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LOGIC IN THE LAND OF MAKE-BELIEVE

Abstract. Philosophers call it “contagion” when pretense influences belief,
behavior, perception, or emotion. This pejorative terminology is justified in
some cases: fantasy and imagination can exercise a pathological influence.
This essay, however, reviews some logical techniques that allow pretense
to govern belief in a rational and beneficial way. Philosophers might want
similar techniques in their tool-kits when they explore interactions between
belief and pretense.
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1. Introduction

Belief can influence pretense and pretense can influence belief. The latter
relationship (the modification of belief by imagination) has acquired the
label “contagion” in the philosophical literature  suggesting that some
philosophers view it with suspicion. This negative attitude makes some
sense given the multitude of bad ways for our fantasies to rule our beliefs.
Here, however, we will focus on techniques that give pretense a useful role
in the rational fixation of belief. We will review some logical tricks and
devices that deserve a place in the philosopher’s tool kit because they
allow for self-conscious pretenses that are not just harmless but fruitful.

2. The same list

Suppose you take your pen and your piece of paper and make a list.
I take my pen and my piece of paper and make a list. We compare the
results and are surprised to find that our lists are the same.

Your list = My list.
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What makes us think they are the same? Simple: they list the same
things. Lists that list the same things are the same.1 Yet they are
not the same: they are not really identical. If you burn your list, it
does not follow that you have burned my list. If your list is in cursive,
it does not follow that my list is in cursive. This “same list” business
is a pretense that can miscarry in two ways: it can unravel internally
and it can saddle us with falsehoods when we drop the pretense. If our
pretense is to remain coherent and if the results we reach inside our
pretense are to stand up when we drop the pretense, we have to monitor
the propositions we affirm and the inferences we make on the basis of
our pretended identities. In particular, we have to avoid contexts that
let us distinguish between lists that have the same entries.2

Let ≈ be the relation “having the same entries”: if X and Y are lists,
then X ≈ Y if and only if X and Y list the same things. Let us say that a
formula of the form α = β is an equation while α ≈ β is the correspond-
ing equivalence. Within our pretense we replace sincere equivalences
with pretended equations. (We say that X and Y are the same list when
we are really only justified in saying that they have the same entries.)
When we drop our pretense, we reverse the process: replacing equa-
tions with equivalences. Within our pretense, we might assert various
instances of Leibniz’s Law  that is, propositions of the form

∀ᾱ∀X, Y ((φ(X) ∧X = Y ) → φ(Y )) (LL =)

where ‘X ’ and ‘Y ’ are list-variables (variables ranging over lists) and ∀ᾱ
is a string of universal quantifiers of appropriate type binding any further

1 At least, this is the rule for lists that involve no ranking or ordering and in
which multiple listings of the same entry count the same as a single listing. From
here on, we will only consider lists that obey this rule.

2 There is a substantial literature on this style of logical make-believe. Here is
just a taste. Moritz Pasch treats our pretense as a form of implicit definition. See,
for example, [12]; translated into English as [13]. For a general discussion of Pasch’s
views on mathematical pretenses, see [17]. Hermann Weyl and Paul Lorenzen describe
our pretense as an application of definition by abstraction. See [23, pp. 8–13]; [10,
pp. 105–111]; [9]; and [15]. The idea is that equivalence relations can better imperson-
ate identity when we abstract from (that is, when we systematically avoid) contexts
that distinguish between equivalent objects. What we call a pretense, Lorenzen calls a
façon de parler. Cf. Quine’s remark that “the metaphorical use of the identity sign for
what is really not identity” is “a manner of speaking” [19, p. 118]. For an especially
clear discussion of this manner of speaking see [3, pp. 159–161]. For some criticisms of
Lorenzen, see [21, pp. 26–28]. For contributions by Ignacio Angelelli and many others,
see the references in [1]. For some insight into the historical background, see [11].
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variables free in the formula φ. When we drop the pretense, equations
become equivalences and, so, instead of (LL =) we have

∀ᾱ∀X, Y ((φ∗(X) ∧X ≈ Y ) → φ∗(Y )) (LL ≈)

where φ∗ is the result of replacing each equation in φ with the correspond-
ing equivalence. We might insist that this is what we really mean when
we assert instances of (LL =) within our pretense. At the very least,
we want to be justified in asserting an instance of (LL ≈) whenever our
pretense leads us to affirm the corresponding instance of (LL =). So
we need to be careful to assert only those instances that translate into
truths when we drop our pretense.

Let us consider an example. Would it be safe, inside our pretense, to
affirm the following?

∀X, Y, Z((X = Z ∧X = Y ) → Y = Z).

Would this preserve the coherence of our pretense and would it be con-
sistent with the project of using make-believe as a guide to truth? Ac-
cording to our standard, the answer is “yes.” To see why, first note that
if φ(X) is ‘X = Z’ and φ(Y ) is ‘Y = Z’, then φ∗(X) is ‘X ≈ Z’ and
φ∗(Y ) is ‘Y ≈ Z’. So our translation is:

∀X, Y, Z((X ≈ Z ∧X ≈ Y ) → Y ≈ Z).

This is a true statement about lists. If X has the same entries as both
Z and Y , then Y has the same entries as Z (since “sameness of entries”
is symmetric and transitive). So we can safely affirm

∀X, Y, Z((X = Z ∧X = Y ) → Y = Z)

within our pretense: this proposition is a reliable guide to truth outside
our pretense. If premises of the form α = γ and α = β turn out true
when we drop our pretense (that is, if α ≈ γ and α ≈ β are true), then
β = γ will also turn out true when we drop our pretense (that is, β ≈ γ

will be true).
For another case where things work out well, we turn to the “listing”

relation: the relation between a list and its entries. X lists z if and
only if z is an entry of X . Consider the proposition

∀z∀X, Y ((X lists z ∧X = Y ) → Y lists z)

where ‘z’ is an individual-variable (a variable ranging over non-lists). To
see how to apply our interpretation technique here, first note that if φ(X)
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is ‘X lists z’, then φ∗(X) is still ‘X lists z’. When a formula harbors
no equations, either implicitly or explicitly, the operation of replacing
equations with equivalences does not actually change anything. We end
up with the same formula we had at the start. So our translation is

∀z∀X, Y ((X lists z ∧X ≈ Y ) → Y lists z).

This is another true statement about lists. If X and Y have the same
entries, then Y will list everything X does. So, inside our pretense, we
can confidently affirm that

∀z∀X, Y ((X lists z ∧X = Y ) → Y lists z).

This affirmation will not render our pretense incoherent and it will be a
reliable guide to truth outside our pretense.

Things do not always work out so well. For example, we must not
affirm this instance of Leibniz’s Law:

∀X, Y ((X burned up ∧X = Y ) → Y burned up).

Here our translation is the following falsehood:

∀X, Y ((X burned up ∧X ≈ Y ) → Y burned up).

If, for example, your list burned up and your list has the same entries
as mine, it does not follow that my list burned up. You can incinerate a
list without incinerating all equivalent lists. So inferences of the form

(α burned up ∧ α = β) =⇒ β burned up

can make our pretense incoherent and can saddle us with absurdities
when we drop the pretense. Suppose we acknowledge that your list
burned up, but mine did not. Suppose, calling on our feigned belief in
the identity of our lists, we infer that my list burned up. Our position
will then be that my list both did and did not burn up. Somehow or
other, we must keep clear of this trap.

One solution would be to avoid premises (such as, “Your list burned
up”) that get us into trouble. For starters, we could make our current
topic, incineration, entirely taboo. That, however, would be going too
far. It is the incineration of lists that gets us in trouble. We might
still want to make inferences about the incineration of list-entries that
are not themselves lists. Such inferences can be entirely innocent. For
example, if you made a list of manuscripts, one of which burned up,
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and my list has the same entries as your list, then it really does follow
that an entry of my list burned up. We will not necessarily want to ban
that inference. Furthermore, a general taboo on talk about incineration
(and, to mention just a few other topics, spatial location, surface area,
reflectivity, odor, ink color, aesthetic value) would not really solve our
problem. There is a topic central to discourse about lists that will still
get us into trouble.

That topic is our old friend the “listing” relation. We already showed
that the proposition

∀z∀X, Y ((X lists z ∧X = Y ) → Y lists z)

is safe: we are able to interpret it as a truism about lists. Now, however,
consider this:

∀X, Y, Z((Z lists X ∧X = Y ) → Z lists Y ).

Our translation is the following falsehood:

∀X, Y, Z((Z lists X ∧X ≈ Y ) → Z lists Y ).

This is false because a list can list a list without listing every list that
happens to have the same entries. A list of your lists would, in fact,
list your lists. My list may have the same entries as one of yours, but
it is still my list and, so, does not belong on a list of your lists. At
least, this is how matters stand when we have dropped our pretense and
are carefully distinguishing between ‘=’ and ‘≈’. When faced with sober
senses, pretense-driven inferences of the form

(γ lists α ∧ α = β) =⇒ γ lists β

turn out to be unreliable. They can lead us to make false claims, not
about side issues like mass or color, but about the central concern in
discourse about lists: the listing relation itself [14].

3. Type-1 lists

Well what are we to do? We cannot ban talk about what-lists-what
because that would leave us with almost nothing of real interest to say
about lists. It is fortunate that we have less extreme options. We can



666 Stephen Pollard

pinpoint the source of our trouble: lists that appear as entries of lists. If
list X is an entry of list Z and X has the same entries as Y it does not
follow that Z lists Y . ≈’s impersonation of identity can break down here.
We could avoid this problem by refusing to talk about lists that have
lists as entries. Say that a list is type-1 if none of its entries are lists.
Suppose we agree to avoid any reference to lists that are not type-1. In
this setting, when we affirm that

∀X, Y, Z((Z lists X ∧X = Y ) → Z lists Y )

it is with the understanding that the lists X, Y, Z will be type-1. We
make this understanding explicit in a new interpretation

∀X, Y, Z ∈ T1((Z lists X ∧X ≈ Y ) → Z lists Y )

where ‘∀X, Y, Z ∈ T1’ is a universal quantifier to be read as “for all type-
1 lists X, Y, Z.” (You might think of T1 as the class of all type-1 lists.)
If X is a list and Z is a list that lists no lists, then Z will not list X and,
hence, a conditional whose antecedent asserts that Z does list X will be
vacuously true. That is, we can now approve of the proposition

∀X, Y, Z((Z lists X ∧X = Y ) → Z lists Y )

because we have figured out how to interpret it as a true (albeit rather
uninteresting) statement about lists.

We need to give a more general account of our translation scheme.
Our interpretation of a formula φ is now φ∗

1 where the latter is the result
of restricting any list-quantifiers in φ∗ to T1: for example, translating
‘∀Z’ as ‘∀Z ∈ T1’ and ‘∃Z’ as ‘∃Z ∈ T1’. We now interpret instances of
Leibniz’s Law as

∀ᾱ∀β̄ ∈ T1∀X, Y ∈ T1((φ∗

1(X) ∧X ≈ Y ) → φ∗

1(Y ))

where ∀ᾱ is a string of univeral quantifiers binding any individual-vari-
ables that would otherwise be free and ∀β̄ ∈ T1 is a string of universal
quantifiers doing the same for list-variables. Consider this instance of
Leibniz’s Law:

∀X, Y ((∃Z(Z lists X) ∧X = Y ) → ∃Z(Z lists Y )).

That is, if X is an entry of some list and X is the same as Y , then Y

is an entry of some list. This looks like the sort of thing that could get
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us in trouble. After all, an unlisted list can have the same entries as a
listed one. However, our new interpretation is:

∀X, Y ∈ T1((∃Z ∈ T1(Z lists X) ∧X ≈ Y ) → ∃Z ∈ T1(Z lists Y )).

If X is a list, then there cannot be a list Z that lists no lists and yet
lists X . So our translation is vacuously true. This shows that the trans-
lated proposition is safe: we are able to interpret it as a true (albeit
uninteresting) claim about lists.

4. Hereditarily invariant lists

That solves our problem with the listing relation, but the price is stiff: a
substantial limitation on the power and interest of our talk about lists.
There is an alternative. Instead of avoiding all lists that list lists, we
could avoid the ones that get us in trouble: lists that list lists without
listing all equivalent lists. That is, if we are to discuss a list Z, we will
want it to pass the following test of invariance:

∀X, Y ((Z lists X ∧X ≈ Y ) → Z lists Y ).

If listX is an entry of invariant list Z, then Z will list every list equivalent
to X . If, within our pretense, we discuss only invariant lists, then the
problematic claim

∀X, Y, Z((Z lists X ∧X = Y ) → Z lists Y )

will translate as

∀X, Y, Z ∈ I((Z lists X ∧X ≈ Y ) → Z lists Y )

where ‘∀X, Y, Z ∈ I’ is a universal quantifier to be read as “for all in-
variant lists X, Y, Z.” That is, we will interpret the problematic claim
as a true statement about invariant lists. An invariant list that lists X
will, by the definition of invariance, list every list equivalent to X . Our
other problematic claim

∀X, Y ((∃Z(Z lists X) ∧X = Y ) → ∃Z(Z lists Y ))

will translate as the true statement

∀X, Y ∈ I((∃Z ∈ I(Z lists X) ∧X ≈ Y ) → ∃Z ∈ I(Z lists Y )).

If X is an entry of an invariant list, then every list equivalent to X will be
an entry of an invariant list. We seem to have hit upon a successful strat-
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egy: interpret each list-quantifier as a quantifier restricted to I just as,
above, we interpreted each list-quantifier as a quantifier restricted to T1.

Unfortunately, we soon run into a new problem. At the core of our
pretense is the principle that lists with the same entries are the same:

∀X, Y ((∀z(X lists z ↔ Y lists z) ∧ ∀Z(X lists Z ↔ Y lists Z))

→ X = Y ).

When we restrict each list-quantifier to I, we obtain:

∀X, Y ∈ I((∀z(X lists z ↔ Y lists z) ∧

∀Z ∈ I(X lists Z ↔ Y lists Z)) → X ≈ Y ).

This says that if X and Y list the same individuals and the same invari-

ant lists, then X and Y have the same entries. But that is not right.
X and Y could agree on individuals and invariant lists, but disagree on
non-invariant lists. Although our formula stipulates that X and Y are
invariant, it does not require that their entries be invariant. So X could
have a non-invariant entry that Y lacks.

We might decide, then, to focus on invariant lists whose entries are all
either individuals or invariant lists. Say that such lists are invariant+.
Our interpretation of our core principle will now be: if invariant+ lists
X and Y list the same individuals and the same invariant+ lists, then
X and Y have the same entries. Sadly, this gets us nowhere. Since X
and Y are invariant+, any lists that appear among their entries will be
invariant; but there is no guarantee that those entries will be invariant+.
So X and Y could agree on individuals and invariant+ lists while dis-
agreeing on lists that are merely invariant. It would be just as futile to
focus on invariant++ lists: that is, invariant+ lists whose entries are all
either individuals or invariant+ lists. The problem is that invariant lists
can have entries that are not invariant; invariant+ lists can have entries
that are not invariant+; invariant++ lists can have entries that are not
invariant++; and so on. We need some sort of super-invariance property
that is passed from lists to entries. Super-invariant lists really would have
the same entries when they agree on individuals and super-invariant lists:
since each list appearing as an entry would be super-invariant, agreement
on super-invariant lists would mean agreement on lists in general.

Now for some good news: the property we need is ready and waiting.
It is known as “hereditary invariance” [20, p. 118]. A list is hereditar-

ily invariant if and only if it is invariant, its list-entries (its entries that
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are lists) are invariant, the list-entries of its list-entries are invariant, the
list-entries of the list-entries of its list-entries are invariant, and so on.
If the “and so on” makes you uneasy, rest assured that we could use a
trick (Frege’s definition of the ancestral) to eliminate it.3 We shall take
it for granted that hereditary invariance has been properly defined. The
core principle of our pretense will now have the following interpretation

∀X, Y ∈ H((∀z(X lists z ↔ Y lists z) ∧

∀Z ∈ H(X lists Z ↔ Y lists Z)) → X ≈ Y )

where ‘∀X, Y ∈ H’ is a universal quantifier to be read as “for all heredi-
tarily invariant lists X, Y .” Suppose X and Y are hereditarily invariant
lists that list the same individuals and the same hereditarily invariant
lists. Any list that appears as an entry of X or Y will be hereditarily
invariant. (Entries of hereditarily invariant lists are all either individuals
or hereditarily invariant lists.) So, in fact, X and Y will list the same
individuals and the same lists. That is, X and Y will have the same
entries. The core principle of our pretense comes out true under our new
interpretation.

5. How to do it

We can now see how ≈ might carry off a successful impersonation of iden-
tity. Here success mean, first, that our pretense is internally consistent
and, second, that we have a systematic way to interpret make-believe
results as straightforward truths about lists. We start by addressing a
problem we left unresolved. Recall that the predicate ‘burned up’ fails
an invariance test.4 That is, the following proposition is false:

∀X, Y ((X burned up ∧X ≈ Y ) → Y burned up).

3 For one example of how to do so, see [18, p. 61]
4 A list Z is invariant when

∀X,Y ((Z lists X ∧X ≈ Y ) → Z lists Y ).

A predicate φ is invariant when

∀X,Y ((φ(X) ∧X ≈ Y ) → φ(Y )).

When a predicate expresses a property, we say that the property is invariant if and
only if the predicate is [23, p. 9]. The property of being listed by Z is invariant if and
only if Z is invariant.
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A direct solution is to enforce a type restriction that prevents list-terms
(such as list-variables) from occupying the subject position in the matrix

_____ burned up.

This will leave us unable to affirm that a list burned up. It will also
leave us unable to deny that a list burned up, but that is as it should
be. The predicate ‘did not burn up’ also fails the invariance test since
the following proposition is false:

∀X, Y ((X did not burn up ∧X ≈ Y ) → Y did not burn up).

Even if your list, with the same entries as mine, avoided incineration,
it does not follow that my list was as lucky. Once we impose our type-
discipline, a list will just not be the sort of thing that either burns or
fails to burn, much as the equator is not the sort of thing that is either
heavy or light.5 We will treat the formula

∀X(X burned up ∨X did not burn up)

as ungrammatical. We can still talk about the incineration of individuals

and we can still accept

∀x(x burned up ∨ x did not burn up)

as a logical truth. We deal similarly with other non-invariant predicates
(such as ‘is beautiful’ or ‘is in cursive’) with the one crucial exception of
the listing relation itself. It would be crippling to ban talk about what
lists list. Instead, we can allow such talk, but limit it to a special class
of lists. Limiting our list-talk to hereditarily invariant lists would have
the advantage of letting lists be entries of lists. However, if this strategy
proves unworkable in some context, we can just confine ourselves to
type-1 lists (which, by the way, are all hereditarily invariant).

Let us consider an example. Suppose we are discussing some universe
U of lists and are pretending that lists with the same entries are identical.
We ask: is there a list that lists exactly one list? If we are safeguarding

5 Imaginary scenarios are, notoriously, incomplete. If there is an imaginary
spill in a pretend tea party, “there may be no fact of the matter (in the pretense) just
how much tea spilled” [5, p. 25]. In our pretense about lists, there are no “facts of the
matter” to support claims of incineration or non-incineration. It is not just that we
have failed to provide for such facts: we have kept our pretense coherent by actively
excluding them.
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our pretense by recognizing only type-1 lists, then the answer is clear: no
list lists exactly one list because no list lists any list at all. Suppose our
outlook is broader: we are willing to consider any hereditarily invariant
lists in U . What is our answer then? We first expose the logical structure
of our question. To say that some list lists exactly one list is to say:

∃X, Y ∀Z(X lists Z ↔ Z = Y ).

When we drop our pretense, we interpret this as

∃X, Y ∈ H∀Z ∈ H(X lists Z ↔ Z ≈ Y )

where H is the class of hereditarily invariant lists in U . It is easy to
imagine a situation in which this is true. Suppose U features a type-1
list Y and a list X whose entries are exactly the lists in U equivalent to
Y . Then both X and Y will be hereditarily invariant and, furthermore,
hereditarily invariant lists in U will be entries of X if and only if they
have the same entries as Y . So, inside our pretense, we can say: yes,
there is a list that lists exactly one list. We do so secure in the knowledge
that, outside our pretense, this translates as a true statement about U .
We got the translation to come out true by making certain assumptions
about U . Different assumptions can yield a different result. For example,
if there are lists in U not of type-1, but none of them are hereditarily
invariant, then, no matter how much we might wish to broaden our
perspective, H will just be T1 and our proposition will translate as a
falsehood. That will be alright, because we will be forced to deny the
proposition within our pretext and that denial will translate as a true
statement about our lists. Our pretense will still be a reliable guide to
truth, but we will not have as many interesting things to say about lists.

Let us consider a simple universe of lists in which things turn out
particularly well. Let ∅1 and ∅2 be blank lists (lists that list nothing).
Make two lists that list only those blank lists: {∅1, ∅2}1 and {∅1, ∅2}2.
Make two lists that list only those two lists: {{∅1, ∅2}1, {∅1, ∅2}2}1 and
{{∅1, ∅2}1, {∅1, ∅2}2}2. We now have a little universe U consisting of two
equivalent type-1 lists (the blank lists), two equivalent lists of type-1 lists,
and two equivalent lists of lists of type-1 lists:

∅1 ≈ ∅2

{∅1, ∅2}1 ≈ {∅1, ∅2}2

{{∅1, ∅2}1, {∅1, ∅2}2}1 ≈ {{∅1, ∅2}1, {∅1, ∅2}2}2.
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Since all our lists are hereditarily invariant, it is child’s play to make-
believe that ≈ is =. First, we limit our use of predicates that fail our
invariance test. If {∅1, ∅2}1 is written in pencil, but {∅1, ∅2}2 is not, then
the predicates

_____ is in pencil

and

_____ is not in pencil

are non-invariant. So it would spoil our pretense if we allowed ourselves
to affirm or deny that our lists are in pencil. That would reveal that
{∅1, ∅2}1 and {∅1, ∅2}2 are not really the same. We will insist instead
that a list in U is just not the sort of thing that either is or is not in
pencil. We will insist that a string of symbols such as

{∅1, ∅2}1 is in pencil ∨ {∅1, ∅2}1 is not in pencil

is ungrammatical. Our next step is to pretend that all the numerical
subscripts have disappeared and to announce that we have, not six lists,
but three: ∅, {∅}, and {{∅}}. We can now elaborate on our pretense
without fear of contradicting ourselves. Furthermore, we have a tech-
nique for translating make-believe results about our three lists into true
statements about the six lists in U .

Note, for example, that in our make-believe world (the world inhab-
ited by ∅, {∅}, and {{∅}}) no list has more than one entry. That is,

∀X, Y (∃Z(Z lists X ∧ Z lists Y ) → X = Y ).

We interpret this as a true statement about our six lists:

∀X, Y ∈ U(∃Z ∈ U(Z lists X ∧ Z lists Y ) → X ≈ Y ).

We write ‘U ’ rather than ‘H’ because H, the class of hereditarily invari-
ant lists in U , just is U . The make-believe claim that no list has more
than one entry translates as the true observation that U -lists appearing
on the same U -list will have the same entries. Another example: in our
make-believe world, lists that share an entry are the same. That is,

∀X, Y (∃Z(X lists Z ∧ Y lists Z) → X = Y ).

This translates as a true statement about U :

∀X, Y ∈ U(∃Z ∈ U(X lists Z ∧ Y lists Z) → X ≈ Y ).
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U -lists that share an entry share all their entries. Another example:
in our make-believe world, lists that list the same lists are the same.
That is,

∀X, Y (∀Z(X lists Z ↔ Y lists Z) → X = Y ).

This too we interpret as a true statement about U :

∀X, Y ∈ U(∀Z ∈ U(X lists Z ↔ Y lists Z) → X ≈ Y ).

Since every entry of a U -list is a U -list, U -lists that list the same U -lists
will, indeed, have the same entries. Thanks to our careful provisions, we
can go on and on about our make-believe world

∅, {∅}, {{∅}}

without any fear of contradicting ourselves. Even better, we have a
systematic way to interpret each of our make-believe theorems as a true
statement about the more complicated world of our six lists

∅1, ∅2, {∅1, ∅2}1, {∅1, ∅2}2, {{∅1, ∅2}1, {∅1, ∅2}2}1, {{∅1, ∅2}1, {∅1, ∅2}2}2.

We have a simple and coherent pretense that is a reliable guide to some
less simple truths.

6. Mirroring and contagion

Belief can influence pretense and pretense can influence belief. I might
pretend that some proposition is true because I believe that some related
proposition is true. When I make-believe that I have a dog, I might
imagine that my dog brings me my slippers because I believe most dogs
behave like that. I might imagine

My dog fetches my slippers

because I believe

Real dogs fetch slippers.

On the other hand, I might come to believe that some proposition is
true because my pretense has led me to make-believe that some related
proposition is true. I might come to believe that a dog will increase
my happiness because I have run through the dog-ownership scenario in
some detail and have been led to imagine myself as happier with a dog
than I was without one. I might believe

I will be happier with a dog
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because, in the course of a plausible make-believe, I came to imagine

My dog has made me happier.

The direction of flow
Belief =⇒ Pretense

is known as mirroring. Make-believe scenarios will, under certain cir-
cumstances, reflect certain features of what we believe to be reality. The
challenge is to specify what circumstances justify the reflection of what
features and, furthermore, what counts as a reflection of what. The
converse influence

Pretense =⇒ Belief

has acquired a more pejorative label than it deserves: contagion.6

When a pretense causes me to modify my beliefs without providing a
reason for doing so, this can, indeed, be a kind of pathology  rather like
the transmission of disease. We, however, are interested in those cases
where make-believe does provide reasons  and good reasons at that.7

How does it do so? And what modifications of which beliefs can be
justified in this way?

Logicians have a good understanding of both directions of flow
(belief-to-pretense and pretense-to-belief) in cases like those we discussed
above: cases where we pretend that equivalent objects are identical. The
founding principles of any equivalence-is-identity pretense are:

Mirroring If you believe things are equivalent, then you should pretend
they are identical.

Contagion If you find yourself pretending that things are identical, then
you have a good reason to believe they are equivalent.

These are just instances of two more general principles. The idea is that
we have an interpretation function i that governs mirroring and
contagion as follows:

Mirroring If you believe that i(φ) is true, then you should pretend that
φ is true.

6 For helpful discussions of mirroring, contagion, and, more generally, interactions
between pretense and belief (as well as many references to a substantial literature),
see [5], [6], [7], and [8].

7 The role of imagination in the rational orientation of action was, by the way,
one of John Dewey’s favorite themes. “Only imaginative vision elicits the possibilities
that are interwoven within the texture of the actual” [4, p. 345].
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Contagion If you find yourself pretending that φ is true, then you have
a good reason to believe that i(φ) is true.

If i translates equations as equivalences  that is, if i(α = β) is α ∼ β

where ∼ is the equivalence relation that is to impersonate identity 
then we obtain our first two principles as special cases:

Mirroring If you believe that α ∼ β, then you should pretend that
α = β.

Contagion If you find yourself pretending that α = β, then you have a
good reason to believe that α ∼ β.

The challenge now is to say how i is to handle other formulas and to
make sure that contagion is always benign: that is, to make sure that φ
is derivable in our pretense only if i(φ) is derivable from propositions we
actually believe. Happily for us, logicians have considerable experience
rising to this very challenge. They are quite good at establishing in-

terpretability.8 We followed their example when we formulated the
translation schemes we discussed above. We will now consider in more
general terms how the logician’s style of interpretation can help keep our
pretenses coherent and can control contagion in ways that render it not
just benign but illuminating.

7. Interpretability

In the discussion that follows, φ, ψ, χ are understood to be sentences
while A,B,C are sets of sentences. ⊢ is a derivability relation: A ⊢ φ

if and only if φ is derivable from sentences in A (or, to put it more briefly,
A proves φ). We assume that ⊢ satisfies:

Transitivity If B proves every member of C and C ⊢ φ, then B ⊢ φ.

We say: A is inconsistent if and only if A proves every sentence. Sup-
pose i is a function that assigns sentences to sentences. i[A] (the image

8 Daniel Bonevac provides a clear introduction in [2, ch. 4]. If we view an on-

tological reduction as a justification of a particular sort of pretense (in which we
make-believe there are things whose existence, in more serious moments, we deny),
then we can read Bonevac’s book as an exploration of how interpretation functions
help us keep imagination coherent and contagion benign. For a taste of the logical
literature, see [22].
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of A under i) is {i(φ) : φ ∈ A}. i is an interpretation function if
and only if it satisfies the following two conditions.

Preservation of derivability If A ⊢ φ, then i[A] ⊢ i(φ).
Preservation of inconsistency If A is inconsistent, so is i[A].

If a conclusion is derivable from some premises, then the interpreta-
tion of the conclusion will be derivable from the interpretations of the
premises. This is enough to guarantee that the interpretation of every
sentence will be derivable from the interpretations of some inconsistent
premises. That is, if A is inconsistent, then i[A] will prove i(φ) for every
sentence φ. It does not follow that i[A] will prove every sentence.9 So
the second of our two conditions (preservation of inconsistency) does not
follow from the first (preservation of derivability).

We say that A is interpretable in B if and only if, for some
interpretation function i, B proves every member of i[A]. Here are two
elementary theorems that will help to show why interpretability is of
interest.

Theorem 1. If A is interpretable in B and i provides the interpretation,

then A proves φ only if B proves i(φ).

Theorem 2. If A is interpretable in B, then B is consistent only if A is

consistent.

Think of A as a set of pretenses while B is a set of beliefs. We
really believe that the sentences in B are true, but only make-believe
that the sentences in A are true. Suppose A is interpretable in B. Then
Theorem 1 provides a recipe for a productive sort of contagion. If φ is
derivable from our pretenses, then we have a good reason to make-believe
that φ is true  but we also have a good reason to believe that i(φ) is
true since we have shown that i(φ) is derivable from beliefs we already
hold. Whenever we expand our stock of pretenses through inference, we
identify sentences we ought to believe. On the other hand, Theorem 2
shows how our beliefs might regulate our pretenses. If you can translate
your pretenses into beliefs, as we did above, then your pretenses will be
coherent as long as your beliefs are.

9 Suppose ∅ ⊢ ⊤. Let i interpret every sentence as ⊤. Then i[A] ⊢ i(φ) no
matter what A is. So i preserves derivability. Suppose {⊤} is consistent but {⊥} is
not. Then, since i[{⊥}] is consistent, i does not preserve inconsistency.
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To vindicate a pretense in this powerful way, we need a translation
scheme that preserves both derivability and inconsistency. How would
we arrange for a translation scheme to do that? As a first step in an-
swering this question, we consider some conditions that are necessary.
We determine that a condition is necessary by showing that it follows
from our limited assumptions about interpretation functions and some
modest assumptions about our logic. We assume that the operators −,
∧, →, and ∨ have the following properties.10

(φ ∧ ψ) ⊢ φ.
(φ ∧ ψ) ⊢ ψ.
{φ, ψ} ⊢ (φ ∧ ψ).
A ∪ {φ} is inconsistent if and only if A ⊢ −φ.
A ∪ {φ} ⊢ ψ if and only if A ⊢ (φ → ψ).
(φ ∨ ψ) ⊢ χ if and only if φ ⊢ χ and ψ ⊢ χ.

From now on, we assume that i is an interpretation function. The fol-
lowing theorems show how i treats −, ∧, →, and ∨.

Theorem 3. i(φ ∧ ψ) ⊣ ⊢ (i(φ) ∧ i(ψ)).11

Theorem 4. i(−φ) ⊢ −i(φ).12

Theorem 5. i(φ → ψ) ⊢ (i(φ) → i(ψ)).13

Theorem 6. (i(φ) ∨ i(ψ)) ⊢ i(φ ∨ ψ).14

If your translation scheme is to preserve both derivability and in-
consistency, then (not too surprsingly) it must respect logical form to
a substantial degree. Your translation of a conjunction must be deduc-
tively equivalent to the conjunction of your translations of the conjuncts.
Your translation of the negation −φ must prove the negation of your

10 We will sacrifice some brackets on the altar of readability. For example, in the
statement of the first two properties, we write ‘(φ ∧ ψ)’ instead of ‘{(φ ∧ ψ)}’. The
latter would be more proper because ⊢ is supposed to be a relation between a set and
a sentence. Note, by the way, that our operators are not necessarily classical. All the
properties we attribute to them apply also to intuitionist connectives.

11 θ ⊣ ⊢ χ just means that θ and χ prove one another.
12 The converse does not follow from our assumptions. Consider the modal logic

S5. Let i(φ) = �φ. Then i preserves both derivability and inconsistency and, so, is an
interpretation function in our sense. But −i(φ) (that is, −�φ) does not prove i(−φ)
(that is, � − φ).

13 Again, the converse is unprovable: �φ → �ψ does not prove �(φ → ψ) in S5.
14 Yet again, the converse is unprovable: �(φ∨ψ) does not prove �φ∨�ψ in S5.
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translation of φ. And so on. The general point is that if f behaves
like the logical operators we have considered, then we will need deriv-
ability to hold in at least one direction between i(f(φ1, . . . , φn)) and
f(i(φ1), . . . , i(φn)). We will need either

i(f(φ1, . . . , φn)) ⊢ f(i(φ1), . . . , i(φn))

or
f(i(φ1), . . . , i(φn)) ⊢ i(f(φ1, . . . , φn))

if not both. One effective way to guarantee inter-derivability is to insist
on identity:

i(f(φ1, . . . , φn)) = f(i(φ1), . . . , i(φn)).

That is:

i(−φ) = −i(φ)

i(φ ∧ ψ) = (i(φ) ∧ i(ψ))

i(φ → ψ) = (i(φ) → i(ψ))

i(φ ∨ ψ) = (i(φ) ∨ i(ψ)).

This is one option. In what follows, we do not assume that we have
chosen this option.

As we saw above, we may want our translation scheme to show less
respect for two other components of logical form: the identity relation
and quantifiers. It may be useful to replace equations with equivalences
and unbounded quantifiers with bounded ones:

i(α = β) = α ∼ β

i(∀α φ) = ∀α ∈ M i(φ)

i(∃α φ) = ∃α ∈ M i(φ).

This treatment of quantifiers will be safe as long as we can confirm that
M is not empty. (IfM were empty, every existential generalization would
translate as a falsehood.) As we have already seen, it may not be quite
that easy to guarantee that our interpretation of = as ∼ is safe.

It will, presumably, be a theorem of our logic that identity is an
equivalence relation (reflexive, symmetric, and transitive). So, if i pre-
serves derivability, we will be able to prove that ∼ is an equivalence
relation in M [16, p. 60]. Assume, for example, that the symmetry of
identity is a theorem:

∀x, y(x = y → y = x).
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Then, since i preserves derivability:

∀x, y ∈ M i(x = y → y = x).

By Theorem 5,

∀x, y ∈ M i(x = y → y = x) ⊢ ∀x, y ∈ M(x ∼ y → y ∼ x).

So
⊢ ∀x, y ∈ M(x ∼ y → y ∼ x).

That is, we can prove that ∼ is symmetric in M . We can do the same
for reflexivity and transitivity. The point is: a necessary condition for i
to preserve derivability is that ∼ be an equivalence relation in M .

Another necessary condition is that each instance of Leibniz’s Law
have a provable translation  which, as we shall now see, places further
demands on our translation scheme. Assume:

∀x, y((φ(x) ∧ x = y) → φ(y)).

Then, by Theorems 3 and 5 and the preservation of derivability:

∀x, y ∈ M((i(φ(x)) ∧ x ∼ y) → i(φ(y))).

This means: for each formula φ(α), the translation i(φ(α)) must be
invariant in M [16, p. 61]. We saw above how we might arrange for this
through a careful choice of M and special restrictions on what counts as
a formula.

To sum up: we have reviewed some conditions that must be satisfied
if our translation scheme is to preserve derivability and inconsistency.
Our scheme must respect logical form at least to the extent of satisfying
Theorems 3–6. Our scheme can show less respect for quantifiers and
identity: it can place a bound M on our quantifiers and can interpret
‘=’ as some relation ∼. But then M must be non-empty, ∼ must be an
equivalence relation in M , and any formulas we count as grammatical
must have a translation that is invariant in M .

8. Conclusion

Formal logic supplies tools for the rational guidance of belief by imag-
ination. These tools may help us better understand the pretense-belief
connection both in and out of the formal sciences.
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