. We prove by induction on the significant length of derivations
that if D is a derivation of (X ;Y ∪Λ) ⇒ φ, for some X , Y , Λ and φ, and
we have (Γ; ∆) ⊢ (X ;Y) for some Γ,∆, then (Γ; ∆ ∪ Λ) ⊢ φ. It is clear
that if this property holds for D it also holds for a derivation consisting
of D followed by an application of the weakening rule. In the induction
the cases of premises, and the rules for propositional connectives are
easy, as are the cases of ∀-elimination and ∃-introduction.

For ∀-introduction, we suppose the induction hypothesis holds for
derivations of significant length n, and we have a derivation D of signif-
icant length n+ 1, whose final line is (X ;Y ∪ Λ) ⇒ ∀xφ, deduced from

Semantics and completeness for schematic logic 257

previous line (X ;Y ∪ Λ) ⇒ φ using ∀-introduction, with x not free in
any member of X or Y or Λ, and suppose also we have Γ, ∆ such that
(Γ; ∆) ⊢ (X ;Y). By Proposition 5 (and weakening) there is a derivation
D′ of (X ′;Y ′ ∪ Λ) ⇒ φ of significant length at most n with X ′, Y ′, finite
subsets of X and Y respectively. Then by Proposition 5 again we can
find finite subsets Γ′ and ∆′ of Γ and ∆ such that (Γ′; ∆′) ⊢ (X ′;Y ′).
Then we can find a variable y which does not appear in D′ or any ele-
ment of Γ′ or ∆′, and then by Proposition 6 we obtain a derivation of
(X ′;Y ′ ∪Λ) ⇒ φ[y|x] of significant length at most n. Thus by the induc-
tion hypothesis we have (Γ′; ∆′ ∪Λ) ⊢ φ[y|x], and then by ∀-introduction
we obtain (Γ′; ∆′ ∪ Λ) ⊢ ∀y φ[y|x]. But then using →-elimination on this
together with the fact that

(∅;∅) ⊢ (∀y φ[y|x]) → (∀xφ)

(which is easily verified) gives that (Γ′; ∆′ ∪ Λ) ⊢ ∀xφ. Thus by weak-
ening we obtain (Γ; ∆ ∪ Λ) ⊢ ∀xφ, as required.

For ∃-elimination, we suppose the induction hypothesis holds for
derivations of significant length n, and we have a derivation D of sig-
nificant length n + 1, whose final line is (X ;Y ∪ Λ) ⇒ ψ, deduced from
previous lines (X ;Y ∪ Λ) ⇒ ∃xφ and (X ;Y ∪ Λ ∪ {φ}) ⇒ ψ using
∃-elimination, with x not free in any member of X or Y or Λ, and we
also suppose we have Γ, ∆ such that (Γ; ∆) ⊢ (X ;Y). Then by the
induction hypothesis we obtain (Γ; ∆) ⊢ ∃xφ. Also by Proposition 5
(and weakening) there is a derivation D′ of (X ′;Y ′ ∪ Λ ∪ {φ}) ⇒ ψ

of significant length at most n with X ′, Y ′, finite subsets of X and Y

respectively. Then by Proposition 5 we can find finite subsets Γ′ and ∆′

of Γ and ∆ such that (Γ′; ∆′) ⊢ (X ′;Y ′). Then we can find a variable
y which does not appear in D′ or any element of Γ′ or ∆′, and then
by Proposition 6 we obtain a derivation of (X ′;Y ′ ∪ Λ ∪ {φ[y|x]}) ⇒ ψ

of significant length at most n. Then by the induction hypothesis we
have (Γ′; ∆′ ∪ Λ ∪ {φ[y|x]}) ⊢ ψ, and thus (Γ; ∆ ∪ Λ ∪ {φ[y|x]}) ⊢ ψ by
weakening. But then since (Γ; ∆) ⊢ ∃xφ, using →-elimination together
with the fact that

(∅;∅) ⊢ (∃xφ) → (∃y φ[y|x])

(which is easily verified) gives (Γ; ∆) ⊢ ∃y φ[y|x], so that by ∃-elimination
we obtain (Γ; ∆) ⊢ ψ, as required.

For the substitution rule, we suppose the induction hypothesis holds
for derivations of significant length n, and we have a derivation D of

258 Oliver Tatton-Brown

significant length n + 1, whose final line is (X ;Y ∪ Λ) ⇒ φ[ψ(~x)|P],
deduced from previous line (X ;Y ∪ Λ) ⇒ φ using the substitution rule,
with P not appearing in any element of Y or Λ, and suppose also we
have Γ, ∆ such that (Γ; ∆) ⊢ (X ;Y). By Proposition 5 (and weakening)
there is a derivation D′ of (X ′;Y ′ ∪ Λ) ⇒ φ of significant length at
most n with X ′, Y ′, finite subsets of X and Y respectively. Then by
Proposition 5 we can find finite subsets Γ′ and ∆′ of Γ and ∆ such that
(Γ′; ∆′) ⊢ (X ′;Y ′). Then we can find a placeholder variableQ which does
not appear in D′ or any element of Γ′ or ∆′, and then by Proposition 7
we obtain a derivation of

({χ[Q|P] | χ ∈ X ′};Y ′ ∪ Λ) ⇒ φ[Q|P]

of significant length at most n. Then for each χ ∈ X ′, since Γ′ ⊢ χ by
assumption we have Γ′ ⊢ χ[Q|P] by Proposition 8, so that

(Γ′; ∆′) ⊢ ({χ[Q|P] | χ ∈ X ′};Y ′)

and thus by the induction hypothesis (Γ′; ∆′ ∪ Λ) ⊢ φ[Q|P]. Then the
substitution rule gives (Γ′; ∆′ ∪ Λ) ⊢ φ[Q|P][ψ(~x)|Q], i.e. (Γ′; ∆′ ∪ Λ) ⊢
φ[ψ(~x)|P]. Finally weakening gives (Γ; ∆ ∪ Λ) ⊢ φ[ψ(~x)|P] as required.

We introduce a relation ⊢1 for derivability in the first order portion
of the deductive system. To be precise, if Γ is a set of formulae and φ a
formula (which may contain placeholder variables) then Γ ⊢1 φ is defined
to hold if (∅; Γ) ⊢ φ. Thus Γ ⊢1 φ implies Γ ⊢ φ, by Proposition 4. By
Proposition 9, if Λ ⊢1 φ, and for all θ ∈ Λ we have (Γ; ∆) ⊢ θ, then
Γ; ∆ ⊢ φ.

For formulae of first order logic, this derivability relation ⊢1 is com-
plete (it is a standard system of first order natural deduction). To be
more precise, we use �1 to denote normal first order entailment. Then
for Γ a set of placeholder free formulae and φ another placeholder free
formula, Γ �1 φ implies Γ ⊢1 φ.

6. Soundness

We now prove a soundness theorem for schematic logic, which justifies its
use in an ontologically innocent way. The idea is that when we derive a
conclusion φ from general premises Γ in schematic logic, we are implicitly

Semantics and completeness for schematic logic 259

giving meanings to placeholders with each use of the substitution rule
setting up a way that the meaning of the formula χ being substituted
in depends on the meaning stipulated for the result χ[ψ|P]. Combining
these dependencies with a stipulation for any placeholders in the conclu-
sion φ, we obtain stipulations for every placeholder that occurs in the
derivation, and in every premise that is used (at some points we may
also have to make some arbitrary stipulations for surplus placeholders).
The soundness theorem states that if the premises in Γ are true under
these meaning stipulations (there may be multiple meaning stipulations
applying to each premise), then the conclusion φ is also true under its
meaning stipulation. The theorem deals entirely with meaning stipu-
lations that arise in the course of a derivation, and to apply it in any
particular case we do not need to quantify over an infinite totality of
meaning stipulations, or formulae, or properties.

A single use of the substitution rule, to obtain χ[ψ|P] from χ, may
well not be enough to give a meaning stipulation for χ. There may be
other placeholders in χ than P , and ψ may itself contain placeholders.
These may have meanings given by later uses of the substitution rule,
perhaps deducing χ[ψ|P][θ|Q] from χ[ψ|P], providing a meaning for Q
as well as P . As a result we are interested in meanings that χ picks up
on a path through the derivation. By path here we mean a sequence
(φ1, . . . , φn) of lines of a derivation (not necessarily consecutive) such
that for each i < n φi+1 is deduced by a rule of inference with φi one of
the premises used. We will call such a sequence a deductive chain.

So let Φ = (Φ1, . . . ,Φn) be a deductive chain in some derivation, and
suppose we have a meaning stipulation λ which covers every placeholder
that appears in Φ. We define by induction downwards along the chain a
meaning stipulation M

Φ,λ
i for each Φi. This is done via the uses of the

substitution rule in Φ: each of these can be considered an act setting up
a meaning dependence of the premise of the substitution on the result,
which put together gives a meaning stipulation for each line of the chain
in terms of λ.

We let MΦ,λ
n be λ. For each i if Φi+1 is deduced from Φi by any

inference rule other than substitution, then M
Φ,λ
i is just defined to be

M
Φ,λ
i+1 . If Φi+1 is deduced from Φi by substitution, with Φi+1 being

Φi[ψ(~x)|P], then MΦ,λ
i is built using the meaning dependency described

in Section 4: it is defined to be gψ(~x)|P (MΦ,λ
i+1). At every point in the chain

M
Φ,λ
i covers all the placeholders covered by M

Φ,λ
i+1 , so since MΦ,λ

n = λ

260 Oliver Tatton-Brown

covers every placeholder appearing in the deductive chain, so does each
M

Φ,λ
i . In particular every MΦ,λ

i is a meaning stipulation for Φi.

We are interested in the meaning stipulations of this kind that a
formula picks up from different paths through a derivation. So suppose
we have a derivation D with conclusion χ. We let CD be the set of
maximal deductive chains in D which end in χ; thus each Φ in CD starts
with a premise and ends in χ (we require that they end in χ since there
might be dead ends in D lines of the proof not used at any later point
and we want to ignore these). Now a meaning stipulation λ for χ may
not be enough to define the MΦ,λ

i as above: we also need that λ covers
every placeholder in a given path Φ. Thus we extend λ arbitrarily to
cover any surplus placeholders.

Suppose λ is a meaning stipulation with domain Ap, and let P be a
finite set of placeholders. An extension of λ to P is just a meaning stipu-
lation λ with domain Ap, which covers P and every placeholder covered
by λ, and which agrees with λ on the placeholders covered by λ (if λ
covers Q and a1, . . . , ap ∈ Ap then λ(a1, . . . , ap)(Q) = λ(a1, . . . , ap)(Q)).
Obviously every meaning stipulation has an extension to any finite set
of placeholders. We can if we like suppose that we have stipulated some
canonical manner for forming extensions that we have at some point
stipulated arbitrary subsets of Am to serve as meanings for surplus place-
holders of arity m (this could take place once and for all the first time
schematic logic is used for the language in question).

Now suppose that D is a derivation with conclusion χ and that λ is a
meaning stipulation which covers every placeholder in D. For each line
φ of D, we let Sλ(φ) be the set of meaning stipulations φ obtains in the
course of the derivation when λ is used as a meaning stipulation for the
conclusion χ:

Sλ(φ) = {MΦ,λ
i | Φ ∈ CD, Φi = φ}.

These Sλ(φ) are obviously finite sets. Note that to talk about these
meanings we do not need to believe in any abstract objects. Although
the chains are modelled as finite sequences of lines of a derivation, this
is just the appropriate set theoretic representative. One would normally
have no problem talking about a sequence of lines of a physically re-
alised proof; if one wants an analysis of this, one could talk in terms of
pluralities or fusions of lines.

We make some quick notes about Sλ before proceeding. Suppose
that φ is deduced by some inference rule apart from substitution using

Semantics and completeness for schematic logic 261

previous line θ, and let µ ∈ Sλ(φ). By definition there is a chain Φ in
CD with Φi = φ, MΦ,λ

i = µ for some i. Then there must also exist a
chain Ψ which goes through θ to φ and agrees with Φ from that point
on: i.e. there is some j such that Ψj is φ, Ψj−1 is θ and Ψk = Φk+i−j

for k j. By induction down from the end of these chains, we have
that MΨ,λ

k = M
Φ,λ
k+i−j for k j. In particular MΨ,λ

j = M
Φ,λ
i = µ; so

M
Ψ,λ
j−1 = µ by definition, so µ ∈ Sλ(θ).

Now suppose that φ is deduced by substitution from θ, with φ =
θ[ψ(~x)|P]. Again if µ ∈ Sλ(φ) then there is a chain Φ in CD with
Φi = φ, MΦ,λ

i = µ. Thus θ must be Φi−1, and by the definition of M we

have MΦ,λ
i−1 = gψ(~x)|P (µ), so gψ(~x)|P (µ) ∈ Sλ(θ).

To prove the soundness theorem we need an entailment relation for
formulae with meaning stipulations over a given structure. Let A be a
structure. Suppose that K is a set of pairs where if (φ, µ) ∈ K then φ

is a formula and µ a meaning stipulation for φ over A. For a variable
assignment v over A, we write A, v,� K if A, v, µ � φ for all (φ, µ) in K.
If (θ, λ) is another pair with θ a formula and λ a meaning stipulation for
θ then we write K �A (θ, λ) if for every variable assignment v such that
A, v,� K, we have A, v, λ � θ.

Finally if Λ is a set of lines of D, we let

Sλ(Λ) =
{

(φ, µ) | φ ∈ Λ, µ ∈ Sλ(φ)
}

.

We use this notation in particular for Sλ(Γ) where (Γ; ∆) ⇒ χ is a line
in a derivation the set Γ of general premises being a set of lines of the
derivation, as discussed in Section 5.

We can now state and prove the soundness theorem. The proof is
very much like soundness for first order natural deduction, except for
having to keep track of the meaning stipulations in use, and the appeal
to Lemma 3.

Theorem 10 (Soundness of Schematic Logic). Let D be a derivation
in schematic logic with final line (Γ; ∆) ⇒ χ. Let λ be a meaning
stipulation for χ, and let λ be an extension of λ to the set of placeholders
occurring in D. Then Sλ(Γ) ∪ (∆ × {λ}) �A (χ, λ).

Proof. We show by induction on i that for every line (Γ; ∆) ⇒ φi of

D, and for every µ ∈ Sλ(φi), we have Sλ(Γ) ∪ (∆ × {µ}) �A (φi, µ).

This proves the theorem since λ ∈ Sλ(χ), and λ agrees with λ on the
placeholders of χ.

262 Oliver Tatton-Brown

If ({φi};∅) ⇒ φi is a general premise then for any µ ∈ Sλ(φi) we

have (φ, µ) ∈ Sλ({φi}) so this is straightforward. If (∅; {φi}) ⇒ φi is a

specific premise then for any µ ∈ Sλ(φi) we have (φi, µ) ∈ {φi} × {µ} so
this is again straightforward.

If line (Γ; ∆) ⇒ φi is deduced from line (Γ′; ∆′) ⇒ φj by weakening

then Sλ(φj) = Sλ(φi). Thus by the induction hypothesis if µ ∈ Sλ(φi)

then Sλ(Γ′) ∪ (∆′ × {µ}) �A (φj , µ), so that since φi = φj , Γ′ ⊆ Γ and

∆′ ⊆ ∆ we obtain Sλ(Γ) ∪ (∆ × {µ}) �A (φi, µ) as required.

Suppose line (Γ; ∆) ⇒ φi is deduced from φj and φk by ∧-introduc-

tion, with φi = φj ∧ φk, and let µ ∈ Sλ(φi). Then also µ ∈ S(φj) and

µ ∈ Sλ(φk), so by the induction hypothesis we have Sλ(Γ)∪(∆×{µ}) �A
(φj, µ) and Sλ(Γ) ∪ (∆ × {µ}) �A (φk, µ). Thus Sλ(Γ) ∪ (∆ × {µ}) �A

(φj ∧ φk, µ).

The cases of ∧-elimination and ∨-introduction are immediate.

Suppose line (Γ; ∆) ⇒ φi is deduced by ∨-elimination from lines j, k
and l (with the premises in this order), where φj = θ ∨ ψ, φk = φi and

φl = φi. Let µ ∈ Sλ(φi), so µ ∈ Sλ(φj), µ ∈ Sλ(φk) and µ ∈ S(φl). By

the induction hypothesis we have Sλ(Γ)∪(∆×{µ}) �A (θ∨ψ, µ), Sλ(Γ)∪

((∆ ∪ {θ}) × {µ}) �A (φi, µ) and Sλ(Γ) ∪ ((∆ ∪ {ψ}) × {µ}) �A (φi, µ).

Suppose that A, v � Sλ(Γ)∪(∆×{µ}). Then A, v, µ � θ∨ψ, so A, v, µ � θ

or A, v, µ � φ. If the former then A, v � Sλ(Γ) ∪ ((∆ ∪ {θ}) × {µ}), so
A, v � (φi, µ). Similarly if A, v, µ � ψ then A, v � (φi, µ). Thus either
way, A, v � (φi, µ), as required.

Suppose that line (Γ; ∆) ⇒ φi is deduced from φj by →-introduction,

with φi = ψ → φj . Let µ ∈ Sλ(φ), so µ ∈ Sλ(φj). By the induction

hypothesis Sλ(Γ) ∪ ((∆ ∪ {ψ}) × {µ}) �A (φj , µ). Suppose that v is

a variable assignment such that A, v � Sλ(Γ) ∪ (∆ × {µ}). Then if

A, v, µ � ψ then A, v � Sλ(Γ) ∪ ((∆ ∪ {ψ}) × {µ}) so A, v, µ � φj . Thus

for any v such that A, v � Sλ(Γ) ∪ (∆ × {µ}), we have A, v, µ � ψ → φj .

Thus Sλ(Γ) ∪ (∆ × {µ}) �A (φi, µ), as required.

Suppose that line (Γ; ∆) ⇒ φi is deduced from φj and φk = φj → φi

by →-elimination. Let µ ∈ Sλ(φi), so µ ∈ Sλ(φj) and µ ∈ Sλ(φk). Thus

if v is a variable assignment such that A, v � Sλ(Γ) ∪ (∆ × {µ}), then
by the induction hypothesis A, v, µ � φj and A, v, µ � φj → φi. Thus
A, v, µ � φi, as required.

Semantics and completeness for schematic logic 263

Suppose that line (Γ; ∆) ⇒ φi is deduced from previous lines φj and

φk = ¬φj by the ¬-rule, with φi = ¬ψ. Let µ ∈ Sλ(φi), so µ ∈ Sλ(φj)

and µ ∈ Sλ(φk). Let v be a variable assignment such that A, v � Sλ(Γ)∪

(∆ × {µ}). Then if A, v, µ ⊢ ψ, then A, v � Sλ(Γ) ∪ ((∆ ∪ {ψ}) × {µ}) so
by the induction hypothesis A, v, µ � φj and A, v, µ � ¬φj which is a con-
tradiction. Thus A, v, µ 0 ψ, so A, v, µ ⊢ ¬ψ, so A, v, µ ⊢ φi as required.

Suppose that line (Γ; ∆) ⇒ φi is deduced from φj = ¬¬φi by dou-

ble negation elimination. Let µ ∈ Sλ(φi), so µ ∈ Sλ(φj). Let v be a

variable assignment such that A, v � Sλ(Γ) ∪ (∆ × {µ}). Thus by the
induction hypothesis A, v, µ � ¬¬φi. Thus it’s not true that A, v, µ 2 φi,
so A, v, µ � φi as required.

Suppose that line (Γ; ∆) ⇒ φi is deduced from φj by ∀-introduction,
φi = ∀xφj . We have that x is not free in any element of Γ or ∆.

Let µ ∈ Sλ(φi), so µ ∈ Sλ(φj). Let v be a variable assignment such

that A, v � Sλ(Γ) ∪ (∆ × {µ}). Then if a is any element of A, we also

have A, v(a|x) � Sλ(Γ) ∪ (∆ × {µ}). Thus by the induction hypothesis
A, v(a|x), µ � φj . But a was arbitrary, so A, v, µ � ∀xφj as required.

Suppose that line (Γ; ∆) ⇒ φi is deduced from φj by ∀-elimination,

with φj = ∀xψ and φi = ψ[t|x]. Let µ ∈ Sλ(φi), so µ ∈ Sλ(φj). Let

v be a variable assignment such that A, v � Sλ(Γ) ∪ (∆ × {µ}). Thus
by the induction hypothesis A, v, µ � ∀xψ, so A, v(v(t)|x), µ � ψ, so
A, v, µ � ψ[t|x], as required.

The case of ∃-introduction is similar.

Suppose that line (Γ; ∆) ⇒ φi is deduced by ∃-elimination from
lines j and k (with the premises in this order), where φj = ∃x θ and
φk = φi. We have that x is not free in φi or any member of Γ or ∆. Let
µ ∈ Sλ(φ), so µ ∈ Sλ(φj) and µ ∈ S(φk). Let v be a variable assignment

such that A, v � Sλ(Γ) ∪ (∆ × {µ}). Then by the induction hypothesis
A, v, µ � ∃x θ, so there is some a ∈ A with A, v(a|x), µ � θ. Then

A, v(a|x) � Sλ(Γ)∪((∆∪{θ})×{µ}) so again by the induction hypothesis
A, v(a|x), µ � φi. But x is not free in φi so A, v, µ � φi as required.

Suppose finally that line (Γ; ∆) ⇒ φi is deduced from φj by substitu-

tion, φi = φj [ψ(~x)|P]. Let µ ∈ Sλ(φi), so (by the discussion before the

theorem) gψ(~x)|P (µ) ∈ Sλ(φj). Let v be a variable assignment such that

A, v � Sλ(Γ) ∪ (∆ × {µ}). Then for any δ ∈ ∆ we have A, v, µ � δ, and
P does not appear in δ, so gψ(~x)|P (µ) and µ agree on the placeholders

264 Oliver Tatton-Brown

of δ, so A, v, gψ(~x)|P (µ) � δ. Thus A, v � Sλ(Γ) ∪ (∆ × {gψ(~x)|P (µ)}),
so by the induction hypothesis A, v, gψ(~x)|P (µ) � φj . We can then apply
Lemma 3 and deduce that A, v, µ � φj [ψ(~x)|P], as required.

Thus essentially if we stipulate meanings for the placeholders in
the conclusion of a derivation, and the premises of the derivation are
true under the corresponding meaning stipulations picked up on paths
through the derivation, then the conclusion of the derivation is true
under that meaning stipulation. This justifies the use of schematic logic
in an ontologically innocent way. We do not need any totality of prop-
erties, pluralities, formulae or meaning stipulations for the placeholder
variables to range over: they just take on meanings given in the course
of a derivation.

7. Definable meaning stipulations and conservativeness

We now focus on particular meaning stipulations, the definable meaning

stipulations. These are meaning stipulations which assign meanings in
terms of open formulae of the language in use. We also introduce stipu-

lation blueprints, which are syntactic objects that give rise to definable
meaning stipulations. We will see that we can require that all meaning
stipulations that appear in the proof of the soundness theorem are defin-
able, so we could have used the notion of definable meaning stipulation
or stipulation blueprint throughout that would have complicated the
exposition somewhat though. We define the notions now as once we have
established their basic properties we can prove a simple conservativeness
theorem for schematic logic, as a corollary to the soundness theorem. In
the next section we will also see how using stipulation blueprints allows
us to prove a straightforward completeness theorem for schematic logic.

Suppose we have placeholders Pn1

1 , . . . , Pnm
m and placeholder free

formulae ψ1(x1
1, . . . , x

1
n1

), . . . , ψm(xm1 , . . . , x
m
nm

), and also variables y1,
. . . , yp distinct from each other and all of the xij , such that for each i,

(FV(ψi) \ {xi1, . . . x
i
ni

}) ⊆ {y1, . . . , yp}. If the Pi, ψi(~xi) and yj satisfy
these conditions then we call

({ψ1(~x1)|P1, . . . ψm(~xm)|Pm}, (y1, . . . , yp))

a stipulation blueprint, where we write ψi(~xi)|Pi for the pair (ψi(~xi), Pi).

We use the abbreviation ~ψ|~P for {ψ1(~x1)|P1, . . . ψm(~xm)|Pm}.

Semantics and completeness for schematic logic 265

Any stipulation blueprint σ = (~ψ|~P , (y1, . . . , yp)) has a meaning de-

pendence g
~y
~ψ|~P

associated with it, as defined in Section 4. This is a

meaning dependence of {P1, . . . , Pm} on the empty set of placeholders
(since the ψi are placeholder free). For such a stipulation blueprint we
define the meaning stipulation ησ = η

y1,...,yp

~ψ|~P
which has domain Ap by

η
~y
~ψ|~P

= g
~y
~ψ|~P

(λ∅),

where λ∅ is the trivial unparametrized meaning stipulation, which covers
no placeholders (so λ∅ is just the empty function). A stipulation of the
form ησ for some stipulation blueprint σ is called a definable meaning

stipulation.
Unpacking the definition, we have that the set of placeholders η~y~ψ|~P

covers is just {P1, . . . , Pm}, and for each i we have

η
~y
~ψ|~P

(b1, ..., bp)(Pi) = g
~y
~ψ|~P

(λ∅)(b1, ..., bp)(Pi) = δ
~y,λ∅

ψi(~xi)|Pi
(b1 . . . bp)(Pi)

= {(a1, . . . , ani
) ∈ Ani | A, xij 7→ aj , yk 7→ bk, λ∅ � ψi}

= {(a1, . . . , ani
) ∈ Ani | A, xij 7→ aj , yk 7→ bk �1 ψi}.

It will be useful to know that if λ is a definable meaning stipula-
tion for φ, then λ is actually defined by a stipulation blueprint which is
particularly suited to substitution in φ. For a formula φ we say that a
stipulation blueprint ({ψ1(~x1)|P1, . . . ψm(~xm)|Pm}, ~y) is suited to φ if all

placeholders in φ are among the Pi, and each ψi(~xi) is substitutable for
Pi in φ, and no yj occurs free in φ.

Note that from the second condition it follows that the repeated sub-
stitution φ[ψ1(~x1)|P1], . . . [ψm(~xm)|Pm] is defined, and is independent of
the order the substitution are made, and equal to the multiple substitu-
tion φ[ψ1(~x1)|P1, . . .ψm(~xm)|Pm].

Lemma 11. Suppose that λ is a definable meaning stipulation for φ. Let
the domain of λ be Ap, and let {P1, . . . , Pm} be the set of placeholders
it covers. Then there is a stipulation blueprint (~ψ|~P , (y1, . . . , yp)) suited

to φ such that λ is η~y~ψ|~P
.

Proof. We have a stipulation blueprint ({θ1(~u1)|P1, . . . θm(~um)|Pm},
(v1, . . . , vp)) such that λ is η~v~θ|~P

, and can let ni be the arity of Pi. We

just need to do some variable relabelling. Let y1, . . . , yp be distinct

266 Oliver Tatton-Brown

variables which do not occur in φ or and θi. For each i let xi1, . . . ,
xini

be variables distinct from each other and the yj , and which also do
not occur in φ or in any θi. Finally for each i let wi1, . . . , wili be the
variables in θi which are not among the uij or the vj , and let zi1, . . . ,

zili be variables distinct from each other, from the xjk and from the yj
and which also do not occur in φ or in any θj . Let ψi be θi but with
every occurrence of uij replaced by xij , every occurrence of vj replaced
by yj, and every occurrence of wij replaced by zij . Then ψi is just θi with
variables relabelled so for all a1, . . . , ani

, b1, . . . , bp we have

A, uij 7→ aj , vk 7→ bk � θi iff A, xij 7→ aj , yk 7→ bk � ψi.

Thus η~v~θ|~P
= η

~y
~ψ|~P

. Also ψi has no variables in common with φ, so

certainly ψi(~xi) is substitutable for Pi in φ; and the y1, . . . , yp are not free

in φ. Thus the stipulation blueprint ({ψ1(~x1)|P1, . . . , ψm(~xm)|Pm}, ~y) is
suited to φ.

We now relate the meaning stipulation η~y~ψ|~P
to the result of carrying

out the substitution.

Lemma 12. Suppose that ({ψ1(~x1)|, P1, . . . ψm(~xm)|Pm}, y1, . . . , yp) is
suited to φ. Let z1, . . . , zk be the free variables of φ. Then for any
a1, . . . , ak, b1, . . . , bp we have

A, zi 7→ ai, yj 7→ bj �1 φ[~ψ|~P]

if and only if A, zi 7→ ai, η
~y
~ψ|~P

(b1, . . . , bp) � φ.

Proof. All the placeholders of φ are among P1, . . . , Pm, and the ψi
are placeholder free, so the trivial meaning stipulation λ∅ is a meaning
stipulation for (Plc(φ) \ {P1, . . . , Pm}) ∪

⋃

i Plc(ψi). Thus by Lemma 3
we have

A, v, λ∅ � φ[~ψ|~P] iff A, v, g
~y
~ψ|~P

(λ∅)(v(y1), . . . , v(yp)) � φ.

Thus we obtain

A, zi 7→ ai, yj 7→ bj �1 φ[~ψ|~P] iff A, zi 7→ ai, yj 7→ bj , λ∅ � φ[~ψ|~P]

iff A, zi 7→ ai, yj 7→ bj , g
~y
~ψ|~P

(λ∅)(b1, . . . , bp) � φ

iff A, zi 7→ ai, g
~y
~ψ|~P

(λ∅)(b1, . . . , bp) � φ

iff A, zi 7→ ai, η
~y
~ψ|~P

(b1, . . . , bp) � φ

as claimed.

Semantics and completeness for schematic logic 267

We use this lemma to show that a meaning dependence g~zχ(~x)|Q maps
definable meaning stipulations to definable meaning stipulations.

Lemma 13. For any meaning dependence g~zχ(~w)|Q, if λ is a definable

meaning stipulation for χ then g~zχ(~w)|Q(λ) is definable.

Proof. Let ~w = w1, . . . , wl, ~z = z1, . . . , zq.
λ is a definable meaning stipulation for χ so there is a stipulation

blueprint ({ψ1(~x1)|P1, . . . ψm(~xm)|Pm}, (y1, . . . , yp)) suited to χ with

λ = η
~y
~ψ|~P

. Then we have for all b1 . . . bq, c1 . . . cp that

g~zχ(~w)|Q(η~y~ψ|~P
)(~b,~c)(Q)

is {(a1, . . . , al) | A,wi 7→ ai, zj 7→ bj , η
~y
~ψ|~P

(~c) � χ} which by the previous

lemma is {(a1, . . . , al) | A,wi 7→ ai, zj 7→ bj , yk 7→ ck �1 χ[ψ1(~x1)|P1,

. . . , ψm(~xm)|Pm]} which is η
z1,...,zq,y1,...,yp

χ[~ψ|~P]|Q
(~b,~c)(Q).

For Pi 6= Q we have that g~zχ(~w)|Q(η~y~ψ|~P
)(~b,~c)(Pi) is η~y~ψ|~P

(~c)(Pi), which

is η
z1,...,zq,y1,...,yp

~ψ|~P
(~b,~c)(Pi).

Thus g~zχ(~w)|Q(η~y~ψ|~P
) is ησ, where σ is

({(ψi(~xi), Pi) : Pi 6= Q} ∪ {(χ[~ψ|~P], Q)}, (z1, . . . , zq, y1, . . . , yp)),

so g~zχ(~w)|Q(η~y~ψ|~P
) is a definable meaning stipulation.

Thus we could have stated the soundness theorem in terms of defin-
able meaning stipulations. If we require that the meaning stipulation
λ for the final formula of a derivation is definable, then we can extend
it to a definable meaning stipulation λ which covers every placeholder
occurring in the derivation. It then follows from this lemma that every

M
Φ,λ
i is definable (by induction down each chain). Thus all the elements

of each Sλ(φ) are definable.
It will be helpful to state a version of the soundness theorem in terms

of stipulation blueprints though. We need a notion of extension of stip-
ulation blueprints corresponding to the notion of extension of meaning
stipulations. So suppose σ = ({ψ1(~x1)|P1, . . . ψm(~xm)|Pm}, ~y) is a stipu-
lation blueprint, and P a set of placeholders. A stipulation blueprint τ is
an extension of σ to P if τ is of the form ({ψ1(~x1)|P1, . . . ψm(~xm)|Pm} ∪

268 Oliver Tatton-Brown

S, ~y), with every placeholder Q in P occurring in a pair (χ(~x)|Q) in S.
Note that this requires that every pair (θ(~v)|Q′) in S has that every free
variable in θ beyond the vi is among the yj . Obviously every stipulation
blueprint has an extension to any finite set of placeholders.

We define a notion of entailment for pairs (φ, σ) with σ a stipulation
blueprint suited to φ. Recall that ησ denotes the definable meaning
stipulation obtained from stipulation blueprint σ. Then for a structure
A and variable assignment v over A we define A, v � (φ, σ) to hold when
A, v, ησ � φ holds. If K is a set of such pairs, then we define K � (φ, σ)
to hold when for all structures A and variable assignments v over A such
that A, v � (θ, τ) for all (θ, τ) ∈ K, we have A, v � (φ, σ).

If φ is a formula we let D(φ) be the set of pairs (φ, σ) where σ

is a stipulation blueprint suited to φ. We write DL when we want to
specify the language in use. If Γ is a set of formulae then we let D(Γ)
be

⋃

γ∈Γ D(γ).
Now we can state a version of the soundness theorem in terms of

these stipulation blueprints.

Theorem 14. Let D be a derivation in schematic logic with final line
(Γ; ∆) ⇒ χ. Let σ be a stipulation blueprint suited to χ. Let σ be
an extension of σ to the set of placeholders which appear in D. Then
D(Γ) ∪ (∆ × {σ}) � (χ, σ).

Proof. Let D be a derivation of χ from Γ. Pick a structure A, and
let λ be ησ with respect to A. Then λ = ησ is an extension of λ to
the set of placeholders in A, so we obtain by Theorem 10 that Sλ(Γ) ∪
(∆ × {λ}) �A (χ, λ). As remarked after Lemma 13, we have that all

meaning stipulations in each Sλ(γ) are definable: thus {(γ, κ) | γ ∈ Γ, κ
a definable meaning stipulation for γ} ∪ ∆{λ} �A (χ, λ), so

{(γ, ητ) | γ ∈ Γ, τ ∈ D(γ)} ∪ ∆{ησ} �A (χ, ησ)

so since A was arbitrary, we obtain

D(Γ) ∪ ∆{σ} � (χ, σ).

We are now approaching the conservativeness theorem, but we need
some more preliminary definitions. First we need a notation for certain
universally closed first order substitution instances of a formula. Let φ
be a formula of schematic logic, and let ({ψ1(~x1)|P1, . . . ψm(~xm)|Pm}, ~y)
be a stipulation blueprint suited to φ. Then we define ∀~y φ[~ψ|~P] to be

∀y1, . . . , ∀yp (φ[ψ1(x1
1, . . . , x

1
n1

)|P1, . . . , ψm(xm1 , . . . , x
m
nm

)|Pm]).

Semantics and completeness for schematic logic 269

If σ = ({ψ1(~x1)|P1, . . . ψm(~xm)|Pm}, ~y), we will also use the notation
φ[σ] for this.

We let F (φ) be the set of first order formulae of this form for given
φ, written FL(φ) when we want to specify the language L in use. If Γ is
a set of formulae then we let F (Γ) be

⋃

γ∈Γ F (γ).
This F (φ) is exactly the normal first order scheme associated with

φ: for instance if φind is (P (0) ∧ ∀x (P (x) → P (Sx)) → ∀xP (x) then
F (φind) is exactly the normal first order induction scheme (as described
for example in Cori and Lascar, 2001, p. 65).

Note that for any ∀~y φ[~ψ|~P] ∈ F (φ) we have ({φ};∅) ⊢ ∀~y φ[~ψ|~P]:
one can deduce φ[ψ1(x1

1, . . . , x
1
n1

)|P1, . . . , ψm(xm1 , . . . , x
m
nm

)|Pm] by re-

peated substitutions, and then deduce ∀~y φ[~ψ|~P] by repeated ∀-intro-
duction, since by definition the yj are not free in φ.

The following lemma is simple but useful.

Lemma 15. Let φ be a formula, σ a stipulation blueprint suited to it.
Then for any variable assignment v, we have A, v � (φ, σ) iff A, v �1 φ[σ].

Proof. Let σ = ({ψ1(~x1)|P1, . . . ψm(~xm)|Pm}, ~y) and let z1, . . . , zk be
the free variables of φ. Using Lemma 12, we have for any a1, . . . , ak ∈ A

that

A, zi 7→ ai, η
~y
~ψ|~P

� φ

iff A, zi 7→ ai, η
~y
~ψ|~P

(b1, . . . , bp) � φ for all b1, . . . , bp

iff A, zi 7→ ai, yj 7→ bj �1 φ[ψ1(~x1)|P1, . . . , ψm(~xm)|Pm] for all b1, . . . , bp

iff A, zi 7→ ai �1 ∀y1, . . . , ∀yp (φ[ψ1(~x1)|P1, . . . , ψm(~xm)|Pm])

which is the desired equivalence.

Immediate, from Proposition 15 we obtain:

Corollary 16. Let K be a set of pairs (θ, τ) with τ a stipulation
blueprint suited to θ. Let (φ, σ) be another such pair. Then K � (φ, σ)
if and only if {θ[τ] | (θ, τ) ∈ K} �1 φ[σ].

Immediate, from Corollary 16 we have:

Corollary 17. Let Γ and ∆ be sets of formulae of schematic logic, φ
another formula. Let σ be a stipulation blueprint suited to φ and to
every element of ∆. Then

D(Γ) ∪ (∆ × {σ}) � (φ, σ) if and only if F (Γ) ∪ {δ[σ] | δ ∈ ∆} �1 φ[σ]

270 Oliver Tatton-Brown

Note that this lemma can only apply to a set ∆ of formulae if ∆ con-
tains finitely many placeholders, since otherwise no stipulation blueprint
will be suited to all its members.

We now obtain our conservativeness theorem. Recall the relation ⊢1,
which for first order formulae is a deducibility relation in a standard
system of first order natural deduction.

Theorem 18 (Conservativeness of Schematic Logic). Let Γ be a set
of formulae of schematic logic, ∆ a set of first order formulae and φ

a first order formula (all of the same language). If (Γ; ∆) ⊢ φ, then
F (Γ) ∪ ∆ ⊢1 φ.

Proof. Suppose that (Γ; ∆) ⊢ φ. There are finite subsets Γ′ of Γ and
∆′ of ∆ such that there is some derivation D of (Γ′; ∆′) ⇒ φ. Let

σ = ({ψ1(~x1)|P1, . . . ψm(~xm)|Pm}, ~y)

be a stipulation blueprint which covers every placeholder in D, where
each ψi actually has no free variables beyond the xi, and ~y is actually
the empty list of variables. Then σ is suited to φ, and to every element
of ∆′.

By Theorem 14, we have

D(Γ) ∪ (∆ × {σ}) � (φ, σ)

so by the previous lemma

F (Γ) ∪ {δ[σ] | δ ∈ ∆} �1 φ[σ]

so by first order completeness

F (Γ) ∪ {δ[σ] | δ ∈ ∆} ⊢1 φ[σ].

But φ contains no placeholders so for each θ ∈ ∆ ∪ {φ}, ∀~y θ[~ψ|~P] is
just a universal closure of θ, prefixed by the quantifiers ∀y1 . . .∀yn cor-
responding to the list ~y: since the list ~y is the empty list, this means
∀~y θ[~ψ|~P] is just θ. Thus

F (Γ) ∪ ∆ ⊢1 φ

as claimed.

Otherwise one can give a syntactic proof of this, in which one can
show that every derivation in schematic logic has a similar derivation in
first order logic, following the same argument except that one may have

Semantics and completeness for schematic logic 271

to repeat pieces of reasoning in the first order logic: the substitution
rule for schematic logic allows one to derive a result using a placeholder
and then draw various different conclusions from it immediately as sub-
stitution instances, whereas in first order logic one may have to repeat
the argument for each desired conclusion. Feferman (1991, p. 7) gives a
quick syntactic proof for the case of a language with a single schematic
variable.

The converse to Theorem 18 also holds. For any f ∈ F (γ) we have
that f is derivable from γ in schematic logic, by the remark following
the definition of F . Thus if F (Γ) ⊢1 φ, then Γ ⊢ φ, by Proposition 9.

8. Completeness

We now define an entailment relation for formulae of schematic logic, and
prove that the deductive system is complete with respect to this notion
of entailment. As far as the author is aware, this is the first completeness
theorem that has been proved for the logic.

We will not worry as much about ontological innocence here as above.
Proving a completeness theorem requires the existence of sufficient struc-
tures for the theorem to hold, so one generally cannot proceed in a
completely ontologically innocent way. We will quantify over languages
as well as structures. The resources needed are similar to those required
for proving the completeness of first order logic (essentially a countable
infinity of objects is required), so in as much as one can believe the
completeness of first order logic without incurring significant ontological
commitments the same is true for schematic logic.

For the purposes of the completeness theorem we need the possi-
bility of making meaning stipulations for infinitely many placeholders.
A blueprint limit is a sequence (σn|n ∈ N) of blueprints such that if
j i then σj extends σi, and such that every placeholder is covered by
some σi. We say a blueprint limit (σn | n ∈ N) extends a stipulation
blueprint τ if for every n we have that σn extends τ (equivalently if σ0

extends τ). It is easy to see that for every stipulation blueprint there is
a blueprint limit extending it. For a blueprint limit σ and formula φ we
let σ(φ) be σn where n is minimal such that σn covers the placeholders
of φ. Wet let φ[σ] be φ[σ(φ)], i.e. φ[σn(φ)] where n is minimal such that
σn covers the placeholders of φ. For a set ∆ of formulae we let ∆ ∗ σ be
{(φ, σ(φ)) | φ ∈ ∆}. Immediate from Corollary 16 we have:

272 Oliver Tatton-Brown

Proposition 19. Let Γ and ∆ be formulae of schematic logic, φ a
formula of schematic logic, σ a stipulation blueprint suited to φ, and τ

a blueprint limit extending σ. Then

D(Γ) ∪ (∆ ∗ τ) � (φ, σ) if and only if F (Γ) ∪ {δ[τ] | δ ∈ ∆} �1 φ[σ]

In the previous section we defined an entailment relation for pairs
(φ, σ) with σ a stipulation blueprint suited to φ. We use this to define
a notion of entailment for bare formulae of schematic logic. For this we
need to quantify over languages.

Fix a language L for schematic logic. Let Γ and ∆ be sets of formulae
of L, and let φ be another formula of L. We define (Γ; ∆) � φ to hold
when for every L′ extending L, for every σ ∈ DL′(φ), and every blueprint
limit τ (over L′) extending σ we have

DL′(Γ) ∪ ∆ ∗ τ � (φ, σ).

It is easy to see that the deductive system is sound with respect
to this notion of entailment. Indeed, suppose that (Γ; ∆) ⊢ φ, and let
L′ extend L. There are finite subsets Γ′ of Γ and ∆′ of ∆ such that
(Γ′; ∆′) ⇒ φ is derivable via some derivation D in L, and thus in L′. Let
σ ∈ DL′ , and let τ be a blueprint limit extending σ. Pick τn such that
every placeholder in D is covered by τn. Then by Theorem 14 we have
DL′(Γ) ∪ (∆′ × {τn}) � (φ, σ). For any δ ∈ ∆′ we have that τ(δ) agrees
with τn on the placeholders in δ; thus if A is a structure and v a variable
assignment over A then A, v � (∆′ × {τn}) if and only if A, v � ∆′ ∗ τ .
Hence we obtain DL′(Γ) ∪ ∆′ ∗ τ � (φ, σ), so DL′(Γ) ∪ ∆ ∗ τ � (φ, σ).
Since L′, σ and τ were arbitrary, it follows that (Γ; ∆) � φ as claimed.

The completeness theorem is the converse to this.

Theorem 20 (Completeness of Schematic Logic). Suppose that (Γ; ∆) �
φ in schematic logic. Then (Γ; ∆) ⊢ φ.

Proof. Fix a language L, with Γ and ∆ sets of formulae of L and φ a
formula of L such that Γ; ∆ � φ. Pick some enumeration P1, P2, . . . of
all the placeholders, and let L′ be the language obtained be extending L
with a countably infinite list R1, R2, . . . of new relation symbols, with Ri
having the same arity as Pi. Let ni be the arity of Pi (and Ri) and for
each i let xi1, . . . , xini

be any distinct variables. Let ψi be Ri(x
i
1, . . . , x

i
ni

).

Then as in Proposition 8, for any θ, ψi(~xi) is substitutable for Pi in

θ, with θ[ψi(~xi)|Pi] = θ[Ri|Pi], the formula obtained from θ by replacing

Semantics and completeness for schematic logic 273

every occurrence of Pi with Ri (this is the point where having the wide
version of the substitution rule is useful).

Pick c such that every placeholder Pi in φ has i ¬ c, and let τk be

the stipulation blueprint ({ψ1(~x1)|P1, . . . , ψk+c(~xk+c)|Pk+c}, ~y) where ~y
is the empty list of variables. Then each τk is suited to every formula θ
whose placeholders it covers. For any such θ we have θ[τk] = θ[~R|~P], the
result of replacing every occurrence of each Pi in θ by Ri. In particular,
for any θ we have θ[τ(θ)] = θ[~R|~P].

Also if l k then τl extends τk, and every Pi is covered by some τk,
so the sequence τ is a stipulation blueprint. Indeed it is a stipulation
blueprint extending τ0, which is a stipulation blueprint suited to φ.

Since (Γ; ∆) � φ we thus have

DL′(Γ) ∪ ∆ ∗ τ � (φ, τ0).

By Proposition 19 we deduce

F (Γ) ∪ {δ[τ] | δ ∈ ∆} �1 φ[τ0].

In other words

F (Γ) ∪ {δ[~R|~P] | δ ∈ ∆} �1 φ[~R|~P],

so by first order completeness

F (Γ) ∪ {δ[~R|~P] | δ ∈ ∆} ⊢1 φ[~R|~P].

Let D be any first order derivation of φ[~R|~P] from

F (Γ) ∪ {δ[~R|~P] | δ ∈ ∆}.

Replacing every occurrence of each symbol Ri in D by Pi gives us a valid
derivation of φ = φ[~R|~P][~P |~R] from

{f [~P |~R] | f ∈ FL′(Γ)} ∪ {δ[~R|~P][~P |~R] | δ ∈ ∆}

= {f [~P |~R] | f ∈ FL′(Γ)} ∪ ∆,

in the first order portion of our deductive system. This derivation only
uses symbols from L, so we can consider it to be a derivation over L.
Thus we have

{f [~P |~R] | f ∈ FL′(γ) for some γ ∈ Γ} ∪ ∆ ⊢1 φ

over L.

274 Oliver Tatton-Brown

Let γ[ρ] be an element of FL′(Γ). Then γ[ρ][~P |~R] is of the form

∀z1, . . . , ∀zp (γ[χ1(~w1)|Q1, . . . , χk(~wk)|Qk][~P |~R]),

with the zi not free in γ, the Qi being all the placeholders in γ and the χi
containing no placeholders (but possibly containing the relation symbols
Ri). We will show that this can be deduced from general premise γ.

Letting χ′
i be χi[~P |~R], χ′

i is substitutable for Qi in γ since χi is. Thus

the multiple substitution γ[χ′
1(~w1)|Q1, . . . , χ

′
k(
~wk)|Qk] is defined. γ is a

formula of L so contains none of the Ri, so in fact we have

γ[χ1(~w1)|Q1, . . . , χk(~wk)|Qk][~P |~R] = γ[χ′
1(~w1)|Q1, . . . , χ

′
k(~wk)|Qk],

which by Proposition 2 can be obtained from γ by a series of uses of
the (single) substitution rule. We then obtain γ[ρ][~P |~R] by repeated
∀-introduction, since none of the zi are free in γ. Thus ({γ};∅) ⊢
γ[ρ][~P |~R], as claimed.

This means that for all χ ∈ {f [~P |~R] | f ∈ FL′(Γ)} ∪ ∆ we have
(Γ; ∆) ⊢ χ. Since {f [~P |~R] | f ∈ FL′(Γ)} ∪ ∆ ⊢1 φ, by Proposition 9, we
have (Γ; ∆) ⊢ φ.

By putting soundness and completeness together, we can see that the
above definition of the entailment relation Γ � φ for schematic logic can
be replaced by an apparently stronger definition. We have that Γ � φ

over L if and only for any extension L′ of L, for any stipulation blueprint
σ suited to φ, there is a finite set K of pairs (γ, τ) with τ suited to γ ∈ Γ
such that K � (φ, σ). In other words, Γ � φ if and only if however
we extend our language, and whatever (definable) meaning we stipulate
for the conclusion of the derivation, under a finite number of meaning
stipulations for the premises of the derivations those premises entail the
conclusion.

9. Schematic logic as the logic of mathematics

Since we have an ontologically innocent justification of the use of schem-
atic logic, and a completeness theorem for the logic, it has potential for
being the logic we should look to when formalizing our mathematical
arguments. The main objections to using second order logic in mathe-
matics are that it comes with an ontological burden, and that its stan-
dard semantics is not complete; neither objection applies here. Plural

Semantics and completeness for schematic logic 275

logic is another option, but again under its standard semantics it is not
complete, and it does not natively allow for second order variables of
arity above 1. Schematic logic does not have the same expressive power
as second order or plural logic, but it does have some extra expressive
power over first order logic, which can come in useful when formalizing
some mathematical results: it allows what would normally be axiom
schemes and theorem schemes, dealt with in the metalanguage, to be
expressed natively within the logic.

Our first example is from arithmetic. Many mathematical theories
can be naturally phrased in schematic logic, and arithmetic is one of
them. As mentioned earlier in Section 5, in the context of arithmetic we
could give an argument for induction as follows: if P holds for 0, and it
holds for S(x) whenever it holds for x, then it holds for 0, and thus also
for S(0), and thus also for S(S(0)) and so on, and thus for all natural
numbers. Thus we can establish the statement

(P (0) ∧ ∀x (P (x) → P (S(x)))) → ∀xP (x)

involving placeholder P with unspecified meaning. Together with the
other usual axioms, this gives us PASchem, the schematic theory of arith-
metic. The end of Section 2 addresses possible worries one might have
about the Sorites paradox here (taking P to be a vague predicate such
as “small”).

Thanks to the conservativeness theorem, we see that the first order
consequences of PASchem are just the normal theorems of PA. However
it also has other consequences, which are best expressed as theorems in
schematic logic. For instance strong induction

(∀x(∀y y < x → Q(y)) → Q(x)) → ∀xQ(x)

is a theorem of PASchem. The derivation parallels the normal first order
derivations of instances of strong induction. We can draw instances
of strong induction as consequences of the strong induction theorem
by substitution. In the first order setting, if we had a proof in which
strong induction was used multiple times, then in formalizing the proof
we would have to derive individually each instance of strong induction
we want to use: we would have to repeat the schematic derivation of
strong induction for each substitution instance, with something different
substituted for Q each time. The point of schematic logic is that it allows
us to reuse reasoning in cases like this, and to avoid having to repeat

276 Oliver Tatton-Brown

ourselves. It thus gives a better formalization of mathematical practice
than first order logic does. From the first order point of view one has
to see mathematicians as working in the metalanguage whenever they
prove or use theorem schemes like this, so the logic itself does not handle
this standard aspect of mathematical practice.

Set theory is another theory which has a natural axiomatization in
schematic logic. When justifying the axioms of set theory one generally
starts by telling a story about a hierarchy of stages (as in Boolos, 1971,
or Shoenfield, 1982). One then justifies individual axioms based on this.
For instance as Boolos says (about a particular φ):

For any stage s [and set z], there is a set of all sets formed at earlier
stages, which belong to z and to which φ applies. Let s be the stage at
which z is formed. All members of z are formed before s. So, for any z,
there is a set of just those members of z to which φ applies[.]

(Boolos, 1971, p. 226)

This works just as well as a statement with a placeholder P :

For any stage s and set z, there is a set of all sets x formed at earlier
stages, which belong to z and such that P (x). Let s be the stage at
which z is formed. All members of z are formed before s. So, for any
z, there is a set of just those members x of z such that P (x).

Thus we obtain the axiom of separation

∀z ∃y ∀x (x ∈ y ↔ (x ∈ z ∧ P (x)))

containing placeholder P with unspecified meaning. Similarly justifica-
tions for the axiom scheme of replacement can generally be rephrased as
justifications for a placeholder axiom of replacement. Together with the
other usual axioms of ZFC , the placeholder axioms of separation and
replacement give ZFCSchem schematic set theory.

As with arithmetic, there are results of set theory that are best
phrased in schematic logic. For instance ∈-induction

∀x (∀ y(y ∈ x → P (y)) → P (x)) → ∀xP (x) (∗)

is a theorem of ZFCSchem; there is no need to phrase it as a theorem
scheme, i.e. as a metatheorem. Again, schematic logic gives a better
formalization of the reasoning mathematicians actually employ. In first
order logic, one would have to individually derive every instance of ∈-
induction one wanted to use, repeating a substituted version of the

Semantics and completeness for schematic logic 277

schematic derivation each time; or one could move to the metatheory
(in which case one is not really working in first order logic any more).

As these examples show, the extra expressive power of schematic logic
over first order logic is useful in various situations in mathematics; and
since the logic can be justified in an ontologically innocent way and comes
with a completeness theorem, the usual objections to second order logic
do not apply. Also it seems that the use of axiom and theorem schemes is
the main way that mathematicians leave the confines of first order logic
and use reasoning that is most naturally seen as second order (involving
Π1

1 second order statements): more of second order logic beyond the
fragment seen in schematic logic does not appear to be needed.

To use the logic as the language of mathematics, we do not need
to actually mention any of the issues discussed in this paper involving
placeholders or meaning stipulations. Mathematicians just need to be
able to reason informally using the logic, which is very easy the only
extra rule is the substitution rule. We do not require that mathemati-
cians be fluent with the semantics for first order logic before we formalize
their proofs in it.

Because of examples like the above we can in some cases give much
quicker proofs in schematic logic than in first order logic. For instance
if we had an argument which required multiple instances of ∈-induction,
then in schematic logic we could prove this single theorem (∗) of
ZFC Schem, and then draw each instance of ∈-induction needed as a con-
sequence in a single line via the substitution rule; whereas if we were to
strictly work in first order logic, we might have to repeat the derivation
of ∈-induction for each substitution instance of (∗) we required. Thus
it is possible that there is non trivial speed up when moving from first
order logic to schematic logic, a question for future investigation.

10. Open-endedness

One important aspect of the use of placeholders and schematic logic is
that it naturally leads us to see that our axioms involving placeholders
are and should be open-ended, in the sense that if we expand our lan-
guage to include new vocabulary then we in the same way expand the
range of substitutions we allow for placeholder letters. This is a con-
sequence of the way placeholder letters are used: we do not specify in
advance any particular range for them, instead first giving an argument

278 Oliver Tatton-Brown

involving them and only later deciding to take them to mean certain
things. Thus if we give an argument involving placeholders and then
expand our language to include new vocabulary, we have just as much
right to take the placeholders to mean items of (or built out of) the
new vocabulary as we do to take them to mean items of the original
language. We do need to be careful of running into problems such as the
Sorites paradox, as discussed earlier; but a problem like this can arise
for vocabulary of the original language just as much as it can for an
expanded language.

This open-endedness is already built into schematic logic. If we es-
tablish a statement of the logic involving a placeholder, such as the
statement of induction

(P (0) ∧ ∀x (P (x) → P (S(x)))) → ∀xP (x),

and we expand our language to include new vocabulary, then the state-
ment of induction is still a statement of the expanded language; and
now by applying the substitution rule in the expanded language we can
substitute formulae involving new vocabulary (as well as old vocabulary)
for the placeholder P . The range of substitutions allowed for placehold-
ers depends on the language being used, as it should given the informal
motivation. Formally, if we establish an entailment (Γ; ∆) ⊢ φ in a lan-
guage, and then expand this language to include new vocabulary, then
the entailment still holds in the expanded language; and we can then
take placeholders involved to mean formulae involving new vocabulary
as well as old. As seen in Section 8 it is in terms of this open-ended sense
of entailment that the logic is complete, showing how suited the rules of
the logic are to this open-ended interpretation.

11. Conclusion

We have seen that the placeholder interpretation of schematic logic al-
lows us to give an ontologically innocent soundness theorem for the logic,
which only requires the existence of formulae we actually write down in
the course of a derivation.

This means that the logic is available as a setting in which to do
mathematics, with minimal cost and with the advantage over first order
logic of being able to natively formalize axiom and theorem schemes,
without having to resort to the metatheory.

Semantics and completeness for schematic logic 279

Additionally, the approach to the logic seen here, and the complete-
ness theorem, naturally support a view of schematic statements as open-
ended. This supports the work of various authors (Lavine 1998, pp. 224–
240; McGee 1997, pp. 56–62; Parsons 2007, pp. 290–293) who have ap-
pealed to this open-ended interpretation of the logic to address issues of
determinacy.

Acknowledgements. I wish to thank Leon Horsten for his helpful and
insightful comments on versions of this paper. This work was supported
by AHRC grant AH/L503939/1.

References

Boolos, George, 1971, “The iterative conception of set”, The Journal of Philos-

ophy 68 (8): 215–231. URL http://www.jstor.org/stable/2025204. DOI:
10.2307/2025204

Burgess, John P., and Gideon Rosen, 1997, A Subject With No Object: Strate-

gies for Nominalistic Interpretation of Mathematics, Oxford University
Press: Oxford, New York.

Cori, René, and Daniel Lascar, 2001, Mathematical Logic: A Course with Ex-

ercises Part II, OUP Oxford: Oxford.

Feferman, Solomon, 1991, “Reflecting on incompleteness”, The Journal of Sym-

bolic Logic 56 (1): 1–49. URL http://www.jstor.org/stable/2274902.
DOI: 10.2307/2274902

Field, Hartry, 1980, Science Without Numbers, Princeton University Press:
Princeton, N.J.

Heck, Richard Kimberly, 2011, Frege’s Theorem, OUP Oxford: Oxford, New
York. (Originally published under the name “Richard G. Heck, Jr”.)

Lavine, Shaughan, 1998, Understanding the Infinite, new edition, Harvard Uni-
versity Press: Cambridge, Mass.

Maddy, Penelope, 1997, Naturalism in Mathematics, Clarendon Press.

McGee, Vann, 1997, “How we learn mathematical language”, The Philosophi-

cal Review 106 (1): 35–68. URL http://www.jstor.org/stable/2998341.
DOI: 10.2307/2998341

Parsons, Charles, 2007, Mathematical Thought and its Objects, Cambridge
University Press.

http://www.jstor.org/stable/2025204
https://doi.org/10.2307/2025204
http://www.jstor.org/stable/2274902
https://doi.org/10.2307/2274902
http://www.jstor.org/stable/2998341
https://doi.org/10.2307/2998341

280 Oliver Tatton-Brown

Quine, W. V., 1999, “Reply to Charles Parsons”, in pages 396–403 Lewis Ed-
win Hahn and Paul Arthur Schilpp (eds.), The Philosophy of W. V. Quine,

Volume 18, Open Court Publishing Co: La Salle, Ill.

Shapiro, Stewart, 2000, Foundations without Foundationalism: A Case for

Second-order Logic, new edition, Oxford University Press: Oxford, USA.

Shoenfield, J., 1982, “Axioms of set theory”, in Handbook of Mathematical

Logic, North Holland: Amsterdam, New York.

Oliver Tatton-Brown

Department of Philosophy
University of Bristol, United Kingdom
o.tatton-brown@bristol.ac.uk

	Introduction
	Motivating idea
	Meaning stipulations
	The substitution rule
	Versions of the rule
	Semantics of substitution

	The deductive system
	Soundness
	Definable meaning stipulations and conservativeness
	Completeness
	Schematic logic as the logic of mathematics
	Open-endedness
	Conclusion
	References

