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Incorrect Responses in First-Order False-Belief Tests.
A Hybrid-Logical Formalization

Abstract. In the paper (Braüner, 2014) we were concerned with logical
formalizations of the reasoning involved in giving correct responses to the
psychological tests called the Sally-Anne test and the Smarties test, which
test children’s ability to ascribe false beliefs to others. A key feature of the
formal proofs given in that paper is that they explicitly formalize the per-
spective shift to another person that is required for figuring out the correct
answers—you have to put yourself in another person’s shoes, so to speak,
to give the correct answer. We shall in the present paper be concerned with
what happens when answers are given that are not correct. The typical
incorrect answers indicate that children failing false-belief tests have prob-
lems shifting to a perspective different from their own, to be more precise,
they simply reason from their own perspective. Based on this hypothesis,
we in the present paper give logical formalizations that in a systematic way
model the typical incorrect answers. The remarkable fact that the incorrect
answers can be derived using logically correct rules indicates that the origin
of the mistakes does not lie in the children’s logical reasoning, but rather
in a wrong interpretation of the task.

Keywords: logic in cognitive science; hybrid logic; natural deduction; false-
belief tests; perspective shift

1. Introduction

In cognitive psychology there is a reasoning test called the Sally-Anne
test. One formulation of this reasoning test is described below.

A child is shown a scene with two doll protagonists, Sally and
Anne, having respectively a basket and a box. Sally first places
a marble into her basket. Then Sally leaves the scene, and in
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her absence, the marble is moved by Anne and hidden in her box.
Then Sally returns, and the child is asked: “Where will Sally look
for her marble?”

As reported in many experimental studies (see Wellman et al., 2001) typ-
ically developing children above the age of four correctly respond where
Sally must falsely believe the marble to be (in the basket). Younger
children, on the other hand, respond where they know the marble to be
(in the box), but this information is not available to Sally, and hence
this response is incorrect. For autistic children the cutoff age is higher
than four years, which was first observed in (Baron-Cohen et al., 1985).
Note that passing the Sally-Anne test involves taking the perspective to
another person, namely Sally, and reasoning about what she believes.
You have to put yourself in Sally’s shoes to get the answer right.

The Sally-Anne test is one of a family of reasoning tests called false-
belief tests showing the same pattern: Typically developing children
above four answer correctly, but autistic children have to be older. Start-
ing with the authors of (Baron-Cohen et al., 1985), many researchers in
cognitive psychology have argued that there is a link between autism
and a lack of what is called theory of mind, which is an ability to ascribe
mental states, for example beliefs, to others. To be more precise, since
the ability to take a different perspective is a precondition for figuring
out the correct answer to false-belief tests, the fact that autistic children
have a higher cutoff age is taken to support the claim that autists have
a limited or delayed theory of mind. For a very general formulation
of the theory of mind deficit hypothesis of autism, see (Baron-Cohen,
1995). A critical overview of these arguments can be found in the book
(Stenning and van Lambalgen, 2008).

The results of false-belief tests are robust under many variations,
for example across various countries and various task manipulations, as
shown in the meta-analysis (Wellman et al., 2001) involving 178 individ-
ual false-belief studies with typically developing children.

In a range of works Michiel van Lambalgen et al. have given a de-
tailed logical analysis (but not a full formalization, that is, a fully formal
proof in a specified formal system) of the reasoning taking place in the
Sally-Anne test and other false-belief tests in terms of non-monotonic
closed world reasoning as used in logic programming; see in particular
(Stenning and van Lambalgen, 2008). In (Arkoudas and Bringsjord,
2008) (and the extended version (Arkoudas and Bringsjord, 2009)) it is
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described how the reasoning in the Sally-Anne test has been implemented
in an interactive theorem prover using axioms and proof-rules formulated
in a many-sorted first-order modal logic. The proof-rules employed in
(Stenning and van Lambalgen, 2008) and (Arkoudas and Bringsjord,
2008) do not explicitly formalize the perspective shift required to pass
the Sally-Anne test.

In (Braüner, 2013, 2014) we gave a logical analysis of the perspective
shift required to give correct answers to the Sally-Anne test and an-
other false-belief test called the Smarties test, and it was demonstrated
that the correct reasoning in these tests can be fully formalized in a
hybrid-logical natural deduction system originally introduced by Jerry
Seligman in the 1990s; see in particular (Seligman, 1997). Hybrid logic
is an appropriate tool to analyse the reasoning in the Sally-Anne and
Smarties tests since it can explicitly represent perspectives (perspectives
can be named). Moreover, Seligmans’s natural deduction system can
explicitly represent shifts between different perspectives (it is dealt with
by a specific proof-rule), which is a key feature which distinguishes our
approach from other formalizations of false-belief tests.

Using Seligman’s natural deduction system for hybrid logic, in the
present paper we consider what goes wrong when incorrect answers are
given. It turns out that a child either answers correctly, or tends to give
a specific incorrect response in accordance with the child’s own knowl-
edge, in particular, in the case of the Sally-Anne test, the child reports
the real location of the marble, namely the box. This indicates that
children failing false-belief tests have problems shifting to a perspective
different from their own. Based on the hypothesis that these children
simply reason from their own perspective, we in the present paper give
formalizations of the incorrect answers in terms of the hybrid-logical
natural deduction rules. It is remarkable that the incorrect answers can
be derived using logically correct rules, that is, rules living up to a nor-
mative standard of logical correctness. In other words, young children
and autists give normatively appropriate responses to problems different
from the problems that the experimenters intends them to solve.

The formalizations of the incorrect answers give rise to an analysis
in terms of the two stages in reasoning emphasized in (Stenning and
van Lambalgen, 2008), namely reasoning to and reasoning from an in-
terpretation. This analysis indicates that the origin of the mistakes lies
in the first of these stages (a wrong interpretation of the task), and not
in the second stage (application of logically correct rules). This type of
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incorrect response, stemming from a wrong task interpretation by the
subject, is described in a number of different places in the literature, see
in particular in the book (Stanovich, 1999).

We proceed as follows: In Section 2 we introduce hybrid modal logic,
the tool we use to represent perspectives, and in Section 3 we introduce
the natural deduction system for hybrid modal logic which can represent
shifts between perspectives. In Sections 4 and 5 we formalize the correct
reasoning in the Smarties and Sally-Anne tests. In Section 6 we consider
what goes wrong when incorrect answers are given, and we point out a
“pattern of failure”, and show that our logical formalizations in a sys-
tematic way can model the typical incorrect answers. In Section 7 this
pattern of failure is analyzed in terms of van Lambalgen and Stenning’s
two stages in reasoning, reasoning to and reasoning from an interpreta-
tion. In Section 8 we discuss what is called realist bias; in Section 9 we
make some brief remarks on related work, and finally, in Section 10 we
describe further work.

The present paper is a follow-up to the paper (Braüner, 2014). To
make the present paper self-contained we give a brief recapitulation of
the formalizations in that paper.

1.1. Simulation-theory

A remark on terminology is appropriate at this stage: In the literature
on false-belief tests it is common to talk about “perspectives” and “shift
of perspective” in an intuitive and pre-theoretic sense. We follow this
way to use the terminology in the present paper1, but we also remark
that the terminology can be underpinned by an established psychological
theory on theory of mind, namely what is called simulation theory.

According to simulation-theory, theory of mind should be viewed as
an ability to simulate other person’s mental states, that is, an ability to
represent other person’s mental states by adopting their perspective.2
Simulation-theory goes back to (Gordon, 1986), where as an example it
is described how chess players playing against an opponent report that

1 Note that the terminology is related to what is called egocentric logic, see the
remark at the end of the next section.

2 Simulation-theory is one of several views on theory of mind, another one being
theory-theory, according to which theory of mind should be viewed as an explicit
theory of the mental realm of another person, like the theories of the physical world
usually going under the heading “naive physics”.
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they visualize the board from the other side, taking the opposing pieces
for their own and vice versa, and further, pretending that their reasons
for action have shifted accordingly. In other words, such a chess player
switches to the opponent’s perspective, makes a decision of what to do in
the opponent’s situation, and after having switched back again, predicts
that the opponent will make the decision in question. Of course, the
player has to make adjustments for relevant differences when taking the
opponent’s perspective. In (Gordon, 1986) it is even described how Sher-
lock Holmes makes use of this sort of hypothetical reasoning (quotation
from Conan Doyle, 1994).

You know my methods in such cases, Watson. I put myself in the man’s
place, and, having first gauged his intelligence, I try to imagine how I
should myself have proceeded under the same circumstances.

(Gordon, 1986, p. 162)

For an overview of simulation theory, see (Gordon, 2009). There is exten-
sive research in giving a neuropsychological explanation of the simulation
process in terms of what are called mirror neurons, which are neurons
that fire not only when an individual performs a particular action, but
also when the individual observes someone else performing the same
action, see for example the paper (Gallese and Goldman, 1998).

2. Hybrid modal logic

In the standard Kripke semantics for modal logic, the truth-value of a
formula is evaluated “locally” at a point, where points represent times,
persons, locations, or something else. Hybrid logics are modal logics
that have been extended such that the object language allows direct
reference to such points. This in particular means that one can formulate
statements about what is the case from the perspective of a specific
person. This is the central idea in the hybrid-logical approach to false-
belief tests.

The most fundamental hybrid logic is obtained by extending ordinary
modal logic with nominals, which are new propositional symbols, inter-
preted such that a nominal is true at exactly one point (not an arbitrary
set as with ordinary propositional symbols). Most often hybrid logics
involve additional machinery; in the present paper we shall consider an
operator called the satisfaction operator. The motivation for adding such
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operators is to be able to formalize a statement being true relative to a
specific time, person, or something else. If a is a nominal and φ is an
arbitrary formula, then a new formula @aφ can be formula, where @a is
a satisfaction operator. Such a formula is called a satisfaction statement.
The formula @aφ says that the formula φ is true at one specific point,
namely the point that the nominal a refers to.

We now give the formal syntax and semantics of the hybrid logic
outlined above. We assume that a set of ordinary propositional symbols
and a countably infinite set of nominals are given. We assume that the
two sets are disjoint. The metavariables p, q, r, . . . range over ordinary
propositional symbols and a, b, c, . . . range over nominals.

Definition 2.1. Formulas are defined by the grammar:

S ::= p | a | S ∧ S | S → S | ⊥ | @aS | �S

We adopt the conventions that ¬φ and ♦φ are abbreviations for re-
spectively φ→ ⊥ and ¬�¬φ.

Definition 2.2. A model for hybrid logic is a triple (W,R, {Vw}w∈W )
where

1. W is a non-empty set,
2. R is a binary relation on W , and
3. for each w, Vw is a function that maps ordinary propositional symbol

to elements of {0, 1}.

Notice that a model for hybrid logic is the same as a model for ordi-
nary modal logic. Given a model M = (W,R, {Vw}w∈W ), an assignment
is a function g that maps nominals to elements of W . The relation
M, g, w |= φ is defined by induction, where g is an assignment, w is an
element of W , and φ is a formula.

M, g, w |= p iff Vw(p) = 1
M, g, w |= a iff w = g(a)

M, g, w |= φ ∧ ψ iff M, g, w |= φ and M, g, w |= ψ
M, g, w |= φ→ ψ iff M, g, w |= φ implies M, g, w |= ψ

M, g, w |= ⊥ iff falsum
M, g, w |= @aφ iff M, g, g(a) |= φ
M, g, w |= �φ iff for any v ∈W such that wRv, M, g, v |= φ

The above definitions of the syntax and semantics of hybrid logic are
standard and can be found many different places. See (Areces and ten
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Cate, 2007) for a detailed overview of hybrid logic and see (Braüner,
2011) on hybrid logic and its proof-theory.

When points in a model are taken to stand for local perspectives,
in particular times or persons, hybrid logic can represent the different
perspectives in the Sally-Anne and Smarties test. The history of what
now is called hybrid logic goes back to the philosopher Arthur N. Prior’s
work in the 1960s, and letting points in a model represent persons is
exactly Prior does in his egocentric logic (see Section 1.3 of Braüner,
2011, in particular pp. 15–16).

3. Seligman’s natural deduction system

Natural deduction style proof systems are meant to formalize actual hu-
man reasoning (on natural deduction, see Prawitz, 1965, 2005) and some
psychologists have found experimental support for the claim that formal
rules in natural deduction style underlies human deductive reasoning:

[. . . ] a person faced with a task involving deduction attempts to carry
it out through a series of steps that takes him or her from an initial
description of the problem to its solution. These intermediate steps are
licensed by mental inference rules, such as modus ponens, whose output
people find intuitively obvious. (Rips, 1994, p. x)

Remark: The logical rule modus ponens is a rule in the standard natural
deduction system for propositional logic. See also (Rips, 2008) which is
a reproduction of some chapters from (Rips, 1994).

Seligman’s natural deduction system is obtained by adding the rules
in Figure 1 to the standard natural deduction system for propositional
logic (modal operators are ignored as they are irrelevant in the present
paper). The system, which is a modified version of a system originally
introduced in (Seligman, 1997), is taken from Chapter 4 of the book
(Braüner, 2011). Recently tableau systems have been developed along
similar lines (see Blackburn et al., 2017; Jørgensen et al., 2016). In
(Braüner, 2011) it is proved that Seligman’s natural deduction system
is sound and complete.

Theorem 3.1. Let ψ be a formula and Γ a set of formulas. The first
statement below implies the second statement (soundness) and vice versa
(completeness).
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1. The formula ψ is derivable from the formulas Γ in Seligman’s natural
deduction system.

2. For any model M, any world w ∈ W , and any assignment g, if, for
each formula θ ∈ Γ , it is the case that M, g, w |= θ, then it is also the
case that M, g, w |= ψ.

Natural deduction systems usually have two sorts of rules for each
connective; rules that introduce a connective and rules that eliminate
a connective. The rules (@I) and (@E) displayed in Figure 1 are the
introduction and elimination rules for the satisfaction operator.

A decisive feature of natural deduction systems is that such systems
allow to make and discharge assumptions; discharge of assumptions is
indicated by bracketing [ . . . ] the assumptions in question. This is what
is going on in the rule (Term) in Figure 1, which enables hypothetical
reasoning about what is the case at a specific possible world (time or
person), usually not the same as the actual world.

The hypothetical reasoning in the (Term) rule is the reasoning rep-
resented by the subderivation indicated by vertical dots and having dis-
charged assumptions [φ1], . . . , [φn], [a] and conclusion ψ. The world
where the hypothetical reasoning takes place is the world referred to by
the nominal discharged by the rule—indicated by [a]. This nominal can
be called the point-of-view nominal. It is important to note that the
side-condition on the (Term) rule, that the assumptions φ1, . . . , φn and
the conclusion ψ all have to be satisfaction statements, ensures that their
truth-values are not affected when perspective is shifted from the actual
world to the hypothetical world.

The way the (Term) rule delimits a subderivation is similar to the
way subderivations are delimited by what are called proof boxes in lin-
ear logic. Formulated using such proof boxes, the (Term) rule looks as
follows (compare to our formulation in Figure 1).

The perspective shift required to give a correct answer to the Sally-
Anne and Smarties tests is captured particularly well by the (Term) rule,
see (Braüner, 2014) for more information.
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a φ
(@I)

@aφ

a @aφ
(@E)

φ

φ1 . . . φn

[φ1] . . . [φn][a]
···
ψ

(Term)∗
ψ

[a]
···
ψ

(Name)∗∗
ψ

∗ The formulas φ1, . . . , φn, and ψ are all satisfaction statements and there are no
undischarged assumptions in the derivation of ψ besides the specified occurrences of
φ1, . . . , φn, and a.
∗∗ The nominal a does not occur in ψ or in any undischarged assumptions other
than the specified occurrences of a.

Figure 1. Hybrid-logical rules

4. Correct response in the Smarties test

First a brief description of how the correct reasoning in the Smarties test
is formalized in (Braüner, 2014). The Smarties test comes in two ver-
sions, namely a version where the experimental subject shifts perspective
to a second person, and a version where there is a shift of perspective to
an earlier time, see (Gopnik and Astington, 1988). Here is a formulation
of the temporal version.

A child is shown a Smarties tube where unbeknownst to the child the
Smarties have been replaced by pencils. The child is asked: “What do
you think is inside the tube?” The child answers “Smarties!” The tube
is then shown to contain pencils only. The child is then asked: “Before
this tube was opened, what did you think was inside?”

We start with an informal analysis. Let us call the child Peter. Let
the nominal a denote the time when Peter answers the first question,
and let t be the time where he answers the second question. To answer
the second question, Peter imagines himself being at the earlier time a
where he was asked the first question. At that time he deduced that
there were Smarties inside the tube from the fact that it is a Smarties
tube. Imagining being at the time a, Peter reasons that since he at that
time deduced that the tube contained Smarties, he must also have come
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@aDp

[a]

[a] [@aDp]
(@E)

Dp
(P0)

Bp
(@I)

@aBp
(Term)

@aBp

Figure 2. Formalization of an experimental subject’s correct reasoning in the
Smarties test (both temporal and person shift versions)

to believe that the tube contained Smarties. Therefore, at t he concludes
that at the earlier time a he believed that the tube contained Smarties.

With the aim for formalizing the Smarties task, we extend the lan-
guage of hybrid logic with two modal operators, D and B. We use the
following symbolizations
p The tube contains Smarties
D Peter deduces that . . .
B Peter believes that . . .
a The time where Peter answers the first question

and we take the principle
Dφ→ Bφ (P0)

as an axiom. This is principle (9.4) in the book (Stenning and van
Lambalgen, 2008, p. 251). Given this machinery, the shift of temporal
perspective in the Smarties test can be formalized directly as the deriva-
tion in Figure 2, where a is the point-of-view nominal and where princi-
ple (P0) has been formulated as a rule (more compact and in line with
the natural deduction reasoning style). In this derivation, the premise
@aDp expresses that the experimental subject Peter at the earlier time
a deduced that the tube contained Smarties, which he remembers at t.

Besides the temporal version, we also consider the version of the
Smarties test where there is a shift of perspective to another person.
The only difference between the two versions of the test is the second
question where

“Before this tube was opened, what did you think was inside?”

is replaced by
“If your mother comes into the room and we show this tube to
her, what will she think is inside?”
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To give a correct answer to the last of these two questions, the child
Peter imagines being the mother coming into the room. Imagining being
the mother, Peter reasons that the mother must deduce that the tube
contains Smarties from the fact that it is a Smarties tube, and from
that, she must also come to believe that the tube contains Smarties.
Therefore, Peter concludes that the mother would believe that the tube
contains Smarties.

The derivation formalizing this line of reasoning is exactly the same
as in the temporal version, Figure 2, but some symbols are interpreted
in a different way, namely
D Deduces that . . .
B Believes that . . .
a The imagined mother

So now the nominal a refers to a person rather than a time. Thus, the
premise @aDp in the derivation in Figure 2 expresses that the imagined
mother deduces that the tube contains Smarties, which the child doing
the reasoning takes to be the case since the mother is imagined to be
present in the room.

5. Correct response in the Sally-Anne test

In the present section we give a brief description of how the correct rea-
soning in the Sally-Anne test is formalized in (Braüner, 2014) (see that
paper for a detailed description as well as a detailed comparison to the
formalizations of the Sally-Anne test given in (Arkoudas and Bringsjord,
2008; Stenning and van Lambalgen, 2008)).

We start with an informal analysis: Let us call the child Peter again.
We shall consider three successive times t0, t1, t2, where t0 is the time
at which Sally leaves the scene, t1 is the time at which the marble is
moved to the box, and t2 is the time after Sally has returned when Peter
answers the question. To answer the question, Peter imagines himself
being Sally, and he reasons as follows: At the time t0 when Sally leaves,
she believes that the marble is in the basket since she sees it, and she
sees no action to move it, so when she is away at t1, she still believes the
marble is in the basket. She does not see that the marble is moved at t1,
so she does not believe that this is the case, and hence, at t2 after she has
returned, she still believes that the marble is in the basket. Therefore,
Peter concludes that Sally at t2 believes that the marble is in the basket.
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In our formalization we use the modal operators S and B as well as
the predicates l(i, t) and m(t). The argument i in the predicate l(i, t)
denotes a location, and the argument t in l(i, t) and m(t) denotes a
timepoint. We take time to be discrete, and the successor of a time t is
denoted t+ 1.
l(i, t) The marble is at location i at time t
m(t) The marble is moved at time t
S Sees that . . .
B Believes that . . .
a The person Sally

We also use the following four principles:

Bφ→ ¬B¬φ (D)
Sφ→ Bφ (P1)

Bl(i, t) ∧ ¬Bm(t)→ Bl(i, t+ 1) (P2)
Bm(t)→ Sm(t) (P3)

Principle (D) is a common modal axiom which says that beliefs are
consistent, that is, if something is believed, then its negation is not also
believed. We will use B¬φ→ ¬Bφ which is equivalent to (D).

Principle (P1) formalizes how a belief in something may be formed,
namely by seeing it being the case. This is principle (9.2) in (Stenning
and van Lambalgen, 2008, p. 251).

Principle (P2) is reminiscent of principle (9.11) in (Stenning and van
Lambalgen, 2008, p. 253) and axiom [A5] in (Arkoudas and Bringsjord,
2008, p. 20). Principle (P2) formalizes a “principle of inertia” saying that
a belief in the predicate l being true is preserved over time, unless it is
believed that an action has taken place causing the predicate to be false.

Principle (P3) encodes the information that seeing the marble being
moved is the only way to acquire a belief that the marble is being moved.

Given the above machinery, the shift of person perspective in the
Sally-Anne test can be formalized as the derivation in Figure 3, where
a is the point-of-view nominal and where we have omitted names of the
introduction and elimination rules for the @ operator to save space.

The first two premises @aSl(basket, t0) and @aS¬m(t0) in the deriva-
tion express that Sally at the earlier time t0 saw that the marble was
in the basket and that no action was taken to move it, which the child
Peter remembers. The third premise, @a¬Sm(t1), expressess that Sally
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@aSl(basket,t0) @aS¬m(t0) @a¬Sm(t1)

[a]

[a][@aSl(basket,t0)]

Sl(basket,t0)
(P1)

Bl(basket,t0)

[a][@aS¬m(t0)]

S¬m(t0)
(P1)

B¬m(t0)
(D)

¬Bm(t0)
(P2)

Bl(basket,t1)

[a][@a¬Sm(t1)]

¬Sm(t1)
(P3)

¬Bm(t1)
(P2)

Bl(basket,t2)

@aBl(basket,t2)
(Term)

@aBl(basket,t2)

The temporal progression of the hypothetical reasoning is pointed out using colors:
Red is what happens at t0, blue at t1, and magenta at t2. The colors are obviously
not a formal part of the derivation. See Subsection 7.2 for further analysis.

Figure 3. Formalization of an experimental subject’s correct reasoning in the
Sally-Anne test

Table 1 Correct response Formula
Smarties (temporal At the time of question one @aBp
version) Peter believes that the tube

contains Smarties
Smarties (person The imagined mother believes @aBp
version) that the tube contains Smarties
Sally-Anne Sally believes that the marble @aBl(basket, t2)

is in the basket at the time t2

did not see the marble being moved at the time t1, this being the case
since she was absent, which Peter remembers.

6. What goes wrong when incorrect answers are given?

The derivations in Figures 2 and 3 are formalizations of the reason-
ing taking place in the cases where correct responses are given to the
Smarties and the Sally-Anne tests. The correct answers are summed up
below in Table 1. Note the nominal a (the point-of-view nominal) that
is discharged by the instances of the (Term) in Figures 2 and 3, shows
that the formulas in Table 1 are derived via a perspective shift to a,
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representing respectively the time where the first question is answered,
the imagined mother, and the doll Sally.

Let b stand for the experimental subject’s own perspective3, that is,
in the temporal version of the Smarties test, b stands for the time where
the second question is answered and in the person version of the Smarties
test b stands for the person Peter. Also in the Sally-Anne test, b stands
for the person Peter. Thus, to derive the correct responses in Figures 2
and 3, the perspective is shifted from b to a, and then back from a to b.

Now, the derivations of the correct responses in Figures 2 and 3 do
not tell what happens when incorrect responses are given. But it turns
out that a subject either answers correctly, or tends to give a specific
incorrect response in accordance with the subject’s own knowledge, in
particular, in the case of the Sally-Anne test, the subject reports the real
location of the marble. This is clear from studies where the experimental
design does not involve a forced choice between responses, for example
(Baron-Cohen et al., 1985):

The critical question was, “Where will Sally look?” after she returns.
[. . . ] normal preschool children answered by pointing to where the
marble was put in the first place. [. . . ] The autistic group, on the other
hand, answered by pointing consistently to where the marble really
was. They did not merely point to a ‘wrong’ location, but rather to
the actual location of the marble. This becomes especially clear on
trial 2 where the autistic children never pointed to the box (which had
been the wrong location on trial 1), but instead to the experimenters
pocket—that is, again to where the marble really was.

(Baron-Cohen et al., 1985, pp. 42–43)

Thus, the autistic children have a systematic tendency to report their
own beliefs, rather than that of different persons (we shall discuss this
phenomenon more in Section 8). Based on the hypothesis that these
children simply reason from their own perspective, we shall in what
follows analyze this pattern in the incorrect responses. To this end we let

3 Note that b does not occur in the formal derivations in Figures 2 and 3, like
it is not mentioned in a formal mathematical proof that it has been carried out by
a certain mathematician. The formal derivation itself does not care who carries out
the reasoning (or for that matter whether the reasoning takes place in a computer, or
in some other medium). Note also that b does in fact occur in Figures 4 and 5, but
this is because the latter derivations are about what is the case from the perspective
b, which happens to be the same perspective as the perspective of the experimental
subject who carries out the reasoning. Thus, the nominal b in Figures 4 and 5 is true
because the subject Peter is reasoning from his own perspective.
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Table 2 Incorrect response Formula
Smarties (temporal At the time of question one Peter @aBq
version) believes that the tube contains pencils
Smarties (person The imagined mother believes that @aBq
version) the tube contains pencils
Sally-Anne Sally believes that the marble @aBl(box, t2)

is in the box at the time t2

Table 3 True proposition Formula
Smarties (temporal At the time of question two Peter @bBq
version) believes that the tube contains pencils
Smarties (person Peter believes that the tube contains @bBq
version) pencils
Sally-Anne Peter believes that the marble is in @bBl(box, t2)

the box at the time t2

the propositional symbol q stand for “The tube contains pencils”. Then
the incorrect responses can be summed up as follows in Table 2. The
formulas in Table 2 are false in the scenarios described by the reasoning
tasks—the simple reason being that the formulas represent the incorrect
answers—but observe the following: If the perspective a in the formulas
above is replaced by the experimental subject’s own perspective b, then
true formulas are obtained, namely the formulas in Table 3.

Indeed, the formulas @bBq and @bBl(box, t2) in Table 3 are derivable
in Seligman’s system, extended with the principles introduced in the
previous section.

The formula @bBq in Table 3 is derivable from the nominal b and
the formula @bSq by the simple derivation in Figure 4. The nominal b
is true since it denotes the perspective of the subject Peter who happens
to be the person doing the reasoning, that is, Peter is reasoning from his
own perspective, and @bSq is obviously true in the temporal as well as
the person version of the test, in both cases since Peter when the second
question is answered sees that the tube contains pencils.

The formula @bBl(box, t2) in Table 3 is derivable from b together
with @bSl(box, t1) and @bS¬m(t1) by the derivation in Figure 5. Again,
the nominal b is true since Peter is reasoning from his own perspective.
The formulas @bSl(box, t1) and @bS¬m(t1) express that Peter at the
earlier time t1 saw that the marble was in the box and that no action
was taken to move it, which he remembers. From these three formulas,
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b

b @bSq
(@E)

Sq
(P1)

Bq
(@I)

@bBq

Figure 4. Formalization of incorrect reasoning in the Smarties test (what is the
case from the subject’s own perspective)

b

b @bSl(box, t1)
(@E)

Sl(box, t1)
(P1)

Bl(box, t1)

b @bS¬m(t1)
(@E)

S¬m(t1)
(P1)

B¬m(t1)
(D)

¬Bm(t1)
(P2)

Bl(box, t2)
(@I)

@bBl(box, t2)
The temporal progression is pointed out using colors: Blue is what happens at t1
and magenta at t2. See Subsection 7.2 for further analysis.

Figure 5. Formalization of incorrect reasoning in the Sally-Anne test (what is
the case from the subject’s own perspective)

the formula @bBl(box, t2) is derivable using the principles indicated in
Figure 5, including the principle of inertia (P1). The principle of inertia
is employed as Peter cannot see the content of the box at t2, but at t1
he came to believe that the marble was in the box, and this belief is
preserved over time to t2, since he does not believe that an action has
been taken to move the marble.

Note that the (Term) rule is not employed in the derivations in Fig-
ures 4 and 5, and since b is the child Peter’s own perspective, there is no
shift to a different perspective in these derivations.

The formulas considered in the three tables above can be classified
along the two dimensions in Table 4.

Note the pattern in Table 4: The child giving an incorrect answer
(lower left quarter) reports what is believed to be the case from the
child’s own perspective (lower right quarter), and the child does not
perform the shift of perspective required to be able to report what is
believed to be the case from the second perspective (upper left quarter).
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Table 4 The second perspective The child’s own perspective
(the nominal a) (the nominal b)

Involves the false Correct responses
statements p and cf. Table 1 @aBp
l(basket, t2) and @aBl(basket, t2)
Involves the true Incorrect responses True statements cf. Table 3
statements q and cf. Table 2 @aBl(box, t2) @bBq and @bBl(box, t2)
l(box, t2)

The above “pattern of failure” shows that our logical formalizations in
a systematic way model the typical incorrect answers.

7. Where is the origin of mistakes?

As indicated earlier, the child giving an incorrect answer does not per-
form the shift of perspective required to figure out the correct answer
(upper left quarter in Table 4), but instead reports what is believed to be
the case from the child’s own perspective (lower right quarter in Table 4),
namely the formulas @bBq and @bBl(box, t2). For example, the formula
@bBl(box, t2) says that “Peter believes that the marble is in the box at
the time t2” where t2 is the time when Peter answers the question. But
as shown in Figures 4 and 5, these two formulas are actually derivable
using hybrid-logical rules, thus, the incorrect answers can be derived
using normatively correct rules.

The fact that the incorrect answers can be derived using logically
correct rules suggests that the origin of the mistakes does not lie in the
subject’s logical reasoning, but rather in a wrong interpretation of the
task.4 This type of error is extensively discussed in the book (Stanovich,
1999), and also in the paper (Stanovich and West, 2000). According to
the abstract of (Stanovich and West, 2000), a distinction can be made
between four different types of errors taking place when human responses
deviate from the performance considered normative, that is, in accor-
dance with a given normative model (logical, statistical, or otherwise):

(1) performance errors,
(2) computational limitations,

4 Thanks to one of the anonymous reviewers of (Braüner, 2015) for pointing this
out.



432 Torben Braüner

(3) the wrong norm being applied by the experimenter, and
(4) a different construal of the task by the subject.

In that paper “[. . . ] performance errors represent algorithmic-level prob-
lems that are transitory in nature. Nontransitory problems at the algo-
ritmic level that would be expected to recur on a readministration of
the task are termed computational limitations”, cf. p. 646, where“the
algorithmic level” refers to the three levels of description put forward by
David Marr and others; see Subsection 7.1. Thus, in the classification
of that paper, the notion of a performance error exclusively encompass
nonsystematic deviations from the norm (this contrary to some other
works, in particular, the more inclusive notion of performance employed
in Chomsky’s competence/performance distinction, which we shall come
back to in Subsection 7.1).

Summing up, the previous considerations indicate that the reasoning
errors made by young children and autists belong to the fourth category
given in (Stanovich and West, 2000): The subject gives a normatively
appropriate response to a problem different from the problem that the
experimenter intends the subject to solve.

This diagnosis that a subject’s incorrect answer can be traced back
to a wrong task interpretation, rather than logical errors in the subject’s
reasoning, can be further analyzed in terms of the two stages in human
reasoning emphasized in (Stenning and van Lambalgen, 2008), namely
reasoning to and reasoning from an interpretation: First a domain of dis-
course is fixed, together with an interpretation of logical and non-logical
expressions, and only after this has been achieved, a set of normatively
correct formal rules can be determined. Along similar lines, the book
(Stanovich, 1999, p. 99) the chapter on different task construal by the
subject, writes that “It is now widely recognized that the evaluation of
the normative appropriateness of a response to a particular task is al-
ways relative to a particular interpretation of the task.” In terms of the
reasoning to/from distinction, the origin of the mistakes made by young
children and autists seems to be located in the first stage, that is, in the
process of interpreting the task, rather than in the second stage, that is,
the logical reasoning in accordance with the interpretation obtained in
the first stage.

According to Stenning and van Lambalgen (2008, pp. 23–24) what
a subject concretely does can be described using a type-token distinc-
tion: “The domain mentally constructed while interpreting a discourse
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is a concrete instance – a token – of a general kind – the type – which
determines the logical properties of the token.” According to Stenning
and van Lambalgen (2008, p. 25) the technical part of reasoning to an
interpretation involves the following:5:
1. Fixing a formal language. In our case this is done by Definition 2.1.
2. Fixing a semantics for the formal language. This includes a notion of

a mathematical representation of the domain, usually called a model,
together with a definition of satisfaction, connecting the models to
the formal language. Our models are defined by Definition 2.2 and
our satisfaction relation |= is defined immediately after Definition 2.2.

3. Fixing a definition of valid arguments in the language. Our definition
of valid arguments is embodied in the formulation of Theorem 3.1
(soundness and completeness).

Reasoning from such a fixed interpretation then involves applying rules
which are normatively correct according to the interpretation. If the
above three steps are taken for granted, it seems most plausible that
the origin of the mistakes made by young children and autists lies in
the second step, namely in fixing a semantics, more specifically a Kripke
model, presumably including only one perspective, namely the subject’s
own perspective.

7.1. Digging deeper: Competence versus performance

Above we described the two-stage process put forward by Stenning and
van Lambalgen (2008), first an interpretation is fixed, and then formal
logical rules determining normatively appropriate responses can be given.
We now dig one step deeper in the reasoning process: According to

5 These three items are in (Stenning and van Lambalgen, 2008) described as
three successive stages in reasoning to an interpretation, but there is actually an
alternative order: One could start by fixing a set of semantic objects, that is, a set of
mathematical objects meant for interpretations of formulas, without specifying how
the formulas should be built, and after that, one can consider the concrete logical
connectives as well as the definition of valid arguments. For example, in the case
of classical propositional logic, one might start by stipulating that a formula built
using the propositional symbols p, q, r, . . . is interpreted as an element of the set of
functions ({p, q, r, . . .} → {0, 1}) → {0, 1} and given this initial stipulation, one can
independently fix the remaining components of reasoning to an interpretation: A set
of connectives equipped with truth-tables (which raises the question of functional
completeness) and a definition of valid arguments (where truth-preservation is an
obvious requirement).
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Stenning and van Lambalgen (2008), the formal rules determined by this
process provides the competence model, the ideal norm against which
performance must be judged, and a possible performance is described by
an algorithm corresponding to this competence model.

The competence/performance distinction goes back to Noam Chom-
sky: According to Chomsky, linguistic competence is the knowledge of
language manifest in a speaker’s idealized capacity to produce and to
understand an infinite number of sentences, whereas the actual use of
language in concrete situations is a matter of linguistic performance (see
Chomsky, 1965).These two levels—the competence level and the perfor-
mance level—are in (Stenning and van Lambalgen, 2008, p. 348) also
described in terms of the first two levels of David Marr’s three levels of
analysis of cognitive systems:

1. The information-processing task as an input-output function.
2. An algorithm which computes that function.
3. The neural implementation of the algorithm. Analogous levels of

analysis can be found in several other works of cognitive science6,
see the overview in (Stanovich, 1999, pp. 9–12).

Now, according to Stenning and van Lambalgen (2008, p. 350) an algo-
rithm corresponding to a competence model computes an information-
processing task where information is extracted from given data: The
input to the algorithm is a set of premises ψ1, . . . , ψm encoding the
given data, and the output is a conclusion φ derivable from the premises
using a set of predetermined formal logical rules. We use a turnstile `
to denote the derivability relation generated by a set of formal rules,
then we have ψ1, . . . , ψm ` φ and the information-processing algorithm
determines how the formula φ is derived from the formulas ψ1, . . . , ψm.

6 In fact, such a layering can be found many different places, in particular in
computers, for example in the area of programming languages: The denotational se-
mantics of a computer program determines the output of running the program, that
is, what the program computes, for example a natural number. Usually the denota-
tional semantics of a program is a structure-preserving function between appropriate
mathematical structures. On the other hand, an operational semantics specifies how
the output is computed, that is, it specifies an algorithm that computes the output.
An operational semantics is said to be sound if it coincides with the denotational
semantics in this way, that is, if for any input, it calculates the same output as the
denotational semantics. Note that different sound operational semantics compute the
same output, but employ different algorithms. See (Winskel, 1993) for more on formal
semantics of programming languages.
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Note that the derivability relation is—as the name suggests—a relation,
not a function.7

As mentioned earlier, Stenning and van Lambalgen (2008) gives a
logical analysis of the Sally-Anne test, and based on this analysis, the
book gives an informal description of an algorithm that carries out the
information processing when a correct answer to the test is given.

In the false-belief task the preprocessing of the data involves under-
standing of the task instruction, and recruiting information concerning
the relation between perception and belief, and of general causal knowl-
edge. Information extraction is performed by an algorithm simulating
the temporal evolution of the initial model up to the time that Maxi
[in the present paper: Sally] returns to the room and starts looking for
the chocolate [in the present paper: the marble], using the principle of
inertia applied to both beliefs and the world

(Stenning and van Lambalgen, 2008, p. 354, italics as in original)

We remark that the relation between perception and belief referred to
in this quotation is obtained using principle (9.2) in (Stenning and van
Lambalgen, 2008), which is identical to principle (P1), namely Sφ →
Bφ, considered in Section 5 of the present paper, and the principle of
inertia referred to in the quotation is principle (9.11) in (Stenning and
van Lambalgen, 2008), which is reminiscent of principle (P2), namely
Bl(i, t) ∧ ¬Bm(t)→ Bl(i, t+ 1), considered in Section 5.

7.2. Competence versus performance in our formalizations

We shall in what follows give an informal algorithmic analysis of the in-
formation processing in the Sally-Anne test like the above quoted from
(Stenning and van Lambalgen, 2008), but instead based on our analysis
and formalization as the derivation in Figure 3, where the perspective
shift is explicitly represented by an instance of the (Term) rule. Thus,
we take the competence/performance distinction for granted, where the
competence model is provided by our hybrid-logical proof-rules, and
where a possible performance is described by an (informal) algorithm
that applies the hybrid-logical proof-rules to derive an answer.

Now, we actually already gave a very informal algorithmic analysis
of the Sally-Anne task in the second paragraph of Section 5, but we shall

7 Contrary to the case outlined in footnote 6 with the formal semantics of deter-
ministic computer programs.
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now be more precise, and explain the correspondence to the derivation
in Figure 3, in particular, how the derivation is actually derived. If `
denotes the derivability relation generated by our hybrid-logical rules,
then the derivation in Figure 3 is a witness of the following relationship

@aSl(basket, t0),@aS¬m(t0),@a¬Sm(t1) ` @aBl(basket, t2)

where the nominal a stands for Sally. So the antecedent formulas are the
undischarged assumptions of the derivation in Figure 3 and the succedent
formula is the conclusion of the derivation.

The method of reasoning in natural deduction systems is called “for-
ward” reasoning: You start with assumptions, and using the rules, you
step by step build derivations of new formulas.8 Thus, to give an algo-
rithmic analysis of the derivation in Figure 3, we need to specify how the
derivation was built, in particular, we need to specify how the subderiva-
tion delimited by the (Term) rule was built. This is the subderivation
that formalizes the experimental subject’s hypothetical reasoning from
Sally’s perspective. It seems plausible that the subject, whom we called
Peter, step by step, in the temporal order of the narrative of the task,
derives more and more information, that is, the formulas in the deriva-
tion are calculated in temporal order: First what is the case at t0, then
what is the case at t1, and finally what is the case at t2.

Building the derivation in temporal order fits with our initial informal
analysis in the second paragraph of Section 5, which we recapitulate
below, slightly reformulated, and with formulas inserted, corresponding
to formulas in Figure 3. The temporal progression in Peter’s hypothetical
reasoning is indicated using colors: Red is what happens from Sally’s
perspective at t0, blue what happens at t1, and magenta what happens
at t2 (the same color codes are used in Figure 3). Peter’s reasoning
before he switches to Sally’s perspective, and after he has switched back
again, is black.

Peter imagines himself being Sally, and he reasons as follows: At
the time t0 when Sally leaves, she sees that the marble is in the
basket (formalization Sl(basket, t0)) so she believes the marble
is in the basket (formalization Bl(basket, t0)), and she sees no
action to move the marble (formalization S¬m(t0)), so when she
8 This is contrary to for example tableau systems which are backward reasoning

systems since you explicitly start with a formula you want to prove, and then you try
to build a proof of it using tableau rules.
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is away at t1, she still believes that the marble is in the basket
(formalization Bl(basket, t1)). She does not see that the marble is
moved at t1 (formalization ¬Sm(t1)), so she does not believe that
it is moved (formalization ¬Bm(t1)), and hence, at t2 after she
has returned, she still believes that the marble is in the basket
(formalization Bl(basket, t2)). Therefore, Peter concludes that
Sally at t2 believes that the marble is in the basket (formalization
@aBl(basket, t2)).

Note that the word “still” occurs two times above—these are the two
places where the principle of inertia, principle (P2), are applied, effecting
one step forward in time. To see the connection to the derivation in
Figure 3, let us zoom in on the second application of the principle of
inertia, which happens in the following excerpt.

[. . . ] at t1, she [. . . ] believes that the marble is in the bas-
ket (formalization Bl(basket, t1)). [. . . ] she does not believe
that it is moved (formalization ¬Bm(t1)), and hence, at t2 [. . . ]
she still believes that the marble is in the basket (formalization
Bl(basket, t2)).

Formally, this reasoning step is carried out by the rightmost instance of
the (P2) rule in Figure 3, that is, the following instance:

Bl(basket, t1) ¬Bm(t1)
(P2)

Bl(basket, t2)

Of course, it is a choice to derive the answer formula in Figure 3 in a
particular way, but in our concrete case it seems cognitively plausible
that formulas are derived in the temporal order of the narrative, for
example, it only seems relevant to derive the blue formula ¬Bm(t1), for-
malizing that Sally does not believe that the marble is moved at t1, after
having derived the red formulas Bl(basket, t0) and ¬Bm(t0), implying
that the marble is also in the basket at t1, formalized by the blue formula
Bl(basket, t1).

Building the derivation in Figure 3 in temporal order is in line with
what in the above quotation from (Stenning and van Lambalgen, 2008)
is referred to as simulating “the temporal evolution of the initial model”.
In fact our algorithmic analyses above appears to be in accordance with
the simulation-theory view of theory of mind, cf. the introductory sec-
tion of the present paper, since the temporarily progressing simulation
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delimited by the (Term) rule, takes place from another perspective than
the subject’s own perspective.

Now, the main concern of the present paper is what goes wrong when
incorrect answers are given. According to our analysis in Section 6, the
child giving an incorrect answer to the Sally-Anne test reports what is
believed to be the case from the child’s own perspective, formalized by
the derivation in Figure 5. The derivation in Figure 5 is a witness of the
relationship

b,@bSl(box, t1),@bS¬m(t1) ` @bBl(box, t2)

where the nominal b stands for Peter, the child doing the reasoning, thus,
the antecedent formulas are the undischarged assumptions in Figure 5
and the succedent formula is the conclusion.

Building on the analysis of the incorrect answer in Section 6, we shall
now give an informal algorithmic analysis of the information processing
in the incorrect reasoning, corresponding to building the derivation in
Figure 5 in temporal order. Blue is what happens at t1 and magenta
what happens at t2 (same color codes as above and in Figure 5).

Remembering the information that was available to him at the
earlier stage t1, Peter reasons that at the time t1, he saw that
the marble is in the box (formalization Sl(box, t1)) so he believed
that the marble is in the box (formalization Bl(box, t1)), and he
saw no action to move the marble (formalization S¬m(t1)), so at
t2, he still believes that the marble is in the box (formalization
Bl(box, t2)). Therefore, Peter at t2 believes that the marble is in
the box (formalization @bBl(box, t2))

Also, note that there is only one perspective involved here, namely the
subject’s own perspective, denoted by the nominal b, and hence no per-
spective shift.

8. Realist bias

In Table 2, and the lower left quarter of Table 4, the incorrect answers
to the Smarties and Sally-Anne tests are summed up, where the ex-
perimental subjects report the belief of their own, rather than that of
someone else, as required to give the correct response. This systematic
tendency subjects have to report what they themselves believe of reality,
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rather than what others believe of reality, is similar to the bias in adults’
mindreading ability which some authors call a realist bias, cf. (Mitchell
et al., 1996), or curse of knowledge, cf. (Birch and Bloom, 2007). In the
present context, this realist bias amounts to reporting what is the case
from the subject’s own perspective, rather than what can be deduced to
be the case from another person’s perspective.

In the paper (Birch and Bloom, 2007) a study is reported in which
the Sally-Anne scenario is modified such there are four containers instead
of two, and instead of judging where Sally will look, the experimental
subjects rated the probability that she will look in the four containers,
that is, for each of the four containers, the subjects rated the probability
that she will look in the container in question. In some trials, the subjects
knew in which container the marble really was, like in the original version
of the Sally-Anne test where the subjects know that the marble had been
moved to the box, but on other trials the subjects only knew that it had
been moved to another container than where it was initially. The study
reported that in the case where the subjects knew the real location of
the marble, they judged it more probable that Sally would search in the
location where the marble in fact was, compared to the case where they
did not know the location of the marble.

The crucial point in the modified Sally-Anne scenario is that to de-
termine the correct answer, it is not relevant whether or not the subject
know where the marble really is, that is, the subject’s own knowledge
about the real location is not relevant—what is relevant is Sally’s knowl-
edge, which is the same in both cases. In particular, whether the subject
knows the actual location of the marble or the subject does not know
the actual location, this piece of information is obviously not included in
Sally’s knowledge. This is in line with the fact that the actual location of
the marble in the Sally-Anne test—the box—is not even mentioned in the
formalization of the correct answer in Figure 3. Similarly, in the Smar-
ties test, information about the actual content of the tube—pencils—is
not involved in figuring out the correct answer, to be more precise, the
propositional symbol q standing for “The tube contains pencils” does
not even occur in the formalization of the correct answer in Figure 2.

The experimental subjects in (Birch and Bloom, 2007) are adults,
but it is suggested that the problems children under four have to pass
false-belief tests to some extent should be accounted for in terms of
an exaggerated curse-of-knowledge bias—not only in terms of a limited
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concept of belief, or more generally, a limited concept of mental state,
the latter being a typical explanation in existing literature.

In their earlier paper (Birch and Bloom, 2003), the authors of (Birch
and Bloom, 2007) reported experiments with three to five year old chil-
dren, where the experiments showed that three to four year old children
were particularly susceptible to the curse-of-knowledge bias, compared
to older children of the age five. With reference to these experiments and
other works, (Birch and Bloom, 2007) calls for more experiments, where
different false-belief tests are used to clarify the role that the curse-of-
knowledge bias play in the mental-state reasoning of children.

9. Related work

The approach taken in the present paper, based on our earlier papers
(Braüner, 2013, 2014), is to model the reasoning in false-belief tests
from the perspective of the subject doing the reasoning, to be more
precise, the subject’s reasoning is modeled syntactically. This is also the
approach taken by the earlier mentioned works (Stenning and van Lam-
balgen, 2008) and (Arkoudas and Bringsjord, 2008), applying syntactic
machinery different from ours, respectively the procedural evaluation
mechanism of logic programming and a proof-system for a many-sorted
first-order modal logic. Note that this is not the same thing as explicitly
formalizing the perspective shift required to pass a false-belief test (we
do that in the present paper, and we did it in (Braüner, 2013, 2014) as
well, but neither (Stenning and van Lambalgen, 2008) nor (Arkoudas
and Bringsjord, 2008) model the perspective shift explicitly).

As described earlier, the book (Stenning and van Lambalgen, 2008)
analyze the reasoning taking place in a number of false-belief tests. The
book analyze the reasoning taking place when giving the correct re-
sponse, as well as what goes wrong when an incorrect response is given.
In this connection the book discusses four main psychological theories of
autism: The theory of mind deficit theory (described in the first section
of the present paper), the affective foundation theory, the weak central
coherence theory, and the executive function deficit theory. We note
that the book argue that the executive function deficit theory is more
fundamental than the theory of mind deficit theory. Rather than being
an explanation of autism, the book sees the theory of mind deficit theory
as “an important label for a problem that needs a label” (cf. Stenning
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and van Lambalgen, 2008, p. 243). Now, very briefly, executive function
is the ability to plan and control a sequence of actions with the aim of
obtaining a goal. If the executive function deficit theory is taken as the
basis, then it appears appropriate to try to formalize the reasoning in a
false-belief task in some sort of non-monotonic logic, which is what the
book (Stenning and van Lambalgen, 2008) do. On the other hand, if the
theory of mind deficits theory is taken as the basis, then we find that
it is appropriate to use hybrid logic together with hybrid-logical proof-
theory. Thus, a decisive difference between our work and (Stenning and
van Lambalgen, 2008) is which psychological theory is taken as the basis
of the logical analysis.

Another approach than modeling reasoning from the perspective of
the subject doing the reasoning, is to model the reasoning from a global
perspective, that is, from the perspective of the modeler. This approach
has been taken in a number of works, for example (Bolander, 2018) which
uses a version of dynamic epistemic logic to model the reasoning in the
the Sally-Anne test and other false-belief tests. The main feature of
epistemic logic is that reasoning is modeled with Kripke structures char-
acterizing the uncertainty of agents: There is an accessibility relation for
each agent, and two possible worlds, that is, doxastic states, are related if
and only is the agent cannot distinguish between the states on the basis
of the information available to the agent. Epistemic logic can model a
static state of affairs, like at a specific time, Sally believes that the marble
to be in the basket. In dynamic epistemic logic further machinery has
been added that can update a model when an action has taken place, for
example when Anne has moved the marble from the basket to the box.
From a mathematical point of view, epistemic logic is very elegant, but
one drawback of epistemic logic is that belief (or knowledge) is closed
under logical consequence, that is, Bψ can be derived from φ → ψ and
Bφ, which at least for human agents is implausible (when the modal
operator stands for knowledge, this is called logical omniscience). See
Section 5 of (Verbrugge, 2009) for a general discussion of the problems
with epistemic logic as a model for human social cognition.

A global perspective is also taken in the paper (van Ditmarsch and
Labuschagne, 2007), which uses a version of epistemic logic to model
examples of beliefs that agents may have about other agents’ beliefs.
One example is what in the paper is called an autistic agent that always
believes that other agents have the same beliefs as the agent’s own beliefs.
This is modelled by equipping each agent with a preference relations
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between states, where an agent prefers one state over another if the
agent considers it more likely. The paper show that these beliefs are
frame-characterizable by formulas of epistemic logic.

There are also computational cognitive models of false-belief tasks,
for example (Arslan et al., 2013), which models the gradual development
in false-belief reasoning using the ACT-R cognitive architecture.

10. Further work

We would like to lift the line of work presented here to what is called
second-order false-belief tests, where the subject has to realize that some-
one can hold a false belief about someone’s belief about a state of affair
in the world, in comparison to the first-order case, where the child “just”
has to realize that someone can hold a false belief about a state of affair
in the world, which is what we have considered previously in the present
paper. In (Braüner et al., 2016) we give a formalization of a second-order
version of the Sally-Anne test, which we use to argue in favour of a view
on second-order false-beliefs, which says that going from first-order to
second-order false-belief understanding constititutes a specific conceptual
change (in contrast to the complexity-only view, which says that it is a
matter of enhanced general cognitive capacities like working memory).

An interesting phenomenon crops up when going from first-order to
second-order false-belief understanding: In the first-order case there is
one obvious incorrect answer, namely the answer at the zero-order level
where the subjects reports their own belief about world facts, but in some
second-order tests there is more than one obvious incorrect answer, in
particular, there is an incorrect answer at the zero-order level as well
as an incorrect answer at the first-order level. We plan to investigate
this with our logical tools. See (Braüner et al., 2020) for a comparison
between four different second-order false-belief tasks. These four tasks
play a crucial role in the empirical study of false-belief reasoning by
autistic children reported in the PhD dissertation (Polyanskaya, 2019).
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