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Abstract. In this paper we define a new type of connexive logics which
we call Boolean connexive logics. In such logics negation, conjunction and
disjunction behave in the classical, Boolean way. We determine these logics
through application of the relating semantics. In the final section we present
a tableau approach to the discussed logics.
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1. Introduction

Connexive logic is based on the theses set forth by Aristotle and Boe-
thius, which only use negation and implication connectives. What is
more, these theses are inconsistent to the classical logic. Therefore, in
connexive logic we must interpret at least one of these connectives in a
non-classical manner.

In this study we shall only consider such connexive logics where
the negation, conjunction and disjunction have the same meanings with
those in the classical logic. Thus each logic of this type we shall refer to
as Boolean connexive logic since they preserve the meanings of the basic
Boolean connectives.

The study offers a new approach to the issue of connexivity. Rather
than using for instance possible worlds or many logical values [McCall,
2012]  as the starting basis for the definition of connexive logic  we
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shall assume a certain type of intensional logic: relating logic. By comb-
ing the semantic structures for relating logics with a Boolean language we
obtain several different logics. The strongest ones among them include
Aristotle’s and Boethius’ connexive laws as their tautologies. Hence,
they are connexive logics.

Further in the study we present the following issues. First, we bring
back some basic issues involved in connexive logics. Further, we present
the semantics of the relating logic which we shall use as grounds for
specification of our Boolean connexive logics and other issues. By dint
of the findings concerning relations between the Aristotle’s and Boethius’
theses and the conditions imposed on the relating relation, we can present
a lattice of logics comprising the least Boolean connexive logic along with
a natural extension. Lastly, as a decision-making procedure, we propose
the tableau methods that we shall elaborate in Section 9 of the study.

2. Connexive logics  main ideas and definitions

There is an idea behind connexive logic that proposition A has nothing
in common with proposition ∼ A in terms of the content. Similarly, if A
has a common content with B, it cannot have any common content with
∼ B, and vice versa, if A has a common content with ∼ B, it cannot
have any common content with B. A necessary condition for truthness
of implication is a common content of premise and conclusion (the im-
plication antecedent and consequent, respectively). Such intuitions form
the motivation for connexive logics. The roots of connexive logic date
back to the ancient times. In Prior Analytics 57b14 Aristotle writes: “It
is impossible that if A then ∼ A”.

In the formal language which features at least two connectives, unary:
∼, referred to as negation, and binary: ⇒, referred to as implication, the
concept of connexivity is expressed by the requirement of occurrence of
the following theses in a logic:

∼(A ⇒ ∼ A) (A1)

∼(∼ A ⇒ A) (A2)

(A ⇒ B) ⇒ ∼(A ⇒ ∼ B) (B1)

(A ⇒ ∼ B) ⇒ ∼(A ⇒ B) (B2)

Theses (A1) and (A2) are referred to as Aristotle’s Theses, while (B1)
and (B2) as Boethius’ Theses.
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Since none of the propositions (A1), (A2), (B1), (B2) is a thesis of the
classical logic, and at the same time the classical logic is Post-complete,
then having attached any of those to the classical logic, we would produce
an inconsistent logic. Thus, if we comprehend the negation and impli-
cation in the classical manner, we will produce an inconsistent logic. As
a consequence, in any connexive logic the implication or the negation is
non-classical. On the other hand if we do not assume the classical logic
as a background propositions (A1), (A2), (B1), (B2) can be independent,
which we show later.

Still, even if we adopt propositions (A1), (A2), (B1), (B2) as axioms,
no common content is guaranteed. For propositions (A1), (A2), (B1),
(B2) are valid in binary matrix {1, 0} with distinguished value of 1, with
classical material implication and negation defined as: ∼ 1 = ∼ 0 = 1.
Similarly, these propositions are true in a binary matrix with classical
negation and implication defined as: x ⇒ y = 1 iff x = y.

In order to express the desired intuitions concerning bearing the com-
mon content we need to make some assumptions regarding the com-
prehension of negation and implication. Andreas Kapsner [2012, p. 3]
proposes some minimal semantic conditions for negation and implication:

(Ka) In no model proposition A ⇒ ∼ A is satisfiable.
(Kb) In no model propositions A ⇒ B and A ⇒ ∼ B are both satisfiable.

By all means, if we treat the negation and implication connectives in the
classical manner, then conditions (Ka) and (Kb), result from (A1) and
(B1). On the other hand, these consequences do not have to happen
when negation and implication are comprehended in a different manner.

Kapsner proposes a classification of connexive logics into weakly and
strongly connexive. A logic is weakly connexive, if it comprises formulas
(A1), (A2), (B1), (B2) as theses and it is closed under the rule modus

ponens: A, A ⇒ B / B. If it additionally meets conditions (Ka) and
(Kb), it is called a strongly connexive logic. Kapsner [2012, p. 4] provides
additional conditions that make a logic superconnexive logic. However,
these conditions lead either to the inconsistent logic, or to a logic that
is not closed under uniform substitution. Therefore, we shall meanwhile
put them aside.

It is worth to note that the conditions Kapsner sets forth for the
strongly connexive logic do not remove all the non-intuitive proposals.
Let us again consider the classical negation and implication defined by
the conditions for the classical equivalence, meaning x ⇒ y = 1 iff x = y.
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A logic with such defined conditions is strongly connexive, even though
it has no virtues of reasonableness whatsoever. In order to eliminate
symmetric connectives (like material equivalence)), we might apply the
following additional condition:

(NS) For some two propositions A, B, in some model A ⇒ B is, but
B ⇒ A is not satisfiable.

It should accompany any connexive logic, regardless of its strength. If
a logic meets (NS) it can be called properly connexive.

There is also another way to accommodate the Aristotle’s and Boe-
thius’ theses with the classical logic. It would take to disregard those
inferences which feature tautologies and countertautologies as premises
or conclusions. Thus, let us assume that the inference only invloves con-
tingent propositions. If so, the intuitions related to bearing the common
content are fulfilled in the meaning that ∼ A does not infer A (and vice
versa) and if A infers B, then A does not infer ∼ B. Moreover, if A infer
B, then A and B comprise at least one common propositional variable.
We must notice, however, that in this case we deal with a metalanguage
entailment. In the subject language, the laws still do not hold. The
property of sharing a variable leads to relevant logics, and specifically to
the so-called containment logics [Ferguson, 2015; Fine, 1986].

The denomination of connexive logic is to promise some special con-
nection, relation between formulas or premisses and conclusions [Wans-
ing, 2014]. Therefore, in this paper we would like to apply relating
semantics to define connexive logics. There are strong indications that
by dint of its application we can accurately and directly express the
relations between the propositions that lie in the heart of connexive
logic. These relations do not have to follow from a common lingual
form, but  as mentioned before  from a content similarity that is not
always expressible in a logical form. So it can be for instance so that
propositions A and B are related in terms of content, even if they do
not include a single common propositional letter. The relating semantics
makes this relation expressible.

3. Relating logic

Under the approach we propose, we shall define connexive logics using
the relating semantics. Let us now remind a few basic facts pertaining to
the relating logic and its relations to the Classical Propositional Logic.
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3.1. Languages of CPL and RL

Let us consider the set of formulas ForCPL of Classical Propositional Logic
(CPL), made up in a standard manner from: the set of variables Var =
{p, q, r, p1, q1, r1, . . . }, one unary connective: ¬, four binary connectives:
∧, ∨, →, ↔, and brackets. Let |=CPL be a consequence relation of CPL
defined on ForCPL by the set of all classical valuations for ForCPL.

Whereas the set of formulas of Relating Logic (RL) ForRL is generated
with Var, negation ¬, four binary connectives: ∧, ∨, →, ↔ and four
binary relating connectives that are relating counterparts of classical
connectives: ∧w, ∨w, →w, ↔w, and brackets.1 Thus, ForCPL ( ForRL.

However, if we only take account of the relating part of RL formulas,
meaning the smallest subset of ForRL closed to Var, ¬, ∧w, ∨w, →w, ↔w,
and brackets, we shall get the set Forw

RL ( ForRL which is structurally
identical to ForCPL, because we have the following bijection between
classical and relating formulas, fw : ForCPL → Forw

RL defined as follows:

(a) fw(A) = A, if A ∈ Var;
(b) fw(¬A) = ¬fw(A);
(c) fw(A ∗ B) = fw(A) ∗w fw(B), for ∗ ∈ {∧, ∨, →, ↔}.

3.2. Relating semantics

A model for the relating formulas is a pair 〈v, R〉, where v : Var → {0, 1}
and R ⊆ ForRL × ForRL. The relation R is called relating relation. If
two propositions A and B remain in the relation R: R(A, B), then we
state they are related. Being related may have various philosophical
motivations and interpretations. Two formulas can be, for example,
related by R: analytically, causally, thematically, temporally etc., or
anywise we want [Jarmużek and Kaczkowski, 2014]. Clearly, v assigns
just to any variable either truth or falsity. In a model 〈v, R〉 for formulas
made up from the classical, logical constants, we use the well-known,
classical truth conditions. For variables and relating formulas we have
the following, general truth conditions:

• 〈v, R〉 |= A iff v(A) = 1, if A ∈ Var;
• 〈v, R〉 |= A ∧w B iff 〈v, R〉 |= A and 〈v, R〉 |= B and R(A, B);

1 The record of relating connectives as: ∧
w, ∨

w, →
w, ↔

w was developed in a
collaboration with Mateusz Klonowski, a doctoral student, during a logic seminar
held in Toruń and led by Tomasz Jarmużek. It also applies to other symbols we use
in the context of relating logics.
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• 〈v, R〉 |= A ∨w B iff [〈v, R〉 |= A or 〈v, R〉 |= B] and R(A, B);
• 〈v, R〉 |= A →w B iff [〈v, R〉 6|= A or 〈v, R〉 |= B] and R(A, B);
• 〈v, R〉 |= A ↔w B iff [〈v, R〉 |= A iff 〈v, R〉 |= B] and R(A, B).

As we can see, the relating connectives have intensional character, since
the Boolean conditions are not sufficient. For instance, a regular con-
junction A∧B is true in a model 〈v, R〉 iff both propositions: A and B are
true in a model 〈v, R〉. However, the relating conjunction of two formulas
A ∧w B is true in a model 〈v, R〉 not only when both propositions: A, B
are true in a model 〈v, R〉, but also additionally proposition A must be
related to proposition B, thus R(A, B).

The set of all models for RL we denote by MRL. By taking any
subset M of MRL in a standard way we define a relating logic |=M :

X |=M A iff for all M ∈ M , if M |= X , then M |= A.

for any X ∪ {A} ⊆ ForRL.2

3.3. Historical issues

The idea underlying the semantics based on the binary relation defined
on a set of formulas probably has its origin in the works of Walton [1979]
and Epstein [1979]. An example of its application may be the analysis
of the content relationships which is the foundation of the so-called re-
latedness logics and dependence logics defined by Epstein [1990, pp. 61–
84, 115–143] with some particular conditions imposed on models, and
with very special intentions and limits, like only relating implication in
the language. A more general approach  without assumptions imposed
on the relating relation  was proposed in [Jarmużek and Kaczkowski,
2014]. The work also suggested some philosophical interpretations of
relating relations, as for example causal, temporal or analytical inter-
pretations [see Jarmużek and Kaczkowski, 2014, p. 54].3 The aim of the
papers was in turn to specify the various sentential logics taking account
of the two properties of sentences: their logical value and their off-logical

2 We can distinguish horizontal, vertical and diagonal conditions that may de-
termine subclasses of MRL, and consequently define specific relating logics. In this
paper we shall introduce conditions tailored for the connexive context.

3 It should be stressed that the idea of causal interpretation of the relating re-
lation, as one of the many philosophical interpretations of such relation, was also
indicated by Walton [1979, p. 131].
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connections  taking account of the latter opens the ability to analyse
the differently understood content relationships. The least relating logic
is defined modulo all models [Jarmużek and Kaczkowski, 2014].

The classical logic of propositions might be treated as a special oc-
currence of the relating logic. For if we take account of the set of all
relating models with the universal relation:

Mu = {〈v, R〉 ∈ MRL : R = ForRL × ForRL},

then the consequence relation |=Mu defined on the set of formulas Forw
RL

is isomorphic to |=CPL under function fw, since all formulas from Forw
RL

are related to each other and this way they behave classically.

4. Relating implication and semantics for connexive logics

In order to define connexive logic through the relating semantics, we
define a combined set of formulas by the set of variables Var = {p, q, r,
p1, q1, r1, . . . }, three Boolean connectives: ¬, ∧, ∨, relating implication
→w, and brackets. Then we obtain the set of formulas ForCF, where CF
is an abbreviation for combined formulas.

The set ForCF was on purpose designed so as to include formulas
made up from a single connective which behaves intensionally, whereas
the other preserve their classical Boolean nature. Obviously, it is the
relating implication →w. The set of formulas ForCF might be simply
treated as a proper subset of formulas of relating logic ForRL.

A model for the combined formulas is a regular model for the relating
logic: a pair 〈v, R〉, where the relation was reduced to the set ForCF, i.e.,
R ⊆ ForCF × ForCF =: For2

CF, while the valuation remained unchanged
v : Var → {0, 1}. Let MCF be the set of all models for combined formulas.

Let us adopt some abbreviations. To simplify, instead of R(A, B) we
shall write A R B. Additionally we shall introduce some notation for the
non-occurrence of relation R. Let R ⊆ For2

CF. For all A, B ∈ ForCF we
put A R̃ B iff A R B does not hold.

As we shall find later, relation R will be this time useful to limit the
truthness of some types of formulas through preclusion of the content
relation between two propositions. We can even assume that the fact
that in a given model A R B we shall interpret as A is connected to B,
whereas the fact that A R̃ B can be interpreted as A is not connected

to B. So far, in models from MCF, the occurrence or non-occurrence of
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relation R is dependent on nothing. Further, we shall introduce some
limitations. For the time being, let us, however, adopt the following
truth conditions for combined formulas.

Definition 4.1 (Truth conditions for ForCF). Let 〈v, R〉 ∈ MCF and
A, B ∈ ForCF. Then:

• 〈v, R〉 |= A iff v(A) = 1, if A ∈ Var;
• 〈v, R〉 |= ¬A iff 〈v, R〉 6|= A;
• 〈v, R〉 |= A ∧ B iff 〈v, R〉 |= A and 〈v, R〉 |= B;
• 〈v, R〉 |= A ∨ B iff 〈v, R〉 |= A or 〈v, R〉 |= B;
• 〈v, R〉 |= A →w B iff [〈v, R〉 6|= A or 〈v, R〉 |= B] and R(A, B).

So, for a proposition A →w B to be true in a model, not only the
truthness of proposition A must guarantee the truthness of a proposition
B; a proposition A must also be connected to a proposition B. The
internal structures of both proposition is obviously insignificant.

In order to facilitate seeking the relation between the semantic struc-
tures of the relating logic and the Aristotle’s and Boethius’ theses, we
shall introduce a concept of model structure. Similarly, as in the modal
logic, we will treat R as a structure of a given model. So we assume:

R |= A iff for all valuations of letters v we have 〈v, R〉 |= A.

5. Models for quasi–connexive and connexive logics

In order to establish which of models MCF will be appropriate to define
connexive logics, we shall specify the following conditions.

Definition 5.1. For any R ⊆ For2
CF we say that:

(a1) R is (a1) iff for any A ∈ ForCF, A R̃ ¬A.
(a2) R is (a2) iff for any A ∈ ForCF, ¬A R̃ A.
(b1) R is (b1) iff for arbitrary A, B ∈ ForCF:

• if A R B then A R̃ ¬B,
• (A →w B) R ¬(A →w ¬B).

(b2) R is (b2) iff for arbitrary A, B ∈ ForCF:
• if A R B then A R̃ ¬B,
• (A →w ¬B) R ¬(A →w B).
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On a model level, the relevant conditions from Definition 5.1 exclude
the connection of specific propositions. For instance, if relation R has a
property (a1), then for none proposition A it is so that it is connected
with its negation, i.e., a proposition ¬A. The same applies to the other
conditions. In accordance with their notation, on the semantic level they
conform to the theses of Aristotle and Boethius. From Definition 5.1,
it almost directly follows that conditions (a1), (a2), (b1), (b2) imposed
on models from class MCF are sufficient for occurrence of theses (A1),
(A2), (B1), (B2), respectively. Below, we shall provide a proof for theses
(A1) and (B2). The other proofs take the same courses.

Theorem 5.1. For arbitrary R ⊆ For2
CF and A, B ∈ ForCF:

1. If R is (a1) then R |= ¬(A →w ¬A).
2. If R is (a2) then R |= ¬(¬A →w A).
3. If R is (b1) then R |= (A →w B) →w ¬(A →w ¬B).
4. If R is (b2) then R |= (A →w ¬B) →w ¬(A →w B).

Proof. Ad 1. Assume that R is (a1) and A ∈ For2
CF. Then A R̃ ¬A,

from Definition 5.1. Take any valuation of letters v. From Definition 4.1,
〈v, R〉 6|= A →w ¬A. Thus, 〈v, R〉 |= ¬(A →w ¬A). Since v was arbitrary,
R |= ¬(A →w ¬A).

Ad 4. Assume that R is (b2) and A, B ∈ For2
CF. Then, by Defini-

tion 5.1, both (A →w ¬B) R ¬(A →w B) and either A R̃ B or A R̃ ¬B.
Take any valuation of letters v and assume that 〈v, R〉 |= A →w ¬B.
From Definition 4.1, we have A R ¬B. Hence A R̃ B. From this and
from Definition 4.1, 〈v, R〉 6|= A →w B, i.e., 〈v, R〉 |= ¬(A →w B). Thus,
〈v, R〉 |= (A →w ¬B) →w ¬(A →w B). Since v was arbitrary, then
R |= (A →w ¬B) →w ¬(A →w B).

A theorem with implications the other way around is not true which
is easy to demonstrate by providing relevant countermodels for each case.
For instance, let us falsify a thesis that if R |= ¬(¬A →w A), then R
is (a2). Let us take such relation R ⊆ For2

CF that ¬(p ∧ ¬p) R (p ∧ ¬p),
while for the remaining formulas B: ¬B R̃ B. Thus for any A ∈ ForCF,
R |= ¬(¬A →w A), by virtue of Definition 4.1, since 〈v, R〉 |= ¬(p ∧ ¬p)
and 〈v, R〉 6|= p ∧ ¬p, for each valuation v. So the antecedent is fulfilled.
However, from the construction of R, for some formula A, ¬A R A.
Thus, (a2) does not hold. Similar countermodels, based on tautologies
or countertautologies, may be presented for the remaining implications.
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Still, we would also like to get converse implications. This would
enable a transition from the syntactic formulation of connexive logic,
i.e., adoption of (A1), (A2), (B1), (B2) as axioms, to the relevant classes
of models within MCF. There are probably various ways to receive a
converse theorem. We offer, however, a rather intuitive way, which is
probably also minimalistic. To this end, we will adopt one more property
of a relating relation.

Definition 5.2 (Closure under negation). Let R ⊆ For2
CF. Then:

(c1) R is closed under negation (or is just (c1)) iff for all A, B ∈ ForCF:
if A R B then ¬A R ¬B.

Let us note that the closure under negation is a minimal condition
which preserves the connection of two propositions and their negations
in terms of content. For, in accordance with (c1), it is so that if two
propositions A and B are connected: A R B, then their negations are
also connected ¬A R ¬B which seems reasonable. We can also consider
a stronger condition, reinforcing (c1) to a equivalence. But condition
(c1)  as we will see in the subsequent part  will be sufficient to get
a single equivalence among conditions (a1), (a2), (b1), (b2) with the
theses of Aristotle and Boethius that are relevant. The examination of
the reinforced (c1) as well as the other conditions producing a similar
effect as (c1) we shall leave for further studies.

Condition (c1) features an interesting property. When imposed on
models it will produce new theses.

Proposition 5.2. If R ⊆ For2
CF is closed under negation then

R |= ¬((A →w B) ∧ ¬B ∧ ¬(¬A →w ¬B)).

Proof. Let R ⊆ For2
CF and R be closed under negation. Take any

valuation of letters v. Assume that 〈v, R〉 |= (A →w B) ∧ ¬B. From
Definition 4.1, 〈v, R〉 |= ¬B and 〈v, R〉 |= A →w B; and so A R B. The
latter, due to condition (c1), results in ¬AR¬B. Thus, by Definition 4.1,
we have 〈v, R〉 |= ¬A →w ¬B, since 〈v, R〉 |= ¬B. While from the
arbitrariness of v, we get R |= ¬A →w ¬B.

In order to establish that the converse implication does not hold
it is sufficient to take account of a model constructed in the following
manner. Take such R that let for all formulas A, B a property from
(c1) hold, except for the case when A and B form the formula (p ∨ ¬p).
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Thus (p ∨ ¬p) R (p ∨ ¬p), but ¬(p ∨ ¬p) R̃ ¬(p ∨ ¬p). Let us now take
any valuation v. For all A, B ∈ ForCF holds 〈v, R〉 |= ¬((A →w B) ∧
¬B ∧ ¬(¬A →w ¬B)). For when A or B does not equal (p ∨ ¬p), then
Proposition 5.2 works. In turn, when A and B are identical with the
formula (p ∨ ¬p), the implication ¬(p ∨ ¬p) →w ¬(p ∨ ¬p) is false, thus
〈v, R〉 |= ¬(¬(p∨¬p) →w ¬(p∨¬p)), the implication (p∨¬p) →w (p∨¬p)
is true, but ¬(p∨¬p) is false. Hence, R |= ¬((A →w B)∧¬B∧¬(¬A →w

¬B)), although R is not closed under negation.
We must notice, however, that the adoption of conditions (a1), (a2),

(b1), (b2) to a relating relation R does not warrant that the below for-
mula occurs as a tautology: R |= ¬((A →w B) ∧ ¬B ∧ ¬(¬A →w ¬B)).

Proposition 5.3. Conditions (a1), (a2), (b1), (b2) imposed on R are

not sufficient for R |= ¬((A →w B)∧¬B ∧¬(¬A →w ¬B)), i.e., for some

R ⊆ For2
CF which is (a1), (a2), (b1), (b2) we have R 6|= ¬((A →w B)

∧ ¬B ∧ ¬(¬A →w ¬B)).

Proof. We define the relation R as the union of the following sets:

1. {〈A →w B, ¬(A →w ¬B)〉 : A, B ∈ ForCF},
2. {〈A →w ¬B, ¬(A →w B)〉 : A, B ∈ ForCF},
3. {〈p, q〉}.

Obviously, relation R is (a1) and (a2). Moreover, it is also (b1) and (b2)
since for all A, B ∈ ForCF it fulfils the conditions from Definition 5.1:

• if A R B then A R̃ ¬B,
• (A →w B) R ¬(A →w ¬B),
• (A →w ¬B) R ¬(A →w B).

Now, we take such valuation v that for each variable A ∈ Var: v(A) = 0.
Then 〈v, R〉 |= (p →w q) ∧ ¬q ∧ ¬(¬p →w ¬q), from Definition 4.1,
because ¬p R̃ ¬q. Thus R 6|= ¬((A →w B) ∧ ¬B ∧ ¬(¬A →w ¬B)).

From propositions 5.2 and 5.3 two conclusions follow. Firstly, an
addition of condition (c1) to define the class of the relating models brings
new laws that are not generated by conditions (a1), (a2), (b1), (b2).
Secondly, condition (c1) does not follow from those conditions.

In the subsequent section, we will show that the adoption of the con-
dition of closure under negation produces a theorem on the correspon-
dence for the Aristotle’s and Boethius’ theses. We will also demonstrate
the all these conditions are independent.
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6. Correspondence theorems for (A1), (A2), (B1), (B2)

We have the following theorem.

Theorem 6.1 (Correspondence theorem). Let R ⊆ ForCF be (c1). Then:

1. R is (a1) iff R |= ¬(A →w ¬A),
2. R is (a2) iff R |= ¬(¬A →w A),
3. R is (b1) iff R |= (A →w B) →w ¬(A →w ¬B),
4. R is (b2) iff R |= (A →w ¬B) →w ¬(A →w B).

Proof. Let R ⊆ ForCF be (c1), i.e., for all A, B ∈ ForCF: if A R B
then ¬A R ¬B. The implications from the left to the right in 1–4 hold,
by virtue of Theorem 5.1. Let us remind that their proof does not
require occurrence of condition (c1). We will demonstrate the converse
implications one after another.

Ad 1. Assume that (i) R |= ¬(A →w ¬A) and suppose that there
exists formula B such that B R ¬B. Let us now take any valuation v.
Then either 〈v, R〉 |= B or 〈v, R〉 6|= B.

Let us consider the first case: 〈v, R〉 |= B. Thus, 〈v, R〉 6|= ¬B. Hence
〈v, R〉 |= ¬¬B, by virtue of Definition 4.1. Since B R ¬B, from (c1) we
have ¬B R ¬¬B. Again, by virtue of Definition 4.1 we get, however,
〈v, R〉 |= ¬B →w ¬¬B which is inconsistent to (i).

Let us consider the second case: 〈v, R〉 6|= B. Having applied Defini-
tion 4.1, we get then 〈v, R〉 |= ¬B. Hence 〈v, R〉 |= B →w ¬B which is
contradictive to (i).

Ad 2. Assume that (ii) R |= ¬(¬A →w A) and suppose that there
exists formula B such that ¬B R B. Let us take any valuation v. Then
either 〈v, R〉 |= B or 〈v, R〉 6|= B.

Let us consider the first case: 〈v, R〉 |= B. Again, having applied
Definition 4.1. Thus, 〈v, R〉 6|= ¬B. Since ¬BRB, then 〈v, R〉 |= ¬B →w

B which is contradictive to (ii).

Let us consider the second case: 〈v, R〉 6|= B. Then 〈v, R〉 |= ¬B
from Definition 4.1. Since ¬B R B, from (c1) we get ¬¬B R ¬B. And
from this and from Definition 4.1 we have 〈v, R〉 |= ¬¬B →w ¬B which
is contradictive to (ii).

Ad 3. Assume that (iii) R |= (A →w B) →w ¬(A →w ¬B). Take any
formulas A, B ∈ ForCF. Then from Definition 4.1, for connective →w it
follows that (A →w B) R ¬(A →w ¬B). Therefore, still pending is the
proof that: if A R B then A R̃ ¬B.
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Assume that A R B and A R ¬B. Let us take any valuation v. Then
either 〈v, R〉 |= A →w B or 〈v, R〉 6|= A →w B. Let us consider two cases.

Firstly: 〈v, R〉 |= A →w B. Then from (iii) and from Definition 4.1,
we have 〈v, R〉 |= ¬(A →w ¬B). Hence 〈v, R〉 6|= A →w ¬B, and since
A R ¬B, so 〈v, R〉 |= A and 〈v, R〉 6|= ¬B. Therefore, again from Defini-
tion 4.1, we have 〈v, R〉 6|= ¬A. Since A R B, then ¬A R ¬B, from (c1).
Thus, from Definition 4.1, 〈v, R〉 |= ¬A →w ¬B, and then from (iii)
we have 〈v, R〉 |= ¬(¬A →w ¬¬B). On the other hand, since A R ¬B,
then from (c1) we get ¬A R ¬¬B, from this and from Definition 4.1,
〈v, R〉 |= ¬A and 〈v, R〉 6|= ¬¬B, which contradicts that 〈v, R〉 6|= ¬A.

Secondly: 〈v, R〉 6|= A →w B. Again, we will repeatedly apply Def-
inition 4.1. Since A R B, then 〈v, R〉 |= A and 〈v, R〉 6|= B, hence
〈v, R〉 6|= ¬A. Since A R B, then from (c1) we have ¬A R ¬B. Thus,
〈v, R〉 |= ¬A →w ¬B. From (#3) we have 〈v, R〉 |= ¬(¬A →w ¬¬B),
thus 〈v, R〉 6|= ¬A →w ¬¬B. On the other hand, since A R ¬B, then
from (c1) we have ¬A R ¬¬B, thus 〈v, R〉 |= ¬A and 〈v, R〉 6|= ¬¬B
which contradicts that 〈v, R〉 6|= ¬A.

Ad 4. Assume that (iv) R |= (A →w ¬B) →w ¬(A →w B). Take any
formulas A, B ∈ ForCF. Then, from Definition 4.1 for connective →w it
follows that (A →w ¬B) R ¬(A →w B). Similar to the previous point,
still pending is the proof that if A R B, then A R̃ ¬B.

Assume that A R B and A R ¬B. Let us take any valuation v. Then
either 〈v, R〉 |= A →w ¬B or 〈v, R〉 6|= A →w ¬B.

The first case: 〈v, R〉 |= A →w ¬B. Then, from (iv) we have 〈v, R〉 |=
¬(A →w B). Hence, from Definition 4.1, 〈v, R〉 6|= A →w B. And since
A R B, thus 〈v, R〉 |= A and 〈v, R〉 6|= B. Again, from Definition 4.1,
〈v, R〉 6|= ¬A and 〈v, R〉 6|= ¬¬B. From assumption AR¬B and from (c1)
we get ¬A R ¬¬B. Thus, from Definition 4.1, 〈v, R〉 |= ¬A →w ¬¬B.
In turn, from (iv) we get 〈v, R〉 |= ¬(¬A →w ¬B), and from this and
from Definition 4.1, 〈v, R〉 6|= ¬A →w ¬B. On the other hand, since
A R B, so from (c1) we have ¬A R ¬B. Consequently, 〈v, R〉 |= ¬A
and 〈v, R〉 6|= ¬B, by virtue of Definition 4.1. But it contradicts that
〈v, R〉 6|= ¬¬B, as then 〈v, R〉 |= ¬B.

The second case: 〈v, R〉 6|= A →w ¬B. Since A R ¬B, then from Def-
inition 4.1, 〈v, R〉 |= A and 〈v, R〉 6|= ¬B. Hence 〈v, R〉 |= ¬¬B. Since
A R ¬B, from (c1) we get ¬AR¬¬B. From this and from Definition 4.1,
〈v, R〉 |= ¬A →w ¬¬B. In turn, from (iv) we get: 〈v, R〉 6|= ¬A →w ¬B.
On the other hand, since A R B, then from (c1) we have ¬A R ¬B, thus
〈v, R〉 |= ¬A and 〈v, R〉 6|= ¬B which contradicts that 〈v, R〉 |= A.
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7. Independence of conditions

Theorem 6.1 allows  having assumed the condition of closure under
negation (c1)  to demonstrate a single unambiguous connection be-
tween conditions (a1), (a2), (b1), (b2) and theses (A1), (A2), (B1), (B2),
respectively. So, by dint of imposition of these conditions on models from
the set MCF we can acquire logics satisfying the relevant laws.

But having additionally imposed conditions (c1) on models we find
new laws (Proposition 5.2) that are not the laws of a model satisfying
conditions (a1), (a2), (b1), (b2) (Proposition 5.3). These findings form
some foundations of the independence issue. However, we should ul-
timately define the logical connections in which conditions (a1), (a2),
(b1), (b2) and (c1) remain. If they were absolutely independent, then
we could consider 25 of various logics among which two logics would be
connexive and the remaining ones connexive to some extent. The issue
of independence becomes solved by the subsequent theorem.

Theorem 7.1. Conditions (a1), (a2), (b1), (b2), (c1) are independent.

Proof. Condition (a1) does not follow from (a2), (b1), (b2), (c1). Let
R be a binary relation in integral domain defined as {〈n, n + 1〉 : n > 0}.
Let also:

¬a :=

{
a + 1 if a ­ 1

1 otherwise.

Next, let a →w b = 1. In relation R, the left argument n is strictly
less than the right one n + 1. So, condition (a2) holds as: (i) if a ­ 1
then ¬a > a; (ii) whereas if a < 1 then also ¬a > a. Conditions (b1)
and (b2) are fulfilled as well. For each a there exists at most one b such
that a R b, furthermore a 6= ¬a, thus if a R b, then a R̃ ¬b. Moreover,
(a →w b) = (a →w ¬b) = 1 R 2 = ¬(a →w ¬b) = ¬(a →w b). Also
condition (c1) is fulfilled since if a R b, then 0 < a < a + 1 = b, thus
¬a = a + 1 < (a + 1) + 1 = b + 1 = ¬b, hence ¬a R ¬b. In turn, 1 R ¬1,
thus condition (a1) does not hold.

Condition (a2) does not follow from (a1), (b1), (b2), (c1). Let for any
natural number n, only (n+1)Rn and nR(n+3). Let also ¬a = a+1 and
a →w b = a + 2b. Assume that a R b. Then a − b = 1 or b − a = 3, while
a − ¬b = 0 or ¬b − a = 4. Thus aR̃¬a, so condition (a1) holds. Since
condition: if aRb, then aR̃¬b is also fulfilled, so: (i) condition (b1) holds
as (a →w b) = (a+2b)R(a+2b+3) = (a+2(b+1))+1 = (a+2¬b)+1 =
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(a →w ¬b) + 1 = ¬(a →w ¬b); (ii) condition (b2) holds as (a →w ¬b) =
(a+2¬b) = (a+2(b+1)) = (a+2b+2)R(a+2b+1) = ¬(a+2b) = ¬(a →w

b). Condition (c1) is obviously also fulfilled, since if aRb then a+1Rb+1.
However 0 + 1 R 0. Thus condition (a2) does not hold as ¬0 R 0.

Condition (b1) does not follow from the set (a1), (a2), (b2), (c1). Let
R be the equality relation in the set of integers: aRb iff a = b, ¬a = a+1
and let a →w b = b. Then conditions (a1) and (a2) are fulfilled as
a 6= a+1. In turn, (c1) is fulfilled since if a = b, then a+1 = b+1. Con-
dition (b2) holds as (a →w ¬b) = ¬b = b+1 = (a →w b)+1 = ¬(a →w b).
Condition (b1) does not hold as (a →w b) = b 6= (b+1)+1 = ¬(a →w ¬b).

Condition (b2) does not follow from (a1), (a2), (b1), (c1). Let R
be the equality relation in the set of integers: a R b iff a = b. Let
also ¬a = a + 1 and a →w b = a − b. If a = b, then a 6= b + 1
and a →w b = a − b = (a − (b + 1)) + 1 = ¬(a →w ¬b). Thus,
condition (b1) is fulfilled. Whereas condition (b2) does not hold as
(a →w ¬b) = a − (b + 1) 6= (a − b) + 1 = ¬(a →w b).

Condition (c1) does not follow from (a1), (a2), (b1), (b2). Assume
that only 2 R 2 and 1 R 3. Let also ¬a = a + 1 and

a →w b :=

{
1 if a + b is an even number

2 if a + b is an odd number.

Since ¬a−a = 1, conditions (a1), (a2) hold. In turn, neither 2R(2+1) nor
1R(3+1) hold so if aRb, then aR̃¬b. Assume that a+b is an even number.
Then a →w b = 1, a + ¬b is an odd number and we have: ¬(a →w ¬b) =
(a →w ¬b)+1 = 2+1 = 3. Consequently, a →w b = 1R3 = ¬(a →w ¬b).
While when a + b is an odd number, then a →w b = 2, a + ¬b is an even
number and we have: ¬(a →w ¬b) = (a →w ¬b) + 1 = 1 + 1 = 2.
Consequently, a →w b = 2 R 2 = ¬(a →w ¬b) which proves condition
(b1). Assume that a + ¬b is an even number. Then a →w ¬b = 1, a + b
is an odd number and we have: ¬(a →w b) = (a →w b) + 1 = 2 + 1 = 3.
Consequently, a →w ¬b = 1 R 3 = ¬(a →w b). While when a + ¬b
is an odd number, then a →w ¬b = 2, a + b is an even number and
we have: ¬(a →w b) = (a →w b) + 1 = 1 + 1 = 2. Consequently
(a →w ¬b) = 2 R 2 = ¬(a →w b), which proves condition (b2). Still,
since 2 R 2, but (2 + 1) R̃ (2 + 1). So condition (c1) is not true.

Let us note that there is also another way to prove this theorem.
It consists in application of Theorem 6.1 and construction of relevant
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models on its basis. It allows to establish the independence of condi-
tions (a1), (a2), (b1), (b2). In turn, from propositions 5.2 and 5.3, we
know that (c1) does not follow from conditions (a1), (a2), (b1), (b2).
In favour of the completeness of considerations, the knowledge should
be complemented with the connection the other way around. But the
issue is solved by the global Theorem 7.1. Thus we know that all five
conditions are independent of each other.

8. Lattice of non-connexive, quasi-connexive and connexive logics

To begin with, let us propose certain terminology. A logic is connexive

iff (A1), (A2), (B1), (B2) are its theses. A logic is quasi-connexive iff it
is not connexive, but at least one of (A1), (A2), (B1), (B2) is its thesis.

From the independence Theorem 7.1 we know that there exist 32 (25)
types of relations R, in terms of the contentions of our interest: (a1),
(a2), (b1), (b2), (c1). In turn, each type of relations unambiguously
defines a class of relating models, based on a given type of relation.

To begin with, let us consider conditions (a1), (a2), (b1), (b2). There
are 16 classes (24) of models and each of them corresponds to one type of
relating relation. Each of these classes designates one semantic relation of
consequence on language ForCF. Each of them is different which follows
from Theorem 7.1. The weakest one does not require fulfilment of any
condition (a1), (a2), (b1), (b2) through relation R in a model 〈v, R〉.
It is not a connexive logic since none of laws (A1), (A2), (B1), (B2)
is its thesis. Each of the remaining ones is significantly stronger. 14 of
them are quasi-connexive having as a tautology at least one of laws (A1),
(A2), (B1), (B2), and finally, one of these logics  the strongest among
its tautologies has all substitutions of laws of Aristotle and Boethius. It is
the smallest Boolean connexive logic. Beside laws (A1), (A2), (B1), (B2)
and their classical consequences, it features none implication or negation-
implication tautologies even though at the same time it comprises all
classical tautologies expressed in a language including: ¬, ∧, ∨.

We can expand this lattice through addition of condition (c1). For we
are aware that the latter is independent on conditions (a1), (a2), (b1),
(b2), and what is more  its addition introduces new laws. Accordingly,
taking account of these conditions, we have a total of 32 logics; two of
them are connexive, 28 are quasi-connexive, and 2 are non-connexive.
At the bottom, it is worth noting that our two Boolean connexive logics:
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1) one designated by conditions (a1), (a2), (b1), (b2), and 2) the other
designated by conditions (a1), (a2), (b1), (b2), (c1), fulfil conditions
(Ka), (Kb), but also (NS). Thus both are strong and properly connexive
alike.

9. Tableau systems of Boolean connexive logics

Now, we shall outline the tableau approach to our logics. We will be gov-
erned here by a strategy adopted in [Jarmużek, 2013], which introduced
a formalized tableau theory from some modal logics. Let us, however,
disregard the formal concepts in favour of stressing the crucial points
which determine the completeness of the tableau approach related to
the semantically designated consequence relation.

To this end, we shall need a new language. A language of tableau
proof. We extend the set of formulas ForCF with additional auxiliary
expressions ARB and A R̃ B, for arbitrary A, B ∈ ForCF. We use a
notation R instead of R on purpose, to differentiate the tableau language
notation R from a relation R in a model. Intuitively, ARB means that
the relating relation holds between A and B, while A R̃ B means that it
does not. We denote the extended set by Ex. Now, all tableau proofs
are carried out in Ex. As a tableau inconsistent set of expressions (that
closes a given branch) we treat one comprising for some A, B ∈ ForCF at
least one of the pairs: both A and ¬A or both ARB and A R̃ B.

Let us go to the tableau rules. For the formulas with main Boolean
connectives, we shall assume the standard tableau rules. We do not need
the enumerate or elaborate them as they have been thoroughly examined.
Let us, however, bear in mind that the formulas do not include ones
with a material implication. For the relating implication we assume the
tableau rules introduced in [Jarmużek and Kaczkowski, 2014]:

(→
w)

A →w B

ARB, ¬A | ARB, B
(¬→

w)
¬(A →w B)

A, ¬B | A R̃ B

For the logics with conditions (a1) or (a2), we have rules:

(Ra1)
AR¬A

A R̃ ¬A
(Ra2)

¬ARA

¬A R̃ A

For the logics with condition (b1) we have two tableau rules:

(Rb1)
ARB

A R̃ ¬B
(Rb1′)

(A →w B) R̃ ¬(A →w ¬B)

(A →w B)R¬(A →w ¬B)
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For the logics with condition (b2) we also have two rules:

(Rb2)
AR¬B

A R̃ B
(Rb2′)

(A →w ¬B) R̃ ¬(A →w B)

(A →w ¬B)R¬(A →w B)

In fact, both (Rb1′) and (Rb2′) work in a similar way, since conditions
(b1) and (b2) feature a common property: if A R B, then A R̃ ¬B (see
Definition 5.1). Hence, when dealing with a logic defined in this paper
by conditions (b1) and (b2) we adopt it once.

Finally, we also have a rule for a logic defined by condition (c1):

(Rc1)
¬A R̃ ¬B

A R̃ B

For simplification, let us call the expressions in a tableau rule numerator
input, while those in denominator output. Some rules, e.g., (→w), (¬→w)
and those for the Boolean connectives may have more than one output.

Let us now introduce a concept which is important for the tableau
issues, which is in a certain sense extension of the concept of truthness
in a model from the formulas on all expressions from Ex.

Definition 9.1 (Model suitable to a set of expressions). Let 〈v, R〉 be
a model for ForCF and X ⊆ Ex. Model 〈v, R〉 is suitable to X iff for all
A, B ∈ ForCF:

• if A ∈ X , then 〈v, R〉 |= A
• if A R B ∈ X , then A R B
• if A R̃ B ∈ X , then A R̃ B.

Making use of the provided concept of a suitable model and conduct-
ing an inspection of the provided tableau rules, we are able to demon-
strate that if a model 〈v, R〉 of given type, fulfilling some of conditions
(a1), (a2), (b1), (b2), (c1), is suitable for a set of expressions X ⊆ Ex,
then application of a selected tableau rule relevant for conditions (a1),
(a2), (b1), (b2), (c1) extends X to add expressions for which 〈v, R〉 is
still suitable.

For convenience with formulation of the further theorems, let us in-
troduce a function f from {(a1), (a2), (b1), (b2), (c1), ∅} into to the power
set of {(Ra1), (Ra2), (Rb1), (Rb1′), (Rb2), (Rb2′), (Rc1)}, which to each
condition assigns corresponding tableau rules: f(∅) := ∅, f(a1) :=
{(Ra1)}, f(a2) := {(Ra2)}, f(b1) := {(Rb1), (Rb1′)}, f(b2) := {(Rb2),
(Rb2′)}, f(c1) := {(Rc1)}. Let us now phrase a proposition.
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Proposition 9.1 (Rules sound to model). Let:

• 〈v, R〉 be a model for ForCF,

• 〈v, R〉 be defined by a subset W of {(a1), (a2), (b1), (b2), (c1)},

• X ⊆ Ex,

• 〈v, R〉 be suitable to X .

If some of the tableau rules that belong to:

1. a set of tableau rules for the Boolean connectives,

2. {(→w), (¬→w)},

3.
⋃

f(W )

has been applied to X , then 〈v, R〉 is suitable for at least one output

obtained through application of this rule.

Proof. Let us make the above assumptions for a model. The proposi-
tion for the tableau rules for the Boolean connectives is true, thus for 1
[see Jarmużek, 2013].

In turn, the thesis for {(→w), (¬→w)} follows from Definition 4.1
for ForCF, which was also demonstrated in [Jarmużek and Kaczkowski,
2014], thus the proposition thesis occurs for 2 as well.

Finally, the thesis also occurs for specific rules (Ra1), (Ra2), (Rb1),
(Rb1′), (Rb2), (Rb2′), (Rc1). Only (Rb1), (Rb2) and (Rc1) can be
applied to X , if there exists for them a suitable model 〈v, R〉, and then
this model fulfils conditions (b1), (b2) or (c1) respectively, hence also for
the outputs the model is suitable. The other rules are inapplicable in
these instances as they would contradict the assumption. For instance,
if X comprised expression AR¬A, then the model could not be suitable
for X , if it meets condition (a1).

The proof of completeness of our tableau methods in relation to the
presented semantics still requires a converse proposition in a sense. Let
us introduce a concept of model produced by a set of expressions.

Definition 9.2 (Model generated by a branch). Let X ⊆ Ex. The set
AT(X) is defined as follows: x ∈ AT(X) iff either x ∈ X ∩ {ARB :
A, B ∈ ForCF} or x ∈ X ∩ Var. Model 〈v, R〉 is generated by X iff

• for all A, B ∈ ForCF: A R B iff ARB ∈ AT(X)
• for any x ∈ Var: v(x) = 1 iff x ∈ AT(X).
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Assume we have a set of tableau rules that comprises:

1. a set of tableau rules for the Boolean connectives,
2. {(→w), (¬→w)},
3. a set of tableau rules

⋃
f(W ) specified by a given subset W of {(a1),

(a2), (b1), (b2), (c1)}.

If now we take a set of expressions X ⊆ Ex such that:

(i) it is closed under all of those rules  for each expression from X to
which one of the rules is applicable, there exists at least one output
in X ,

(ii) X is not a tableau inconsistent a set of expressions.

then there exists a model 〈v, R〉 produced by that set. Therefore, we
have one more proposition. Suppose that TR is a set of tableau rules
exclusively comprised of tableau rules for the Boolean connectives and
rules (→w) and (¬→w).

Proposition 9.2 (Model sound to rules). Let:

• X ⊆ Ex,

• X not be a tableau inconsistent set of expressions,

• X be closed under TR ∪
⋃

f(W ), for some subset W of {(a1), (a2),
(b1), (b2), (c1)}.

Then there exists a model 〈v, R〉 such that:

1. for each formula A ∈ X ∩ ForCF, 〈v, R〉 |= A,

2. 〈v, R〉 meets the set W .

Proof. Let us make all the above assumptions. We know that X gen-
erates a model.

The first part of the proof is of the inductive nature due to the
constitution of formulas and expressions through examination whether
the tableau rules from the set TR ∪

⋃
f(W ) introduce expressions that

are sufficient for constitution of a model. For the rules from TR it is
self-explanatory. The Boolean rules were examined in [Jarmużek, 2013],
whereas the rules for the relating implication and its negation were ex-
amined in [Jarmużek and Kaczkowski, 2014], by virtue of Definition 4.1
they introduce elements that are sufficient for construction of a verifica-
tion model. In turn, the remaining tableau rules are negative in nature.
Rules (Ra1), (Ra2), (Rb1), (Rb1′), (Rb2), (Rb2′), (Rc1) are meant to
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close branches within proofs rather that to validate the verification for-
mulas. Some of them: (Ra1), (Ra2), (Rb1′), (Rb2′), were not even
applied to the expressions from X as X is not a tableau inconsistent set
of expressions.

In the subsequent part, the proof relies on the fact that conditions
(a1), (a2), (b1), (b2), (c1) are  as we well know  independent Theo-
rem 7.1, thus we close the relation in a model 〈v, R〉 under conditions
from W and obtain a model 〈v, R′〉 which meets W . In this model, all
formulas that are true in 〈v, R〉 are true as well.

Finally, we have a theorem on the completeness of tableaux and re-
lating semantics for the discussed connexive models.

Theorem 9.3 (Completeness theorem). Let W ⊆ {(a1), (a2), (b1), (b2),
(c1)} and |= ⊆ ℘(ForCF) × ForCF be the consequence relation defined

by the set of models designated by W . Then for all X ⊆ ForCF and

A ∈ ForCF the following facts are equivalent:

(1) X |= A.

(2) There exists a finite subset Y ⊆ X such that each closure of Y ∪{¬A}
under the set of tableau rules TR ∪

⋃
f(W ) is a tableau inconsistent

set of expressions.

Proof. Let us adopt the assumptions. In the theorem proof, we make
use of the prior propositions. For the implication “(1) ⇒ (2)” Proposi-
tion 9.2 is sufficient. In turn, for the implication “(2) ⇒ (1)” Proposi-
tion 9.1 is sufficient.
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