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TAUTOLOGY ELIMINATION,
CUT ELIMINATION, AND S5

Abstract. Tautology elimination rule was successfully applied in automated
deduction and recently considered in the framework of sequent calculi where
it is provably equivalent to cut rule. In this paper we focus on the advan-
tages of proving admissibility of tautology elimination rule instead of cut for
sequent calculi. It seems that one may find simpler proofs of admissibility
for tautology elimination than for cut admissibility. Moreover, one may
prove its admissibility for some calculi where constructive proofs of cut ad-
missibility fail. As an illustration we present a cut-free sequent calculus for
S5 based on tableau system of Fitting and prove admissibility of tautology
elimination rule for it.
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1. Introduction

Tautology elimination rule (TE) was first introduced in late 1950s by
Davis and Putnam [3] in their automated theorem prover for classical
propositional logic CPL in the form:

017 .. '7Ck—1)C[T]k7Ck‘+l) .. '7Cn
Cl?"'70k—170k+17”‘70n

where each C; denotes a clause.

It is well known that Davis and Putnam procedure is one of the
most efficient for CPL and in particular TE was also applied in many
variants of resolution provers as additional technique for improvement
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of performance. However, in this article we are interested in the appli-
cation of this kind of rule in the setting of sequent calculi (SC) and its
possible advantages. In particular, we will show that it may be applied
successfully instead of cut rule.

In the framework of sequent calculus TE may be formulated as the
following rule:

T.I'=A o=, '=A
r=A r=sA

Although it is a valid schema of rule for elimination of any thesis from
the antecedent of any sequent — hence the name tautology elimination —
we prefer for our purposes the more specific instance on the right. One
may easily prove the following crucial result:

LeMMA 1.1 (Equivalence of TE and Cut). TE and Cut are interderiv-
able.

= o= =, I'=A
(Cut) r=A

= A p,II= X
o=, l= A%
INilI= A%

In the above proof figures we did not specify which sort of sequent
calculus we are using and we have freely applied multiplicative form of
cut and of (—=>). But it should be obvious that it holds also for additive
forms in the presence of weakening.

As far as I know in the framework of sequent calculi TE was intro-
duced by Lyaletsky [9] under the name tautology rule and it was used
rather for building proof-search procedures. As a device for proving (in-
directly) cut admissibility it was applied first by Brighton [1] and then
by Tourlakis and Gao [7]. In both cases admissibility of TE was proved
for some modal logics of provability and provided proofs were slightly
complicated because of taking into account not only proof-trees but also
proof-search trees. It seems that such complications in some cases may
be avoided. Below we provide a proof which is conceptually simpler since
we consider only proof-trees and demonstrate things by induction on the
complexity (of eliminated formula) and height of the proof only.

(==)
(TE)
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One may also notice that rules of this kind are also often applied
for obtaining adequate SC formalizations of theories. Thus instead of
addition of axioms of the form = A for an axiom A one may equivalently

use rules AE of the form:
AT = A

'=A
Equivalence of both solutions is obvious and in one direction was shown
in the above lemma. In the second it follows by AE from A = A. As an
example of such an approach one may mention Gallier’s [6] formalization
of identity obtained by means of the following rules:

r=z,=A Vo, y(x =y Ao — plz/y]), T = A
I'=A r=A

In Negri and von Plato [10] such approach is restricted only to axioms
being atoms (the leftmost rule), whereas compound axioms are formal-
ized by means of rules. Thus the second Gallier’s rule is formulated in
the following way:

=y ¢ elz/y), I = A
r=y,p,'=A

The advantage of such decomposition of compound axioms is significant;
we can prove cut admissibility for theories formalized in such a way.

2. Admissibility of Tautology Elimination

For specific applications we will use a sequent calculus G3 essentially due
to Ketonen (see Negri and von Plato [10]) Sequents are composed from
two finite (possibly empty) multisets of formulae. There is one schema
of axiom: ¢,I" = A ¢, where ¢ is atomic formula. The rules are the
following:

izt geree

(A=) fﬁ;,r FZ;AA (1) :rAéwA, : /T> z/;A? :
(=V) Frj AA, f,vfz; (v=) = F; vfp, FZFA: =
(=-) F¢;>FA:,> @Ajw (=) - ;:OA—’:;, riri =
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Vrp, plz/7],T = A « D= A pz/d]
(V=) Vep, I = A (=) = A Vze

. plefal, T = A I'= A pla/7], Jxp
(3=) dze,I' = A (=3) I'= A dzp

side conditions: * where a is a free variable (eigenparameter) not occur-
ring in I'; A and .

Note that (V=-) and (=3) are contraction-absorbing in the sense
that we can always derive the conclusion from the premiss by means of
contraction. This makes contraction dispensable (but admissible as we
can show) and moreover, both rules are invertible.

Proofs are defined as usual as well-founded trees with leaves labelled
by axioms, all other nodes labelled with sequents derived by the appli-
cation of rules and proven sequent as the root. - I' = A means that the
sequent has a proof in our system. The height of the proof a sequent
is defined as the length of the longest branch leading to it. Notions of
parametric, side and principal formula in a rule application are standard.

This calculus provides adequate characterization of first-order classi-
cal logic. Moreover, one may in a standard way (see e.g. Negri and von
Plato [10]) prove the following results:

LEMMA 2.1 (General axioms). - ¢, I' = A, ¢, for arbitrary .

LEMMA 2.2 (Admissibility of weakening). If - I' = A, then F TV = A/,
forTCTV, A CA

LEMMA 2.3 (Invertibility). All rules are invertible.

LEMMA 2.4 (Admissibility of contraction). If F ¢,p,I' = A then
Fo,I'= A andif FT'= Ao, then FT' = A .

The last important auxiliary result is a variant of Substitution lemma
for G3. First we must extend the notion of alphabetic variant and proper
substitution from formulae to sequents in the following way:

e for (multi)set I := ¢1,..., 0, Ulz/7] := p1[x/T], ..., onlx/T].
o I'= Alz/7]:=Tz/7| = Alz/7].

LEMMA 2.5 (Substitution). If FT'= A then - I' = Afz/7].
Now we have enough machinery to prove:

THEOREM 2.6 (Admissibility of TE). For any ¢, I', and A:

itFp =9, I'=Athent-T= A.
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PROOF. Assume that (a): F ¢ — ¢, I' = A. Immediately, by invertibil-
ity we obtain: (b) FI' = A, ¢; and (c) F ¢, I' = A.

We prove that = I' = A by induction on the complexity of .

Basis: ¢ is atomic. Consider (c), we prove the claim that - T' = A,
by subsidiary induction on the height of - ¢, I" = A.

If it is an axiom, then either I' = A is an axiom, or ¢,I' = A is of
the form ¢, T" = A’, ¢. Then, by (b), we have - ' = A’ ¢, ¢ which, by
contraction, reduces to I' = A’ ¢ and we are done.

Induction step: Assume that the claim holds for any proof of
F @, ' = A of height k& < n and prove it for the height = n.

In the case of Boolean rules the proof is trivial since ¢ may be only
a parameter and its deletion by IH in premisses does not affect the
application of a rule. Similarly in case of quantifier rules.

Induction step: Assume as IH that the lemma holds for all formulae
of lower complexity than ¢. The proof goes by cases. For all Boolean
formulae it is similar and based on invertibility of respective rules. We
consider only one case as an example:

¢ =1V x. From (b) and (c), by invertibility, we obtain - I" = A,
v, x, FY,I'= A F x,['= A, and we build the following proof:

x, [ = A

A TP (=W
PoAdy WIS Ag W)
(—=)
H X=X, I'= A
= Av v, = A (—=)
=, T = A H
I'= A

@ := Varp. We again prove the claim: If - o, ' = A then F ' = A,
by subsidiary induction on the height of (c).

Basis: If (c) is an axiom, then I" = A too.

Induction step: In all cases where ¢ is parametric, we may delete it
by IH and perform the rule.

Case ¢ is principal. Then the premiss is Va, ¢ (z/7),I' = A and,
by IH, it reduces to ¢ (z/7),I' = A. From (b), by invertibility, we get
I' = A,¢(z/7) and, by (—=") we get ¥(z/7) — ¥(z/7),I = A from
which the result follows by TH (main).

Hence by (c) we obtain the result for this case too.

Similar proof applies for ¢ := Jz1) but now we must carry subsidiary
induction on the height of (b) since we must refer to invertibility of
(I=). o
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One should pay attention to remarkable simplicity of this proof. Sub-
sidiary induction on the height of one of the sequents obtained by invert-
ibility from the premiss of TE is necessary only in atomic case and in case
of quantified formulae. In fact, we can get even simpler proof in the sense
of required preliminary results. Note that we have used contraction only
in the proof of the basis of the main induction. It means that instead of
the (rather involved proof of the) admissibility of full contraction rules
we need only admissibility of contraction on atomic formulae. Such a
result is trivial for G3 since all two-premiss rules are additive and simple
observation shows that if in any proof we have two occurrences of the
same atom on any side of the root sequent, then these two occurrences
are present in any preceding sequent. Therefore we can just delete one
occurrence of this atom in all sequents and obtain a proof with only one
occurrence of this atom in all sequents including root sequent.

3. Cut-free Sequent Calculus for S5

Simplicity of the proof of the well known result may be seen as not very
important achievement. Can we find an application of TE admissibility
which works for cases where direct proofs of cut admissibility do not
work? It seems that we can find such an example in the field of modal
logic. S5 is one of the most important modal logics having numerous
nice syntactic, semantic and algebraic properties and a variety of ap-
plications. Let us recall that if we add to the propositional language
just one additional constant [J—unary modal necessity operator, we
can axiomatize S5 by adding to some system for CPL the following
schemata:

K Oy = ¢) = (Oe — Oy)
T Op—op

4 Oe — O0p

B —¢— O-Op

The system is closed under MP (modus ponens) and the rule of necessi-
tation (of every thesis): ¢ / F Q.

Sequent calculi play similar role in the field of modern proof theory
as S5 in the field of modal logics. However, it is a well known fact
that formalization of the latter by means of the former leads to serious
troubles. It is not hard to find some rules for S5 but it is hard to obtain
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such SC which satisfies properties usually required from well-crafted SC.
In particular, it is hard to prove cut admissibility/eliminability for SC
adequate with respect to S5. At least this remark applies to such SC
which are standard, in the sense of not going far beyond the construction
of the original Gentzen’s SC.!

Let us recall here the well known SC for S5 provided by Ohnishi
and Matsumoto [11]. They have used as a basis not G3 but Gentzen’s
original system LK which operates on sequents built from finite lists of
formulas so they have used additionally structural rules of weakening,
contraction and permutation. For [ they introduced the following rules:

p,['=A

OF = OA, o
(0=) OpT = A (

|:| - T
Y TS oao,

instead of our contraction- and weakening-absorbing rules.
The following proof of B shows that cut is indispensable in this for-
malization of S5.

Up=Cp
= —Up,Up p=p
= O=0p, Op Op=p
EEL
(:>_>) -p —LIp
= —p — U-0p

(=)
=0)
(Cut)

(O=)

One may obtain suitable counterparts of Ohnishi and Matsumoto
rules for G3 in the following way:

g, o, I'= A

Or = OA, ¢
(0=) Op,T = A (

0
Ui orsoasop

where ([0=) is contraction-absorbing and (=[J) is weakening-absorbing.
It is easily seen that such modified rules allow for extending the results
like admissibility of weakening and contraction as well as invertibility of
Boolean rules. Still this is not enough for proving admissibility of cut
and our counterexample works as well.

However, a small modification based on the tableau formalization of
S5 due to Fitting [4, 5] provides a solution. In [4] Fitting has shown
that the addition of the rule: —¢ / =0y to incomplete tableau system

LA detailed discussion of different approaches to SC formalization of S5 may be
found in [8] and in [2].
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for S5 may replace the applications of cut. Moreover, he remarked that
his (weak) completeness proof for this system implies that it is enough to
apply such a rule just once, at the beginning, only to an input formula.
This observation was later used in [5] to provide a tableau system for
S5 where in order to check if ¢ is bf S5-valid we just check g and the
system satisfies weak completeness result of the form:

THEOREM 3.1 (Completeness). If |= ¢ then F = .

Since in this tableau system rules are so defined that every formula of
the shape Uy or Uy is allowed to be rewritten in any new world created
on some branch it is a simple matter to find their SC counterparts.
Fitting’s rules (if put in Hintikka’s style, i.e., defined on finite sets not
on individual formulae as nodes of the tree) are of the form:

U, I’
¢, Up, I

¥, 0T, -0A, -0

OE
(COE) ar, -0A, =Oep, —¢

(-0E)

To simulate Fitting’s tableau system in SC we must add to G3 the fol-
lowing modal rules:

p,Op, I'= A
Op,I'= A

O = OA,Oe, ¢

(0=) I,0r = %, 0A, g

(=0)

The only difference with previously formulated rules is in (=) which is
also contraction-absorbing. All definitions formulated for G3 are intact.
Also all preliminary results concerning invertibility of rules and admissi-
bility of weakening and contraction hold also for this calculus. One may
easily check that addition of modal rules in this form does not destroy
the proofs of all these results.

As for soundness we may translate sequents in a standard way into
formulas of S5 by treating antecedents as conjunctions, succedents as
disjunctions and = as —. A rule is validity-preserving (in S5) iff under
translation a conclusion is valid whenever all premises are valid. Thus,
from the fact that all rules are validity-preserving in S5 we obtain:

THEOREM 3.2 (Soundness). If - T'= A then = AI' — VA.

As for completeness one may rigorously demonstrate that every
tableau proof of [y (i.e., a closed tableau starting with =(y) may be
translated into a proof of = [y in our system. Hence semantic com-
pleteness proof of Fitting applies to this sequent system as well. This
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will show that we obtain a cut-free SC for S5 but we want more: a
constructive syntactical proof of its admissibility. Hence for the moment
we assume that cut is admissible and we syntactically prove:

THEOREM 3.3. If by ¢ then - = Oy, where i denotes provability in
the axiomatic system for S5.

PROOF. It is easy to provide proofs for all (boxed) axioms, in particular
a proof of (boxed) axiom B looks like that:

p,0p = p,0(—p — O-0p), 0-0p

p, —p, Op = O(—p — O-0p), O-0p, O-Cp
p, Op = O(=p — O-0Op), 0-0p, =p — O-Cp

Op = O(—p — O-Op), O0-Op, -p — O-Cp
(=) Op = O(—p — O-Op), O0-Op
(=0) = O(-p — O-0p), O-Op, -Cp
(=) —p = O(—p — O0-0Op),0-0Op

(=0) = O(—p — O-0Op), ~p — O-0Op
= 0O(=p — O-0Op)

(==)
(=—)
(=)

(=0)

We must of course also demonstrate how applications of GR and MP
are simulated on (boxed) theses. For GR we have:

= Up
=W) 5o
= O0p

For MP we have:

O(p = ), Op, 0 = o,y O(e = v),0p,¢ = ¢, 0y

—=
e =, 0(p = 4),0p, 0 = ¢, 0¢ (O=) =)
O(e — ), 00, ¢ = ¢, 0¢ (O=)
O(p = ), 0p = ¢, 0y (=0)
= (g = ¢) O(e = ¢),0p = Oy
(Cut)
= Op Op = Oy (Cut)
= [y

Hence the theorem follows by induction on the height of axiomatic proofs.
_|

Now we consider the SC for G3 formulated in the previous section
but without cut. For this system we can prove:
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THEOREM 3.4 (Admissibility of TE). For any ¢, T', and A:
itFp =9, I'=Athent-T= A.

PROOF. The structure of this proof is the same as the proof of Theo-
rem 2.6. Again we prove that - I' = A by induction on the complexity of
. Also again in the basis we additionally perform a subsidiary induction
on the height of - ¢, I' = A. Now additionally, in the induction step we
must consider modal rules. For ([0 =) the proof is trivial like for Boolean
rules. In case of (= ) ¢ may be introduced only as a part of weak-
ening of the antecedent, i.e., we have ¢, IV, = A’ O%, ¢ (where
' =T",00I and A = A’,0%, ) deduced from OII = 0%, v, ¢ and
it is enough to deduce IV, I = A’, 0%, v by the same rule.

Induction step: Again we assume as IH that the lemma holds for
all formulae of lower complexity than ¢. The proof goes by cases. For
all Boolean formulae it is the same (i.e., based on the invertibility of
respective rules).

The case of ¢ := [ is similar to cases of quantified formulae and
even slightly more complicated. As in the basis we prove the claim: If
Fo,I'= A, then - I' = A, by subsidiary induction on the height of (c).

The basis is trivial since, if - ¢, I' = A is an axiom, then - I" = A
is an axiom too.

In the inductive step the cases of parametric ¢ in the application of
Boolean rules and both (=) rules are also trivial —we just delete ¢,
by TH and apply suitable rule. The only interesting case is when ¢ is
principal in the application of (J=). The premiss is [, ¢, I = A and,
by IH, we obtain (d) ¢,I' = A. In order to deduce I' = A we must
additionally consider (b). Now we prove the claim: If - T" = A, ¢, then
FTI' = A, by subsidiary induction on the height of (b).

Again it is straightforward for the case of axiom and ¢ parametric in
Boolean and all modal rules. We must consider the case of ¢ principal
in both (= O)-rules. We have I'V,0I1 = O%, A’ [0y (where I' = T, 11
and A = 0O%, A’) deduced from OII = O, i), ¢b. We use this premiss
and (d) to obtain the following proof:

O = 0%, 0, o
= Av v, = A
==) g Vo uI=A
I'=A

IH
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A specific feature of this proof, when compared with the proof for

classical logic, is the fact that we must perform subsidiary induction on
the height of both (b) and (c) in modal case. One is not enough because
(=0) is not invertible.

By the extension of TE admissibility to G3 for S5 we obtain (indirect)

proof of cut admissibility of this calculus.
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