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A GENERALISATION OF

A REFUTATION-RELATED METHOD

IN PARACONSISTENT LOGICS

Abstract. This article describes a refutation method of proving the maxi-
mality of three-valued paraconsistent logics. After outlining the philosophi-
cal background related to paraconsistent logics and the refutation approach
to modern logic, we briefly describe how these two areas meet in the case
of maximal paraconsistent logics. We focus on a method of proving maxi-
mality introduced in [34] and [37] that has the benefit of being simple and
effective. We show how the method works on a number of examples, thus
emphasising the fact that it provides a unifying approach to the search for
maximal paraconsistent logics. Finally, we show how the method can be
generalised to cover a wide range of paraconsistent logics. We also conduct
a small experiment that confirms the theoretical results.
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1. Introduction

Paraconsistent logics are a tool used for the formal treatment of inconsis-
tent theories outside classical logic. In them, the so-called explosion law,
which holds true in classical logic, is rejected. Arising from the critique
of how classical formal logic deals with contradictions, paraconsistent
logics form a wide array of systems. Paraconsistent logics that retain as
many classical laws as possible have proved to be of special interest. The
maximal paraconsistent logics, as they are known, can also be adequately
described in terms of what they reject from classical logic, rather than
what they retain. This allows one to use the methods from the refuta-
tion calculus in order to analyse such systems. Refutation focuses on
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non-validity and thus often proves to be a useful, if somehow neglected,
formal approach. In the first part we briefly describe the development of
paraconsistent logics with the emphasis on the maximal ones. We then
move on to outline the main ideas behind the refutation calculus. We
end this part with describing the research on maximal subclassical para-
consistent logics. The next part is a detailed description of a specific
method, utilised in the refutation calculus that can be used to easily
prove the maximality of some three-valued paraconsistent logics. Our
main contribution lies in showing how this method generalises, allow-
ing one to prove the maximality of a vast number of such logics, thus
providing a simple and unifying account. Finally, we round up with a
description of a computational analysis of chosen three-valued matrices
that confirms the theoretical results obtained here.

2. Background

2.1. Paraconsistency

The idea that logic is based on a number of non-demonstrable, funda-
mental laws (principles) can be traced back at least to Aristotle. It has
been argued that such laws were originally connected to certain assump-
tions on the relations between entities and their mode of existence (cf.
[7, p. 10–14]). Aristotle considered the so-called law of contradiction to
be one of the most important laws of thought and being (cf. [18, p. 3]).
In terms of classical propositional logic, this law can be expressed as
¬(A∧¬A), where A is any well-formed formula. Aristotle’s ideas became
the received wisdom in terms of how logic was viewed and developed
within the European tradition in the centuries to come. Things began
to change drastically, however, with the dawn of the previous century.
Jan Łukasiewicz, one of the most famous members of the Lvov-Warsaw
school of logic, took a renewed interest in the law of contradiction and
famously stated that a third period in the history of this law is approach-
ing, where it is to be revised in a manner similar to the revision of the
parallel postulate in geometry (cf. [18, p. 7]). This is very similar to
what Nicolai Vasil’iev had stated some years before:

Euclidean geometry is the geometry of our world [. . . ] but there could
be other, imaginary worlds, whose geometry is non-Euclidean. Sim-
ilarly, Aristotelian logic is the logic of our world but there could be
imaginary worlds, whose logic is imaginary logic. [25, p. 139]
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For that reason, Vasil’iev is now considered a forefather of non-classical
logic. It should be noted however that his ideas were not as influential as
those of Łukasiewicz. Vasil’iev worked in the framework of Aristotelian
syllogistic and focused on extending it. He introduced a new kind of
proposition, which he called accidental and connected with it a new
category of quality (on top of the traditional affirmative and negative) 
indifference. In this view, there can be imaginary worlds, where many of
the traditional laws of logic can be non-valid; however there is a core of
laws that have to be valid in all worlds. This includes the law that forbids
an agent to contradict herself/himself. Yet, the law of contradiction is
compromised as the indifferent propositions are true only if S is P and
non-P at the same time (where S, P are standard names for terms
in Aristotelian syllogistic).1 Also, in imaginary logic, the so-called law
of excluded middle (everything is P or non-P ) is replaced by the law
of excluded fourth: everything is P , or non-P , or P and non-P (cf. [25,
p. 138]). It can be argued that Vasil’iev and Łukasiewicz were the first to
explicitly take issue with the law of contradiction but there are a number
of thinkers who, over the years, had had implicitly questioned the law,
starting with Heraclitus, Antisthenes the Cynic, Nicholas of Cusa all the
way to G. W. F. Hegel. This obviously assumes the Eurocentric point of
view, where philosophy is viewed as more or less continuous development
of ideas radiating from Ancient Greece, which is severely limiting at best
and harmful and dishonest at worst. More recently, there has been some
research righting this wrong, investigating the non-European approaches
to what we call the law of contradiction. Most efforts have focused on
the analysis of the so-called Jaina logic (cf. [12, p. 267]). Jaina was one of
the several philosophical schools in classical India more or less intensively
developed for about a thousand years starting from the second century
before the common era. Jainas believed that philosophical discussion is
a collection of various views (standpoints), some of which can contradict
each other. Their approach is often called pluralistic:

The Jaina philosophers support their pluralism by constructing a logic,
in which there are seven semantic predicates [. . . ]. The seven-predicate
theory consists in the use of seven claims about sentences, each preceded
by “arguably” or “conditionally”. [12, p. 269]

1 There are also alternative interpretations of Vasil’iev’s approach, according to
which the law of contradiction is not tampered with in his system (see [38, p. 134]).
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In the seven-valued Jaina logic, there are three basic truth values
(truth, false, non-assertible) with the rest being a combination of the
basic ones. The discussion on how to fit this system in terms of the
more modern developments in logic is still ongoing (cf. [12, p. 271–272]).

It goes without saying that the non-European approaches fell outside
the purview of Łukasiewicz. Speaking about his European predeces-
sors, he complained that the worst thing was that this law had never
been truly justified (cf. [18, p. 6]). As a result of his investigations,
he distinguished three forms of the law of contradiction: (i) ontological
(no object can have and not have the same feature at the same time),
(ii) logical (two statements, one asserting that a given object has the
feature and the other asserting that it has not, cannot be both true),
and (iii) psychological (two beliefs, corresponding to the contradictory
statements, cannot exist at the same time in one mind) (cf. [18, p. 9–
14]). He focuses on the first two forms (stating that the first is more
fundamental) and waves the third one off as at most an empirical law
(cf. [18, p. XXIV]). Łukasiewicz also showed that the law of contradic-
tion, in its logical form, is not, as stated by Aristotle and repeated many
times by his followers, a basic, self-evident law of logic: it is, in fact,
based on a number of other statements. Łukasiewicz’s approach has
been the subject of re-interpretation and critique itself (cf. [21, 22]), yet
his impact on the development of logic in that respect in undeniable.
Other thinkers, of a more philosophical persuasion, also joined ranks in
critiquing the received wisdom, For example, Ludwig Wittgenstein, one
of the most important philosophers of the twentieth century, expressed
views in favour of alternative approaches to logic in the following manner:

Indeed, even at this stage, I predict a time when there will be mathe-
matical investigations of calculi containing contradictions, and people
will actually be proud of having emancipated themselves from consis-
tency. (quoted after [24, p. 223])

Thus, Wittgenstein, in this fleeting remark, goes even further than
Łukasiewicz in terms of embracing the inconsistent. This all shows that
the early twentieth century was a period where alternative ways of think-
ing about what logic is began to emerge on the outskirts of what became
known as classical formal logic (as initiated by Russell and Whitehead
in their Principia). It brewed for couple of decades and took the shape
of various formal systems as part of the expanding field of non-classical
logic. However, it began to take a different approach to the problem at
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hand, coming from a more direct analysis of the world around it. For
example, researchers claimed that inconsistencies have to be treated as
inherent parts of many theories (including scientific ones). One can di-
vide the more recent motivations for developing alternative systems into
three groups: (1) ontological  we do not have any sound reasons for be-
lieving that the world we live in is internally consistent (on the contrary,
our every-day experiences as well as more advanced scientific theories,
e.g. quantum mechanics, seem to confirm that the structure of the world
is indeed inconsistent); (2) epistemological  there are many situations,
when we can assume that information we obtain is incomplete and hence
potentially inconsistent but where we still want to, or sometimes have
to, reason using the information at our disposal, even in the face of con-
tradiction; and (3) methodological  even a superficial analysis of the
history of mathematics and the development of natural sciences shows
that searching for contradictions (and getting rid of, or perhaps just con-
taining, them) is one of the most distinctive features of the process of
coming up with a sound theory. It has been also raised that the classical
logic cannot properly handle contradictory theories. This is because of
another classical law, stating that ex contradictione (sequitur) quodlibet,
or that from contradiction everything follows. It is often abbreviated
to ECQ and takes shape of the following formula: A → (¬A → B),
where A and B are any well-formed formulas. In modern parlance, this
means that the set of consequences of an inconsistent theory is infinite
and contains all the well-formed formulas. For that reason, this law is
sometimes known as the explosion law, since the inconsistent theory can
be thought of as exploding with consequences, hence becoming useless
on the grounds of classical logic. This led some to claim that:

[. . . ] classical logic is on the wrong track as far as living with our best
theories is concerned, and that it is equally on the wrong track when it
comes to removing inconsistencies from our knowledge. [5, p. 12]

This proved to be a motivation for many researchers that tried to come
up with the systems of logic allowing us to deal with inconsistent theo-
ries and prevent them from exploding with consequences. Such systems
became known as paraconsistent and are experiencing a period of rapid
development.2 Proponents of various paraconsistent logics emphasise
different motivations behind their systems (as mentioned above); some

2 With the benefit of hindsight, several systems developed in the past can also be
claimed to be paraconsistent. We should note here the three-valued logic developed by
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even finding their way into more practical applications in computer sci-
ence or the foundations of mathematics. In terms of philosophy, this led
to the emergence of various schools of paraconsistent logic with the main
centres in Poland, Brazil, Belgium, and Australia (cf. [4]). The Polish
(or modal) school is related to the work of Stanisław Jaśkowski and his
discussive logic (see, e.g., [17]). The Brazilian school is connected with
the name of Newton C. A. da Costa, who proposed what he calls the
principle of tolerance in mathematics:

From the syntactical and semantic points of view, every theory is per-
missible, since it is not trivial. Broadly speaking there exists in math-
ematics what is not trivial. (quoted after [4, p. 105])

One of the distinctive features of the Belgian approach is its prac-
tical bent. The solutions proposed by the Flemish logicians stem from
methodological, rather than ontological, convictions. The main motiva-
tion is that we cannot be sure whether the theories of the present would
not turn out to be inconsistent in the future but we need a way of working
with them as these are the best tools currently at our disposal. Hence the
need to control inconsistencies and contain them (see [6]). This approach
is broader than the scope of paraconsistent logic but the most well-known
development does fall within the so-called inconsistency-adaptive logics.
The Australian approach, on the other hand, is strongly related to a
philosophical standpoint called dialetheism, stating that true contradic-
tions really exist (the book [23] lays the foundations of this approach;
see also [27]). There are, obviously, many other places, where research
on paraconsistency takes place these days, making it a truly world-wide
endeavor (cf., e.g., [21, 21, 39, 4]). What is common to all those de-
velopments from a formal point of view is that the law of explosion is
rejected. We emphasise this as it connects to the other thread we wish
to elaborate on, namely the notion of rejection, or refutation, in logic.

2.2. Refutation

The notion of rejection in logic can also be traced back to the works of
Aristotle, meaning it has been with logic from the very beginning. In
contrast to the debate on the status of the law of contradiction however,
this part of Aristotle’s considerations has not been the subject of any

Łukasiewicz, however with different motivations in mind, but also systems proposed
by I. E. Orlov (cf. [1, p. 19]) and A. N. Kolmogorov.



A generalisation of a refutation-related . . . 241

substantial analysis over the ages. In fact, it had remained almost un-
noticed until the first half of the twentieth century. It was  again  Jan
Łukasiewicz, who teased out the details and developed further the ideas
of Aristotle.

Of two intellectual acts, to assert a proposition and to reject it,3 only the
first has been taken into account in modern formal logic. Gottlob Frege
introduced into logic the idea of assertion, and the sign of assertion (⊢),
accepted afterwards by the authors of Principia Mathematica. The idea
of rejection, however, so far as I know, has been neglected up to the
present day. [19, p. 94]

Łukasiewicz observed that Aristotle’s approach relates not only to
asserting the valid syllogisms but also to rejecting the non-valid ones.
Łukasiewicz attempted to formulate refutation rules for Aristotle’s syl-
logistics and treat the constructed system as a dual to the standard one.
Łukasiewicz’s work took into account the tools of propositional logic. In
the process, two rules were introduced: reverse modus ponens (if A → B
is asserted and B rejected, then so is A) and reverse substitution (if A
is a substitution of B and A is rejected, then so is B) which, together
with a single rejection axiom p formed the first formal refutation calculus
for the classical propositional logic [19, p. 71].4 The idea of rejection is
also present in some earlier works by this author. For example, in [20]
he introduces both: a symbol for assertion and a symbol for rejection
(stating that he is following Brentano in that, cf. [20, p. 89]); however he
is not developing a rejection system there and merely uses the rejection
symbol to single out non-theorems (cf. [20, p. 100, 104]). We note that
Łukasiewicz also worked on several non-classical logics in that context,
including intuitionistic and modal systems (see [41, p. 191–192]). Later
on, another Polish logician, J. Słupecki, showed that the rules proposed
by Łukasiewicz for the Aristotelian syllogistics are not sufficient to re-
ject all the invalid syllogisms and proposed his own rule set (cf. [41]). It
should be said that more contemporary research on refutation focuses on
propositional logic, mostly in the context of Hilbert-style systems. Słu-
pecki’s work spanned various logical systems and he established a small

3 Łukasiewicz credits Brentano for this distinction.
4 We should add that the notion of rejection is also made use of by Carnap.

He states: “One new syntactical concept which might be added to those used in
customary calculi is C -false. It is defined on the basis of ‘directly C -false’ which is
defined by rules of refutation” [9, p. 101].
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research centre dealing with refutation-related problems. More recently,
refutation techniques have been a subject of a series of publications deal-
ing with a wide range of non-classical logics (see also the next section),
ranging from intuitionistic and related systems (cf. [30, 31, 33]) to nu-
merous modal systems (cf., e.g., [32, 36]).5 Apart from that, however,
the work on refutation systems is sporadic. The paper [8] presents an
alternative rejection system for the classical propositional logic, whereas
the papers [13, 14] deal with rejection in modal logics. One should also
note an attempt at using the notion of rejection in the framework of
argumentation networks (cf., e.g., [11]).

2.3. Refutation and paraconsistency

As far as we know, the problem of rejection in paraconsistent logic is
not a subject of any long-term research programme. The publications
[34] and [37] apart from constructing refutation systems for various para-
consistent logics also point to one of the areas, where both research on
paraconsistency and refutation meet in a natural way. To discuss this,
we need to set up the scene first. As it has been mentioned, one is
faced with a plethora of paraconsistent logics, developed with various
motivations in mind. It is unavoidable, however, that some such sys-
tems receive more attention than others. Indeed, this is especially true
of certain subclassical paraconsistent logics. Roughly speaking, a para-
consistent logic is subclassical if either the set of all its valid formulas
or its consequence relation is a proper subset of the set of theorems
or the consequence relation of classical propositional logic, respectively.
Among the subclassical logics, the maximal ones hold a special place. In
broad terms, a paraconsistent subclassical logic is maximal if there is no
other, different, paraconsistent subclassical logic with a set of theorems
or a consequence relation properly containing its set of theorems or its
consequence relation, respectively.

Refutation considered in a narrow sense is tied to building Hilbert-
style systems of rejection axioms and refutation rules and analysing the
properties of such systems. However, in this article we employ a broader
sense of the term, where refutation is considered as providing a certain
lens through which to view logical problems. The applicability of this
broader view is brought to the fore in the case of maximality: there is

5 Cf. the chapter [35], which contains a detailed formal description of various
propositional refutation systems.
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a simple and elegant way of expressing maximality in terms of reject-
ing what we do not want, rather than focusing on the positive criteria.
Informally, maximal logics are those that reject those formulas valid in
classical logic that are, in one way or another, tied to ECQ or the non-
paraconsistent rule of inference (details follow in section describing the
results on the maximality of theory). The papers [34] and [37] use the
techniques developed for proofs related to refutation systems to show
maximality of a number of paraconsistent logics. Again, this is not to
say that these are refutation-specific in the sense of being used only in the
context of creating refutation systems. In fact, the crucial elements of
method we focus on here were used before in settings not related to refu-
tation, as they essentially boil down to defining certain substitutions (see
[40]). For a number of years, however, this method has been used with
success in solving logical problems as viewed from the refutation-oriented
point of view (see e.g. [35]). This article deals with paraconsistent logics,
which is indeed the setting in which the method is applied in [34] and
[37]. In what follows, we give examples of this method in relation to some
paraconsistent logics not analysed in the above and show how more gen-
eral results can be obtained with the use of the method, establishing the
maximality of a greater number of paraconsistent logics in one fell swoop.
It should be made clear that we take the matrix approach to defining
logics as this seems the most conducive to what we are trying to achieve
(and is, after all, the usual practice). However, this also introduces an
important constraint: maximality as described by us can potentially be a
feature of certain paraconsistent logics that cannot be defined using the
matrix approach. Therefore, we lay no claim to capturing maximality
in all its complexity but instead, by working within the confines of our
chosen method, we wish to focus on identifying certain classes of matrices
that give rise to maximal logics. Finally, we note that in this presenta-
tion, for the most part we limit ourselves to the case of three-valued logics
with matrix semantics defined for two primitive connectives: ¬ and →.

3. Results

3.1. Syntax and semantics

Let L, a set of symbols, consist of two connective symbols ¬ and →; a
countably infinite stock of propositional symbols AT (lower case letters,
indexed if needs be); and various bracket symbols (consistently with the
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usual practice). Any finite concatenation of the elements of L is called
an expression. An expression formed according to the following rules is
called a formula. All members of AT are formulas (sometimes called
atomic formulas). If A is a formula then so is the expression ¬A. If A
and B are formulas, then so is the expression (A → B). We omit the
brackets according to the well-known rules that we do not state here for
want of space. Taking the notion of a subformula for granted, by SB we
denote the set of all atomic subformulas of a given formula B.

Let M = 〈M, D, ¬M, →M〉, where D ⊆ M , ¬M : M −→ M and
→M : M × M −→ M . We call M a (logical) matrix.6 M is called
a domain, D is the set of distinguished values and ¬M, →M provide
interpretations for the connective symbols in L. We say that the matrix
is n-valued if |M | = n. Throughout this article, however, whenever we
talk about an n-valued matrix, we always mean n > 2.

A valuation is any function v of the form v : AT −→ M , where AT
is the set of all atomic formulas. Given a valuation function v, it can
be extended to all formulas in the following way: v(¬A) = ¬Mv(A) and
v(A → B) = v(A) →M v(B). Let VM be the set of all the valuations as
defined for M. We write |=M A, and say that A is valid (in M), when
v(A) ∈ D, for all v ∈ VM.

Define TM = {A : |=M A}, that is TM is a set of all valid formulas
of M, called the theory of M. Every logical matrix determines a con-
sequence relation ⊢M between a set of formulas X and a formula A in
the following manner. For all X ∈ X and all v ∈ VM, if v(X) ∈ D,
then v(A) ∈ D. In such a case we write X ⊢M A. Formula A is valid
if and only if ∅ ⊢M A. The above encapsulates the two meanings of
the word logic used in this article: either as a set of valid formulas or
as a consequence relation. We use this generic term whenever we are
not interested in differentiating between these two senses, otherwise we
talk about theory or consequence respectively. We refer to a logic (in
any of the distinguished senses) as being n-valued, if it is defined using
an n-valued logical matrix. For the sake of brevity, we take the liberty
of referring to a logical matrix as a logic whenever it does not lead to
misunderstanding.

6 Perhaps it would have been more proper to refer to such arrangements as classes

of matrices where the two connectives are defined in a specified way, which can then be
further distinguished by extending them with the definitions of additional connectives,
especially in the view of our approach presented in the section on computational
analysis, but we drop this distinction as essentially insignificant.
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Let C = 〈{1, 0}, {1}, ¬C, →C〉 with the connectives interpreted classi-
cally and the standardly defined valuation function. TM is paraconsistent
if A → (¬A → B) 6∈ TM;7 it is subclassical if for every formula A we have
A ∈ TM only if A ∈ TC; and it is maximal if there is no other subclassi-
cal paraconsistent theory T ′ such that TM ⊂ T ′. ⊢M is paraconsistent if
there are formulas A, B such that 〈{A, ¬A}, B〉 6∈ ⊢M; it is subclassical
if ⊢M ⊂ ⊢C; and it is maximal if there is no matrix M′, such that ⊢M′ is
paraconsistent and ⊢M ⊂ ⊢M′ ⊂ ⊢C. In this article we deal with logical
matrices that are related to subclassical paraconsistent theories and con-
sequence relations and focus on what conditions should be imposed on
such matrices to lead to the maximality of both the associated theories
and consequence relations.

3.2. The method

The method we are about to utilise, and which has been so far described
only in broad terms hinges on the following theorem. It is a formalisation
of the refutation-related intuitions of what it means for a logic to be
maximal. Let M be such that for any formulas A, B and any valuation
v, if v(A) ∈ D and v(A → B) ∈ D, then v(B) ∈ D. Assume also that
TM and ⊢M are subclassical.

Theorem 1 ([37]). TM is maximal if for every formula A ∈ TC \ TM

there is a substitution s′ such that s′(A) → (p1 → (¬p1 → p2)) ∈ TM.

⊢M is maximal if for every 〈X , A〉 ∈ ⊢C \ ⊢M there is a substitution

s′′ such that {p1, ¬p1, s′′(A)} ⊢M p2 and for every X ∈ X we have

{p1, ¬p1} ⊢M s′′(X).

This result represents a change of view when it comes to maximality:
it focuses on formulas invalid (rejected) in C, including ECQ. In terms of
previous research, the method we have been constantly referring to com-
prised of the above condition, stated in the form similar to Theorem 1,
and bespoke substitutions (defined using the insights of [40]), each time

7 This means that there are formulas A, B such that A → (¬A → B) 6∈ TM. One
can take issue with this definition as being too broad. After all, it is conceivable that,
say, the schema ¬A → (A → B) ∈ TM (or, at least the formula ¬p1 → (p1 → p2)
is valid in M), which, so the thought goes, makes such logic undeserving of the
moniker paraconsistent. We wish to sidestep the debate on what constitutes a bona

fide paraconsistent logic: let us just note that in case of the logics considered by us in
this article, this problem does not arise (details follow). See also [10] for a discussion
of a curious feature of Sette’s logic (we come back to this logic at a later of the article).
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crafted to fit the specific logic that was dealt with (see [34, 37]). Our
approach extends this by showing, in essence, how a group of substitu-
tions can be applied to a greater number of logics, thus generalising the
scope of the method.

First, we showcase the method on a particular example of a three-
valued logic.

Definition. Let DK = 〈DK , D, ¬DK, →DK〉 be a logical matrix, where
DK = {1, 0, 0.5}, D = {1, 0.5} and the interpretation for the connective
symbols is provided by means of the following tables:

A ¬DKA

1 0

0 1

0.5 0.5

→DK 1 0 0.5

1 1 0 0.5

0 1 1 1

0.5 1 0 0.5

When a formula A is valid in DK we simply write |= A without any
subscripts.

3.3. Basic properties

Lemma 1. TDK is paraconsistent.

Proof. Consider p1 → (¬p1 → p2) and a valuation v, such that v(p1) =
0.5 and v(p2) = 0. ⊣

Lemma 2. ⊢DK is paraconsistent.

Proof. Consider 〈{p1, ¬p1}, p2〉 and a valuation v, such that v(p1) =
0.5 and v(p2) = 0. ⊣

Let A be a formula, if v ∈ VDK is such that v(A) ∈ {0, 1}, then
v(¬A) ∈ {0, 1} and for all v′ ∈ VC such that v(A) = v′(A) we have
v(¬A) = v′(¬A). Similarly, let A and B be formulas, if v ∈ VDK is such
that v(A) and v(B) ∈ {0, 1}, then v(A → B) ∈ {0, 1} and for all v′ ∈ VC

such that v(A) = v′(A) and v(B) = v′(B) we have v(A → B) = v′(A →
B). From this and the definition of v′ ∈ VC we see that VC ⊂ VDK. Since
C is a submatrix of DK, we easily obtain the following result.

Lemma 3. TDK and ⊢DK are subclassical.

DK also has the property that modus ponens is a valid rule of in-
ference there. In order to see this, assume A, B are formulas and X is
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a set of formulas. The following lemma ensures that if X ⊢DK A and
X ⊢DK A → B, then X ⊢DK B.

Lemma 4. For any formulas A, B and any valuation v, if v(A) ∈ D and

v(A → B) ∈ D, then v(B) ∈ D.

Proof. Clearly v(B) ∈ D as otherwise v(A → B) 6∈ D owing to the
interpretation of implication, contradicting the assumption. ⊣

All this means that both TDK and ⊢DK satisfy the conditions of The-
orem 1, hence we can apply it in order to show what follows. We do this
in two turns: first for TDK, then for ⊢DK in each case referring only to a
fragment of Theorem 1. We have decided to keep the naming conventions
for the different substitutions used in Theorem 1, to make it clear which
part of the theorem is being referred to.

Lemma 5. TDK is maximal.

Proof. By Theorem 1, TDK is maximal if for every A ∈ TC\TDK there is
a substitution s′ such that s′(A) → (p1 → (¬p1 → p2)) ∈ TDK. Consider
a valuation v such that v(A) = 0 (such a valuation must exist). Now, for
every formula B define a substitution s′(B) as follows. For every b ∈ SB,
let s′(b) = ¬(p1 → (¬p1 → p2)) if v(b) = 1; s′(b) = p1 → (¬p1 → p2),
if v(b) = 0 and s(b) = p1, if v(b) = 0.5. We claim that s′(A) → (p1 →
(¬p1 → p2)) ∈ TDK. Assume, for proof by contradiction, that this is
not the case. Then there is a valuation v′ such that v′(s′(A)) ∈ D and
v′(p1 → (¬p1 → p2)) = 0. In such a case, for all formulas s′(b) in s′(B)
we have that v′(s′(b)) = v(b), hence for every formula v′(s′(B)) = v(B).
In particular v′(s′(A)) = v(A) = 0. A contradiction. ⊣

Lemma 6. ⊢DK is maximal.

Proof. By Theorem 1, ⊢DK is maximal if for every 〈X , A〉 ∈ ⊢C \ ⊢DK

there is a substitution s′′ such that {p1, ¬p1, s′′(A)} ⊢DK p2 and for every
X ∈ X we have {p1, ¬p1} ⊢DK s′′(X). Consider a valuation v such that
v(X ) ∈ D and v(A) = 0 (such a valuation must exist). Now, for every
formula B define a substitution s′′(B) as follows. For every b ∈ SB, let
s′′(b) = p2 → p2 if v(b) = 1; s′′(b) = ¬(p2 → p2), if v(b) = 0 and s′′(b) =
p1, if v(b) = 0.5. We claim that {p1, ¬p1, s′′(A)} ⊢DK p2. Assume, for
proof by contradiction, that this is not the case. Then there is a valuation
v′ such that v′(p2) = 0, v′(p1) = 0.5 and v′(s′′(A)) ∈ D. In such a case,
for all formulas s′′(b) in s′′(B) we have that v′(s′′(b)) = v(b), hence for
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every formula v′(s′′(B)) = v(B). In particular v′(s′′(A)) = v(A) = 0.
A contradiction. Furthermore, we claim that for every X ∈ X we have
{p1, ¬p1} ⊢DK s′′(X). Consider v′′ such that v′′(p1) = 0.5 (this is the
only interesting case). If v′′(p2) = 0.5, then for all formulas s′′(b) in
s′′(B) we have that v′′(s′′(b)) = 0.5 (by the way s′′ is defined and given
the particular interpretation of connectives), hence for every formula
v′′(s′′(B)) = 0.5 (this is shown by an easy induction; the focal point
here is, again, the interpretation of connectives in the case when one has
to take into account only the value 0.5 in an evaluation of a formula).
In particular v′′(s′′(X)) = 0.5. If v′′(p2) ∈ {1, 0}, then for all formulas
s′′(b) in s′′(B) we have that v′′(s′′(b)) = v(b), hence for every formula
v′′(s′′(B)) = v(B). In particular v′′(s′′(X)) = v(X) ∈ D. ⊣

The method allows for a unified approach to searching for maximal
subclassical paraconsistent logics. We emphasise that the proofs essen-
tially boil down to finding an appropriate substitution.

The papers [34, 37] show how the method can be applied in the case of
a number of well-known paraconsistent logics, including CAR, each time
providing a substitution that works in a given setting. One can easily
provide similar results for Sette’s well-known maximal paraconsistent
logic (for a description see, e.g., [28, 29]). Let ST = 〈ST, D, ¬ST, →ST

〉 be a logical matrix, where ST = {1, 0, 0.5}, D = {1, 0.5} and the
interpretation for the connective symbols is provided by means of the
following tables:

A ¬STA

1 0

0 1

0.5 1

→ST 1 0 0.5

1 1 0 1

0 1 1 1

0.5 1 0 1

Note that ST satisfies the assumptions of Theorem 1. We can easily
modify the proof of Lemma 5 to obtain the following.

Lemma 7. TST is maximal.

Proof. It is enough to modify the substitution s′(B) for every formula
B presented in Lemma 5 as follows. For every b ∈ SB, let s′(b) = ¬p1

if v(b) = 1; s′(b) = p1 → (¬p1 → p2), if v(b) = 0 and s(b) = p1, if
v(b) = 0.5. ⊣

We also have the following result.

Lemma 8. ⊢ST is maximal.



A generalisation of a refutation-related . . . 249

Proof. Everything proceeds analogously to the proof of Lemma 6 but
in the part of the proof where one shows that for any X ∈ X we have
{p1, ¬p1} ⊢DK s′′(X) the difference in case of v′′(p2) = 0.5 is that we
obtain for any B that v′′(s′′(B)) = v(B), leading to contradiction. ⊣

To show how the method can be easily applied in other settings,
for our final example we have chosen a lesser-known logic. It was de-
veloped in [15] and [16] in order to study mathematical theories with
conditionally defined terms. Let HZ = 〈HZ , D, ¬HZ, →HZ〉 be a logical
matrix,8 where HZ = {1, 0, 0.5}, D = {1, 0.5} and the interpretation for
the connective symbols is provided by means of the following tables:

A ¬HZA

1 0

0 1

0.5 0.5

→HZ 1 0 0.5

1 1 0 0

0 1 1 1

0.5 1 0 0.5

Note that HZ satisfies the assumptions of Theorem 1. We have the
following:

Lemma 9. THZ is maximal.

Proof. We need to modify the substitution s′(B) for every formula B
presented in Lemma 5 as follows. For every b ∈ SB, let s′(b) = p2 → p2 if
v(b) = 1; s′(b) = ¬(p2 → p2), if v(b) = 0 and s(b) = p1, if v(b) = 0.5. In
this case, however, we need to look closer into the valuations that make
s′(A) → (p1 → (¬p1 → p2)) false: v1, where v1(s′(A)) = 1, v1(p1 →
(¬p1 → p2)) = 0; v2, where v2(s′(A)) = 0.5, v2(p1 → (¬p1 → p2)) = 0
and crucially v3, where v3(s′(A)) = 1, v3(p1 → (¬p1 → p2)) = 0.5. We
need to ensure that in all the cases we arrive at a contradiction. The cases
of v1 and v2 are straightforward. In case of v3, note that v3(p1 → (¬p1 →
p2)) = 0.5, when v3(p1) = v3(p2) = 0.5, but then the way substitution is

8 Note that in this case, there were originally three, not two, primitive connectives
but this is unimportant for the method at hand. The remaining connective ∧HZ was
originally defined as follows:

∧HZ 1 0 0.5

1 1 0 0.5

0 0 0 0.5

0.5 0.5 0.5 0.5

We emphatically do not use this definition (see also the section on computational
analysis).



250 Adam Trybus

defined, for any formula B we have that v3(s′(B)) = 0.5. This, obviously,
includes v3(s′(A)) = 0.5, contradicting the assumption. ⊣

We also easily obtain the following result.

Lemma 10. ⊢HZ is maximal.

Proof. Everything proceeds as in the proof of Lemma 6. ⊣

The paper [26] shows maximality of ⊢HZ but uses advanced algebraic
methods. Also, in contrast to the presented method, the proofs are
much more specific to this particular logic and, arguably, might not lend
themselves to generalisations.

4. Generalisation

This section gives a detailed account of how the refutation method can
be applied to a greater number of three-valued paraconsistent logics. To
be sure, there is research covering a broader number of systems. The
paper [2] is a comprehensive study of three-valued paraconsistent logics,
including their axiomatisation. It also deals with maximality, showing
that all the well-known three-valued paraconsistent logics9 are maximal.
A similar result is contained in [3] but it is set in a broader context of non-
deterministic matrices. Such results, however, rely on a more complex
argument than the one presented here. In what follows we present a
proof of maximality that covers a number of paraconsistent logics.

4.1. Maximality

For the remainder of this paragraph let v be a valuation defined within
the context of the analysed classes of matrices. Also, let X ∈ {1, 0, 0.5}.
A simple calculation shows that there are 33 × 39 possible three-valued
logical matrices (taking into account the possible value arrangements of
tables for negation and implication). Out of these, at least10 3 × 35 are
subclassical in both senses, as shown in the following tables:

9 It should be noted that due to various ways in which both maximality and
paraconsistency can be defined, it is hard to directly compare these results to the
ones presented in this article.

10 There might be matrices that define subclassical logics that do not satisfy this
condition.
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A ¬A

1 0

0 1

0.5 X

→ 1 0 0.5

1 1 0 X

0 1 1 X

0.5 X X X

This property is denoted (sub1). For a matrix having the (sub1) property,
D can be either {1} or {1, 0.5}, thus potentially doubling the number of
logics. Let (par1) denote the property of a matrix of having a paraconsis-
tent induced consequence relation. Note that a matrix has this property
if D is the two-element set and we have v(¬A) ∈ D, for v(A) = 0.5,
yielding the number of potential logical matrices equal to 2 × 35.11 Note
that if v is such that v(A) ∈ D and v(B) = 0 we should have that
v(A → B) = 0 in order to enable the use of Theorem 1. This property
is denoted (mp). This further reduces the number of logical matrices to
2 × 34 (see below).

A ¬A

1 0

0 1

0.5 1/0.5

→ 1 0 0.5

1 1 0 X

0 1 1 X

0.5 X 0 X

In fact, we are interested in a somehow stronger notion of subclassicality,
where both distinguished values behave analogously:

→ 1 0 0.5

1 1 0 1/0.5

0 1 1 1/0.5

0.5 1/0.5 0 1/0.5

We denote this property (sub2). This reduces the number of logical
matrices to 2 × 24 = 32. Another simple observation is that if a three-
valued subclassical logical matrix has the property (mp), then it has a
paraconsistent theory (the property of having a paraconsistent theory is

11 As has been pointed out to us, this is not a necessary condition. However, our
approach to generalisation is admittedly simplistic, which is perhaps necessary at this
early stage. We try to look for certain easily-observable patterns that lend themselves
well to be used in the context of our method, focusing on how implication is being
defined. The case of HZ shows that maximality can also be a result of a more complex
interplay between the definitions of connectives. Identifying such complex patterns
that yield maximality of logical matrices from a given class requires additional research
and goes beyond the scope of this paper.
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from now on denoted as (par2)). To see this note that in such case the
formula p1 → (¬p1 → p2) is falsified by the valuation assigning 0.5 to p1

and 0 to p2. It does not matter whether the considered matrix satisfies
the (sub2) property or not. We, however, take only those logical matrices
that do. In this context, note that the above observation holds indepen-
dently of the way, in which negation is defined. Thus, the total number
of logics we potentially take into consideration does not change.12

4.2. Maximality of theory

Theorem 1 allows one to draw this simple, yet surprising, conclusion.

Theorem 2. If M is a logical matrix having both (sub2) and (mp)
properties, then TM is maximal.

Proof. The fact that M has a maximal theory relies on a modification
of the proof of Lemma 5 and the fact that M also satisfies (par2), as
described above. Assume all the notational conventions made in the
proof of that lemma. What is required there is a substitution s′ such
that it fixes the values of formulas in relation to the specified valuation
v, resulting in contradiction. There are many ways of accomplishing this
task but arguably the easiest one uses the formula p1 → (¬p1 → p2). We
use the fact that in logical matrices with paraconsistent theory such a
formula is an instance of ECQ. In particular, for M, there is a valuation
v′ such that v′(p1 → (¬p1 → p2)) = 0. By (sub2), we have to consider v′

such that v′(p1) = 0.5 and v′(p2) = 0. Then, the required substitution
can be defined exactly as in the proof of Lemma 5. For every b ∈ SB,
let s′(b) = ¬(p1 → (¬p1 → p2)) if v(b) = 1; s′(b) = p1 → (¬p1 → p2), if
v(b) = 0 and s(b) = p1, if v(b) = 0.5. This fixes the values in the required
way for proof by contradiction, thus proving that TM is maximal. ⊣

Thus, we see that two of the examples we have given earlier, namely
DK and ST do fall into this general category, with HZ being something
of an outlier. It is a matter of simple observation that for matrices having
both (sub2) and (mp) properties we have that ¬p1 → (p1 → p2) is not
valid. Hence the considered logics meet even the narrower criteria for
paraconsistency, as mentioned at the beginning of this article.

12 Other paraconsistent, subclassical logics, arrived at by different means lie out-
side the scope of this article.



A generalisation of a refutation-related . . . 253

4.3. Maximality of consequence

Showing that three-valued logical matrices have maximal consequence
relation is more involved. First, we need to distinguish between several
types of logical matrices. Let M1 be a class of logical matrices with the
following constraints on negation and implication.

A ¬A

1 0

0 1

0.5 0.5

→ 1 0 0.5

1 1 0 X

0 1 1 X

0.5 X 0 1/0.5

Let M2 be a class of logical matrices with the following constraints
on negation and implication.

A ¬A

1 0

0 1

0.5 1

→ 1 0 0.5

1 1 0 1/0.5

0 1 1 X

0.5 1/0.5 0 0.5

Finally, let M3 be a class of logical matrices with the following con-
straints on negation and implication.

A ¬A

1 0

0 1

0.5 1

→ 1 0 0.5

1 1 0 X

0 1 1 X

0.5 X 0 1

Note that the members of all the three defined classes satisfy condition
(par1).

Theorem 3. If M ∈ Mi (1 ¬ i ¬ 3), then ⊢M is maximal.

Proof. The proof also relies on a substitution that fixes the values of
formulas in relation to the specified valuation v, this time as defined
for Lemma 6. We use the fact that ⊢M is paraconsistent. In particular
〈{p1, ¬p1}, p2〉 is not in ⊢M. Consider a tuple of 〈X , A〉 ∈ ⊢C \ ⊢M. The
required substitution is the same as in the proof of Lemma 6: for every
b ∈ SB, let s′′(b) = p2 → p2 if v(b) = 1; s′′(b) = ¬(p2 → p2), if v(b) = 0
and s′′(b) = p1, if v(b) = 0.5. This fixes the values in reference to v in
the required way and by the same reasoning as in the proof of Lemma 6
we get {p1, ¬p1, s′′(A)} ⊢M p2. To show that for every X ∈ X we have
{p1, ¬p1} ⊢M s′′(X) we focus on v′′ such that v′′(p1) = 0.5. Note that if
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v′′(p2) ∈ {1, 0}, then the value of all the substituted formulas is fixed in
reference to v as in the proof of Lemma 6, hence we focus on v′′(p2) = 0.5.
We now have several cases to consider:

1. If M ∈ M1, then the value of all substituted formulas is fixed to be
0.5 or is fixed in reference to v, as in the proof of Lemma 6.

2. If M ∈ M2, then the value of all substituted formulas is fixed to be
either 1 or 0.5.

3. If M ∈ M3, then the value of all substituted formulas is fixed in
reference to v as in the proof of Lemma 6.

In all the considered cases we obtain v′′(s′′(X)) ∈ D, as required. ⊣

5. Computational analysis

We wish to experimentally explore the properties of the 2 × 16 matrices
having both maximal theory and consequence relations and see how these
compare to the rest in that setting. We propose a more practically-
oriented way of measuring how “close” these are to the classical one.
To that end, we have designed a validity checker13 for the three-valued
subclassical matrices. It works by creating a truth-table validity check
for a given set of formulas having at most three variables. This validity
check can be done on all the subclassical matrices; however, we decided
to limit our attention to those matrices that have both (sub1) and (mp)
properties, thus potentially falling within the scope of Theorem 1. We
wished to experimentally check whether there are practical indications
that there are maximal subclassical logical matrices that were not cap-
tured by the theoretical analyses using the method we have employed
but which could be perhaps identified using a modified version of it.
Hence, we took the following, standard, list of  independent  axioms
for the classical propositional logic and checked which of these are valid
in a given subclassical logical matrix.

1. p1 → (p2 → p1)
2. [p1 → (p2 → p3)] → [(p1 → p2) → (p1 → p3)]
3. (p1 → p2) → (¬p2 → ¬p1)

13 Very limited in terms of applications, essentially custom-built to perform the
job at hand. It can be, however, easily extended to perform other, similar functions.
The code is available at the following http://www.logic.ifil.uz.zgora.pl/code/

3val-validity-check.py.

http://www.logic.ifil.uz.zgora.pl/code/3val-validity-check.py
http://www.logic.ifil.uz.zgora.pl/code/3val-validity-check.py
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4. ¬¬p1 → p1

5. p1 → ¬¬p1

6. p1 ∧ p2 → p1

7. p1 ∧ p2 → p2

8. (p1 → p2) → [(p1 → p3) → (p1 → p2 ∧ p3)]
9. p1 → (p2 ∨ p1)

10. p2 → (p2 ∨ p1)
11. (p1 → p3) → [(p2 → p3) → (p1 ∨ p2 → p3)]
12. (p1 ↔ p2) → (p2 → p1)
13. (p1 ↔ p2) → (p1 → p2)
14. (p1 → p2) → [(p2 → p1) → (p1 ↔ p2)]

Obviously, a decision had to be made regarding how the remaining
connectives should be defined. We have assumed the following defini-
tions:

A ∨ B := ¬A → B;

A ∧ B := ¬(¬A ∨ ¬B);

A ≡ B := (A → B) ∧ (B → A).

All the 243 possible tables for implication used in defining subclas-
sical logical matrices were enumerated and then only those satisfying
the condition (mp) were selected for further analysis (see Appendix A).
Each of the tables for implication was used twice: once for each possible
way of defining negation. Therefore, the numbering is doing double duty
here: it is used to describe the specific table for implication as well as the
resulting logical matrix (one table for implication can be paired with each
of the two possible tables for negation, thus giving rise to 2 × 243 logical
matrices). The matrices were assigned scores depending on the number
of the above axioms they satisfied. For negation defined as ¬0.5 = 0.5,
the results were as follows:
[(168, 12), (4, 11), (6, 11), (166, 11), (186, 11), (222, 10), (22, 9), (24, 9), (58, 9), (60, 9), (87, 9),

(184, 9), (220, 9), (13, 8), (240, 8), (15, 7), (85, 7), (86, 7), (114, 7), (195, 7), (5, 6), (14, 6),

(76, 6), (78, 6), (94, 6), (95, 6), (96, 6), (105, 6), (121, 6), (122, 6), (123, 6), (238, 6), (31, 5),

(33, 5), (40, 5), (42, 5), (112, 5), (113, 5), (141, 5), (193, 5), (213, 5), (32, 4), (41, 4), (103, 4),

(139, 4), (157, 4), (159, 4), (175, 4), (49, 3), (51, 3), (177, 3), (231, 3), (23, 2), (67, 2), (69, 2),

(130, 2), (132, 2), (148, 2), (150, 2), (167, 2), (185, 2), (202, 2), (204, 2), (211, 2), (212, 2),

(229, 2), (50, 1), (59, 1), (104, 1), (140, 1), (176, 1), (194, 1), (68, 0), (77, 0), (131, 0), (149, 0),

(158, 0), (203, 0), (221, 0), (230, 0), (239, 0)]

Each pair represents a matrix number and the score obtained respec-
tively. For example, 168, with the highest score represents our logical
matrix DK, showing that in some way it stands out among the others.
This is obviously heavily dependent on the way, in which we decide to
define the remaining connectives: and it seems that at least for DK the
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one we have chosen might be optimal. The runner-up, 4 uses the impli-
cation table as defined in ST but with negation defined differently: it
seems it is a powerful system nevertheless. All in all, the results confirm
the strong position of the logical matrices identified in our theoretical
analysis: in fact, the first 15 results comprise of 14 matrices covered in
the proof of Theorem 4.2 and the remaining one (87) represents HZ,
which, as mentioned earlier, does not quite fit into the picture in terms
of generalisation. Remarkable!

For negation defined as ¬0.5 = 1, the results were as follows:
[(4, 10), (58, 10), (86, 10), (95, 10), (6, 9), (22, 9), (24, 9), (60, 9), (76, 9), (78, 9), (85, 9),

(94, 9), (166, 9), (168, 9), (184, 9), (186, 9), (220, 9), (222, 9), (238, 9), (240, 9) (5, 8), (13, 8),

(14, 8), (87, 8), (140, 8), (103, 7), (104, 7), (105, 7), (139, 7), (141, 7), (157, 7), (158, 7), (231, 7),

(15, 6), (23, 6), (59, 6), (96, 6), (113, 6), (122, 6), (159, 6), (175, 6), (229, 6), (67, 5), (68, 5),

(69, 5), (77, 5), (148, 5), (149, 5), (150, 5), (167, 5), (176, 5), (177, 5), (185, 5), (221, 5), (230, 5),

(239, 5), (32, 4), (41, 4), (112, 4), (121, 4), (40, 3), (31, 3), (130, 2), (131, 2), (114, 1), (132, 1),

(33, 0), (42, 0), (49, 0), (50, 0), (51, 0), (123, 0), (193, 0), (194, 0), (195, 0), (202, 0), (203, 0),

(204, 0), (211, 0), (212, 0), (213, 0)]

We see that the same sort of pattern emerges here but the landscape is
more varied: most of the logical matrices identified by us as having both
maximal theory and consequence relations are to be found among the
top 20 results with some matrices trading places (4, representing ST is
now among the top-scored results). One notes that there are a number of
other matrices entering the picture when negation is defined differently
(e.g. 86, 95); also the two matrices satisfying both (sub2) and (mp)
(e.g. 76 and 78) that were previously trailing behind, have now secured
somehow more satisfying spots in the ranking. This new way of defining
negation, however, seems to have a deteriorating effect on 87, with its
position being noticeably weaker. But it seems safe to conclude that
also in this case, generally speaking, the practical analysis confirmed the
theoretical results (potentially opening new avenues of research as well).

We note in passing that this simple experiment also shows that when
DK, ST and HZ are extended with the interpretations of additional
connectives as above, these all give rise to different theories. There are
a number of things one needs to be aware of at this point. (1) ST is
traditionally extended with connectives defined in a different way (see
[28], [29]) and an initial computational analysis suggests that this way
might indeed be optimal for it, yielding more axioms from the above list
being satisfied. (2) The question whether the other described matrices,
beyond the three examples we focused on, extended in the above way
also define distinct theories is still open. In many cases, it should not be
difficult to establish the answer by means of a simple (computer-aided)
check but this goes beyond the scope of our work.
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Perhaps we should emphasise at this point that here we focus on
identifying matrices that give rise to maximal theories and consequence
relations, rather than on comparing the theories and relations that can
be obtained via different matrices.

6. Conclusions and further work

Our main aim was to show how a certain refutation method can be
generalised to cover a large number of paraconsistent logics in terms
of proving their maximality. To tally up, we have identified 32 three-
valued logics that are subclassical, paraconsistent and maximal in both
senses distinguished in this article. Observe that the number of matrices
having a paraconsistent consequence relation is much greater. A question
suggests itself whether the remaining matrices can also be shown to have
a maximal paraconsistent theory. It would also be interesting to precisely
compare the presented results with the ones described in [2] and [3] and
see how well the method lends itself to further generalisations. One
can try and extend the use of this method even further, e.g. to four-
valued systems or, perhaps, show how it can be used in the most general
setting of n-valued logics, where n is any number, alternatively with
some restrictions imposed on n. As for the experimental part, it would
be interesting to further compare the analysed matrices and perform
a more detailed research in terms of which formulas are valid in these
depending on various ways of defining the remaining connectives. For
example, the connectives for ST have been originally defined differently
than we have done in this article and this does make a difference in terms
of the formulas valid in the resulting logic. It would also be interesting
to further compare ST and DK, both from the theoretical and practical
points of view. So far, we have seen that the theoretical part shaped the
practical investigations, but it might well be the other way round: the
experimental results might, in turn, inform a more theoretical analysis.
Having some sort of practical confirmation of the strength of a given
logical matrix, one could focus on such systems in hope proving their
maximality. We see that given the simplicity of the method, it lends
itself well to all sorts of applications in computer science. Hence, another
interesting avenue of research would be to design, on the basis of the
formal description of the method, a computer program that performs the
search for maximal paraconsistent logics of three, four or more values.
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A. Appendix

A look-up table for all the possible implication matrices satisfying (sub1).
Each list to be read as follows: [matrix-number,a,b,c,d,e], where the
letters relate to the positions in the actual tables as indicated below.

→ 1 0 0.5

1 1 0 a

0 1 1 b

0.5 c d e

[1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 0], [3, 1, 1, 1, 1, 0.5], [4, 1, 1, 1, 0, 1],

[5, 1, 1, 1, 0, 0], [6, 1, 1, 1, 0, 0.5], [7, 1, 1, 1, 0.5, 1], [8, 1, 1, 1, 0.5, 0],

[9, 1, 1, 1, 0.5, 0.5], [10, 1, 1, 0, 1, 1], [11, 1, 1, 0, 1, 0], [12, 1, 1, 0, 1, 0.5],

[13, 1, 1, 0, 0, 1], [14, 1, 1, 0, 0, 0], [15, 1, 1, 0, 0, 0.5], [16, 1, 1, 0, 0.5, 1],

[17, 1, 1, 0, 0.5, 0], [18, 1, 1, 0, 0.5, 0.5], [19, 1, 1, 0.5, 1, 1], [20, 1, 1, 0.5, 1, 0],

[21, 1, 1, 0.5, 1, 0.5], [22, 1, 1, 0.5, 0, 1], [23, 1, 1, 0.5, 0, 0], [24, 1, 1, 0.5, 0, 0.5],

[25, 1, 1, 0.5, 0.5, 1], [26, 1, 1, 0.5, 0.5, 0], [27, 1, 1, 0.5, 0.5, 0.5], [28, 1, 0, 1, 1, 1],

[29, 1, 0, 1, 1, 0], [30, 1, 0, 1, 1, 0.5], [31, 1, 0, 1, 0, 1], [32, 1, 0, 1, 0, 0],

[33, 1, 0, 1, 0, 0.5], [34, 1, 0, 1, 0.5, 1], [35, 1, 0, 1, 0.5, 0], [36, 1, 0, 1, 0.5, 0.5],

[37, 1, 0, 0, 1, 1], [38, 1, 0, 0, 1, 0], [39, 1, 0, 0, 1, 0.5], [40, 1, 0, 0, 0, 1],

[41, 1, 0, 0, 0, 0], [42, 1, 0, 0, 0, 0.5], [43, 1, 0, 0, 0.5, 1], [44, 1, 0, 0, 0.5, 0],

[45, 1, 0, 0, 0.5, 0.5], [46, 1, 0, 0.5, 1, 1], [47, 1, 0, 0.5, 1, 0], [48, 1, 0, 0.5, 1, 0.5],

[49, 1, 0, 0.5, 0, 1], [50, 1, 0, 0.5, 0, 0], [51, 1, 0, 0.5, 0, 0.5], [52, 1, 0, 0.5, 0.5, 1],

[53, 1, 0, 0.5, 0.5, 0], [54, 1, 0, 0.5, 0.5, 0.5], [55, 1, 0.5, 1, 1, 1], [56, 1, 0.5, 1, 1, 0],

[57, 1, 0.5, 1, 1, 0.5], [58, 1, 0.5, 1, 0, 1], [59, 1, 0.5, 1, 0, 0], [60, 1, 0.5, 1, 0, 0.5],

[61, 1, 0.5, 1, 0.5, 1], [62, 1, 0.5, 1, 0.5, 0], [63, 1, 0.5, 1, 0.5, 0.5], [64, 1, 0.5, 0, 1, 1],

[65, 1, 0.5, 0, 1, 0], [66, 1, 0.5, 0, 1, 0.5], [67, 1, 0.5, 0, 0, 1], [68, 1, 0.5, 0, 0, 0],

[69, 1, 0.5, 0, 0, 0.5], [70, 1, 0.5, 0, 0.5, 1], [71, 1, 0.5, 0, 0.5, 0], [72, 1, 0.5, 0, 0.5, 0.5],

[73, 1, 0.5, 0.5, 1, 1], [74, 1, 0.5, 0.5, 1, 0], [75, 1, 0.5, 0.5, 1, 0.5], [76, 1, 0.5, 0.5, 0, 1],

[77, 1, 0.5, 0.5, 0, 0], [78, 1, 0.5, 0.5, 0, 0.5], [79, 1, 0.5, 0.5, 0.5, 1], [80, 1, 0.5, 0.5, 0.5, 0],

[81, 1, 0.5, 0.5, 0.5, 0.5], [82, 0, 1, 1, 1, 1], [83, 0, 1, 1, 1, 0], [84, 0, 1, 1, 1, 0.5],

[85, 0, 1, 1, 0, 1], [86, 0, 1, 1, 0, 0], [87, 0, 1, 1, 0, 0.5], [88, 0, 1, 1, 0.5, 1],

[89, 0, 1, 1, 0.5, 0], [90, 0, 1, 1, 0.5, 0.5], [91, 0, 1, 0, 1, 1], [92, 0, 1, 0, 1, 0],

[93, 0, 1, 0, 1, 0.5], [94, 0, 1, 0, 0, 1], [95, 0, 1, 0, 0, 0], [96, 0, 1, 0, 0, 0.5],

[97, 0, 1, 0, 0.5, 1], [98, 0, 1, 0, 0.5, 0], [99, 0, 1, 0, 0.5, 0.5], [100, 0, 1, 0.5, 1, 1],

[101, 0, 1, 0.5, 1, 0], [102, 0, 1, 0.5, 1, 0.5], [103, 0, 1, 0.5, 0, 1], [104, 0, 1, 0.5, 0, 0],

[105, 0, 1, 0.5, 0, 0.5], [106, 0, 1, 0.5, 0.5, 1], [107, 0, 1, 0.5, 0.5, 0], [108, 0, 1, 0.5, 0.5, 0.5],

[109, 0, 0, 1, 1, 1], [110, 0, 0, 1, 1, 0], [111, 0, 0, 1, 1, 0.5], [112, 0, 0, 1, 0, 1],

[113, 0, 0, 1, 0, 0], [114, 0, 0, 1, 0, 0.5], [115, 0, 0, 1, 0.5, 1], [116, 0, 0, 1, 0.5, 0],

[117, 0, 0, 1, 0.5, 0.5], [118, 0, 0, 0, 1, 1], [119, 0, 0, 0, 1, 0], [120, 0, 0, 0, 1, 0.5],

[121, 0, 0, 0, 0, 1], [122, 0, 0, 0, 0, 0], [123, 0, 0, 0, 0, 0.5], [124, 0, 0, 0, 0.5, 1],

[125, 0, 0, 0, 0.5, 0], [126, 0, 0, 0, 0.5, 0.5], [127, 0, 0, 0.5, 1, 1], [128, 0, 0, 0.5, 1, 0],

[129, 0, 0, 0.5, 1, 0.5], [130, 0, 0, 0.5, 0, 1], [131, 0, 0, 0.5, 0, 0], [132, 0, 0, 0.5, 0, 0.5],

[133, 0, 0, 0.5, 0.5, 1], [134, 0, 0, 0.5, 0.5, 0], [135, 0, 0, 0.5, 0.5, 0.5], [136, 0, 0.5, 1, 1, 1],

[137, 0, 0.5, 1, 1, 0], [138, 0, 0.5, 1, 1, 0.5], [139, 0, 0.5, 1, 0, 1], [140, 0, 0.5, 1, 0, 0],

[141, 0, 0.5, 1, 0, 0.5], [142, 0, 0.5, 1, 0.5, 1], [143, 0, 0.5, 1, 0.5, 0], [144, 0, 0.5, 1, 0.5, 0.5],

[145, 0, 0.5, 0, 1, 1], [146, 0, 0.5, 0, 1, 0], [147, 0, 0.5, 0, 1, 0.5], [148, 0, 0.5, 0, 0, 1],

[149, 0, 0.5, 0, 0, 0], [150, 0, 0.5, 0, 0, 0.5], [151, 0, 0.5, 0, 0.5, 1], [152, 0, 0.5, 0, 0.5, 0],

[153, 0, 0.5, 0, 0.5, 0.5], [154, 0, 0.5, 0.5, 1, 1], [155, 0, 0.5, 0.5, 1, 0], [156, 0, 0.5, 0.5, 1, 0.5],

[157, 0, 0.5, 0.5, 0, 1], [158, 0, 0.5, 0.5, 0, 0], [159, 0, 0.5, 0.5, 0, 0.5], [160, 0, 0.5, 0.5, 0.5, 1],

[161, 0, 0.5, 0.5, 0.5, 0], [162, 0, 0.5, 0.5, 0.5, 0.5], [163, 0.5, 1, 1, 1, 1], [164, 0.5, 1, 1, 1, 0],

[165, 0.5, 1, 1, 1, 0.5], [166, 0.5, 1, 1, 0, 1], [167, 0.5, 1, 1, 0, 0], [168, 0.5, 1, 1, 0, 0.5],

[169, 0.5, 1, 1, 0.5, 1], [170, 0.5, 1, 1, 0.5, 0], [171, 0.5, 1, 1, 0.5, 0.5], [172, 0.5, 1, 0, 1, 1],

[173, 0.5, 1, 0, 1, 0], [174, 0.5, 1, 0, 1, 0.5], [175, 0.5, 1, 0, 0, 1], [176, 0.5, 1, 0, 0, 0],

[177, 0.5, 1, 0, 0, 0.5], [178, 0.5, 1, 0, 0.5, 1], [179, 0.5, 1, 0, 0.5, 0], [180, 0.5, 1, 0, 0.5, 0.5],

[181, 0.5, 1, 0.5, 1, 1], [182, 0.5, 1, 0.5, 1, 0], [183, 0.5, 1, 0.5, 1, 0.5], [184, 0.5, 1, 0.5, 0, 1],

[185, 0.5, 1, 0.5, 0, 0], [186, 0.5, 1, 0.5, 0, 0.5], [187, 0.5, 1, 0.5, 0.5, 1], [188, 0.5, 1, 0.5, 0.5, 0],

[189, 0.5, 1, 0.5, 0.5, 0.5], [190, 0.5, 0, 1, 1, 1], [191, 0.5, 0, 1, 1, 0], [192, 0.5, 0, 1, 1, 0.5],

[193, 0.5, 0, 1, 0, 1], [194, 0.5, 0, 1, 0, 0], [195, 0.5, 0, 1, 0, 0.5], [196, 0.5, 0, 1, 0.5, 1],

[197, 0.5, 0, 1, 0.5, 0], [198, 0.5, 0, 1, 0.5, 0.5], [199, 0.5, 0, 0, 1, 1], [200, 0.5, 0, 0, 1, 0],

[201, 0.5, 0, 0, 1, 0.5], [202, 0.5, 0, 0, 0, 1], [203, 0.5, 0, 0, 0, 0], [204, 0.5, 0, 0, 0, 0.5],

[205, 0.5, 0, 0, 0.5, 1], [206, 0.5, 0, 0, 0.5, 0], [207, 0.5, 0, 0, 0.5, 0.5], [208, 0.5, 0, 0.5, 1, 1],

[209, 0.5, 0, 0.5, 1, 0], [210, 0.5, 0, 0.5, 1, 0.5], [211, 0.5, 0, 0.5, 0, 1], [212, 0.5, 0, 0.5, 0, 0],

[213, 0.5, 0, 0.5, 0, 0.5], [214, 0.5, 0, 0.5, 0.5, 1], [215, 0.5, 0, 0.5, 0.5, 0], [216, 0.5, 0, 0.5, 0.5, 0.5],
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[217, 0.5, 0.5, 1, 1, 1], [218, 0.5, 0.5, 1, 1, 0], [219, 0.5, 0.5, 1, 1, 0.5], [220, 0.5, 0.5, 1, 0, 1],

[221, 0.5, 0.5, 1, 0, 0], [222, 0.5, 0.5, 1, 0, 0.5], [223, 0.5, 0.5, 1, 0.5, 1], [224, 0.5, 0.5, 1, 0.5, 0],

[225, 0.5, 0.5, 1, 0.5, 0.5], [226, 0.5, 0.5, 0, 1, 1], [227, 0.5, 0.5, 0, 1, 0], [228, 0.5, 0.5, 0, 1, 0.5],

[229, 0.5, 0.5, 0, 0, 1], [230, 0.5, 0.5, 0, 0, 0], [231, 0.5, 0.5, 0, 0, 0.5], [232, 0.5, 0.5, 0, 0.5, 1],

[233, 0.5, 0.5, 0, 0.5, 0], [234, 0.5, 0.5, 0, 0.5, 0.5], [235, 0.5, 0.5, 0.5, 1, 1], [236, 0.5, 0.5, 0.5, 1, 0],

[237, 0.5, 0.5, 0.5, 1, 0.5], [238, 0.5, 0.5, 0.5, 0, 1], [239, 0.5, 0.5, 0.5, 0, 0], [240, 0.5, 0.5, 0.5, 0, 0.5],

[241, 0.5, 0.5, 0.5, 0.5, 1], [242, 0.5, 0.5, 0.5, 0.5, 0], [243, 0.5, 0.5, 0.5, 0.5, 0.5]
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