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Abstract. An embedding of many-valued logics based on SIXTEEN in
classical higher-order logic is presented. SIXTEEN generalizes the four-
valued set of truth degrees of Dunn/Belnap’s system to a lattice of sixteen
truth degrees with multiple distinct ordering relations between them. The
theoretical motivation is to demonstrate that many-valued logics, like other
non-classical logics, can be elegantly modeled (and even combined) as frag-
ments of classical higher-order logic. Equally relevant are the pragmatic
aspects of the presented approach: interactive and automated reasoning in
many-valued logics, which have broad applications in computer science, ar-
tificial intelligence, linguistics, philosophy and mathematics, become readily
enabled with state of the art reasoning tools for classical higher-order logic.
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1. Introduction

Classical logics are based on the bivalence principle, that is, the set
of truth-values V has cardinality |V | = 2, usually with V = {T, F}
where T and F stand for truth and falsity, respectively. Many-valued
logics (MVL) generalize this requirement and allow V to be a more
or less arbitrary set of truth-values, often referred to as truth-degrees.
Popular examples of many-valued logics are fuzzy logics [39, 27] with an
uncountable set of truth-degrees, Gödel logics [25, 22] and Łukasiewicz
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logics [29] with denumerable sets of truth-degrees, and, from the class of
finitely-many-valued logics, Dunn/Belnap’s four-valued logic [5, 6].

The latter system, although originating from research on relevance
logics, has been of strong interest to computer scientists as a formal
foundation of information systems and knowledge bases. Here, the set of
truth-degrees is given by the power set of {T, F}, i.e. V = {N, T, F, B},
where N denotes the empty set ∅ (mnemonic for None), B the set {T, F}
(for Both), and T and F denote the singleton sets containing the respec-
tive classical truth-value.

This article presents an approach for automating MVL based on a
sixteen-valued lattice, denoted SIXTEEN [33]. This system has been de-
veloped by Shramko and Wansing as a generalization of the mentioned
Dunn/Belnap four-valued system to knowledge bases in computer net-
works [32] and was subsequently further investigated in various contexts
(see e.g. [31, 33]). In SIXTEEN, the truth-degrees are given by the
power set of Dunn/Belnap’s truth values, i.e. V = 2{N,T,F,B}. This gen-
eralization is essentially motivated by the observation that a four-valued
system cannot express certain phenomena that arise in knowledge bases
in computer networks. Further applications in linguistics and philosophy
are discussed in the monograph by Shramko and Wansing [33], to which
we refer for a thorough investigation.

While the use of MVL, in particular SIXTEEN, for knowledge rep-
resentation and reasoning in computer science, linguistics and philoso-
phy is well justified, there are unfortunately no tools available yet that
support automated or interactive reasoning in SIXTEEN. This applies
also to most other MVL systems (and the number of available systems
significantly further decreases for quantified MVLs).

To that end, a semantic embedding of logics based on SIXTEEN
within classical higher-order logic (HOL) is presented. Using this encod-
ing, ordinary higher-order automated theorem provers can be exploited
for reasoning within the many-valued setting of SIXTEEN. In addition,
due to the expressivity of the host language, automation of meta-logical
reasoning (to a certain degree) is included for free.

The semantic embedding approach provides similar results for other
non-classical logics, yielding out-of-the-box automation of many other
logics using ordinary HOL reasoning systems. Most recent related work
has been done in the context of automation of higher-order quantified
modal logic [10, 15], quantified conditional logics [8], quantified hybrid
logics [35] and free logics [12]. There is empirical evidence that such tools
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can be employed to successfully verify or refute non-trivial arguments
in e.g. metaphysics and that they even can contribute new knowledge
[14, 13, 7].

The remainder of this article is organized as follows: In Section 2, the
above mentioned logics based on SIXTEEN are introduced. Section 3
and Section 4 address HOL and its utilization for automating reasoning
within MVL. Subsequently, in Section 5 experiments with the aforemen-
tioned encoding are displayed and discussed. Finally, Section 6 concludes
the article and sketches further extensions of the presented approach.

2. Many-Valued Logics Based on SIXTEEN

The MVL systems addressed here are, as outlined earlier, based on
a sixteen-valued structure of truth-degrees. The underlying set V of
truth-degrees is given by the power set of the power set of the classical
(bivalent) truth-values {T, F}, i.e. V := 22{T,F}

. The set V thus fur-
ther generalizes the set of truth-degrees of Dunn/Belnap’s system. More
precisely, we have

V = 2{N,T,F,B} = {N, N, T , F , B, NT, . . . , NTFB},

where N, T , F , and B are the respective singleton sets containing N, T,
F, and B. The remaining truth-degrees are named using a combination of
the letters N, T, F, and B, representing the truth-degree that contains
the respective elements when regarded as a set (e.g. NT for the set
{N, T}).

Using the above set V , there are multiple, mutually independent,
possibilities on how to order the truth-degrees in a meaningful way. They
can, for instance, be sorted by increasing truth. But there are other
reasonable orderings one can think of, e.g. when interested in the decrease
of falsity (which is not the same thing as increase of truth).

Shramko and Wansing [33, pp. 53–57] suggest three reasonable inde-
pendent (partial) orderings, for the set of truth-degrees V .

First, the ordering ≤i orders elements of V by information. Here, a
truth-degree v is smaller than w with respect to its information value,
if and only if v is a subset of w, i.e. v ≤i w :⇔ v ⊆ w. The remaining
two orderings which are more suited for logical reasoning are ≤t and ≤f ,
comparing truth-degrees by their truth and falsity, respectively. For a
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formal definition of these orderings, the notions of “truthful” and “truth-
less” subsets of a truth-degree v are introduced: The truthful subset of
v, denoted vt, contains exactly those elements in v which themselves
contain T. The truthless subset of v, denoted v−t, accordingly consists
only of those elements of v which do not contain T. This notion is
analogously extended to (.)f and (.)−f . More formally, we have

vt := {x ∈ v | T ∈ x},

v−t := {x ∈ v | T /∈ x},
(1)

and for its counterpart based on falsity

vf := {x ∈ v | F ∈ x},

v−f := {x ∈ v | F /∈ x}.
(2)

Note that vt 6= v−f and vf 6= v−t, i.e. the two respective counterparts
of these sets do not coincide. As it is pointed out by Shramko and
Wansing, the counterparts of these notions do indeed coincide for the
four-valued system of Dunn/Belnap [33, p. 53]. That is why there is a
single unique logical ordering in that system, as opposed to the system
described here.

The ordering ≤t can elegantly be defined as an increase in truth and
a non-increase of non-truth. Analogously, ≤f orders by increase of falsity
and non-increase of non-falsity:

v ≤t w :⇔ vt ⊆ wt ∧ w−t ⊆ v−t,

v ≤f w :⇔ vf ⊆ wf ∧ w−f ⊆ v−f .
(3)

The above orderings ≤i, ≤t, and ≤f induce a so-called trilattice [34]

SIXTEEN = (V, ⊔i, ⊓i, ⊔t, ⊓t, ⊔f , ⊓f)

which is essentially a threefold lattice, i.e., having three mutually inde-
pendent pairs of meet and join operations.

Additionally to the above meet and join operations, there are in-
version operations, denoted by −�, for each axis � ∈ {t, f, i} of the
trilattice. These inversions generalize the notion of conflation [23] to
trilattices [34]. As for conflation, the key property of a specific inversion
operation is that it inverses only one ordering while not changing the
order with respect to the other axes. For instance, if v ≤t w, then
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(−t w) ≤t (−t v), but still (−f v) ≤t (−f w) and (−i v) ≤t (−i w), i.e.,
ordering by truth is invariant under f -inversion and i-inversion. More
formally, for �, ⋄ ∈ {t, f, i}, � 6= ⋄, an operation −� is an inversion with
respect to axis � if −� has the following properties [33, p. 58]:















v ≤� w ⇒ −�w ≤� −�v ,

v ≤⋄ w ⇒ −�v ≤⋄ −�w ,

−� −� v = v .

We are now sufficiently prepared to present the syntax and semantics
for the respective logics based on truth- and falsity-orderings. The three
logics studied in the remainder are denoted as Lt, Lf , and Ltf . Their
abstract syntax is given as:

Lt : A, B ::= x | A ∧t B | A ∨t B | ∼t A ,

Lf : A, B ::= x | A ∧f B | A ∨f B | ∼f A ,

Ltf : A, B ::= x | A ∧t B | A ∨t B | ∼t A | A ∧f B | A ∨f B | ∼f A ,

where x is a propositional variable, and ∧, ∨, and ∼ are the respec-
tive connectives for conjunction, disjunction and negation. The primary
focus is on Ltf since the other languages are proper fragments of it.

To provide a semantics for the above languages, let v16 be a 16-
valuation, that is, a map from propositional variables to the sixteen-
valued set V . The semantic evaluation of propositional variables is ex-
tended to compound formulae as usual (� ∈ {t, f}):

v16(A ∧� B) := v(A) ⊓� v(B)

v16(A ∨� B) := v(A) ⊔� v(B)

v16(∼� A) := −�v(A)

Semantic entailment can now be defined as an increase in truth or as
an decrease in falsity. More formally, for two arbitrary formulas A, B ∈
Ltf , A entails B wrt. to truth order, A |=16

t B, if and only if v16(A) ≤t

v16(B) for all 16-valuations v16. Analogously we have A |=16
f B if and

only if v16(B) ≤f v16(A), for all 16-valuations v16. The resulting logics
are (Ltf , |=16

t ), (Ltf , |=16
f ) and the bi-consequence logic (Ltf , |=16

t , |=16
f )

[33, p. 65].
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3. Classical Higher-Order Logic

Higher-order logic (HOL) is an elegant and expressive formal system
that extends first-order logic with quantification over arbitrary sets and
functions. Church [21] proposed a version of higher-order logic, called
simple type theory (in the following referred to as HOL), which he built
on top of the simply typed λ-calculus [19, 20]. The simply typed λ-
calculus augments the untyped λ-calculus, as studied by Alonzo Church
in the 1930s, with simple types. The set of simple types T is thereby
freely generated from a set of base types and a function type constructor.
In HOL, the set of base types is usually taken as (a superset of) {ι, o}
with ι and o being the type of individuals and classical truth values,
respectively.

Syntax of HOL. The terms of the logic are essentially those of the simply
typed λ-calculus, enriched with typed (logical) constants. These con-
stants are taken from a family of denumerable sets of constant symbols
Σ :=

(

Στ

)

τ∈T
, called signature. Together with a family of typed variable

symbols
(

Vτ

)

τ∈T
the terms of HOL are then those terms contained in

the smallest set Λ for which the following conditions hold: Each constant
symbol cτ ∈ Στ and each variable symbol Xτ ∈ Vτ is a HOL term of
type τ . If Xτ ∈ Vτ is a variable symbol and sν ∈ Λ is a HOL term,
then the abstraction (of sν) (λXτ . sν)ντ ∈ Λ is a HOL term of type ντ .
Finally, if sτ , tντ ∈ Λ are HOL terms, then the application (of tντ onto
sτ ) given by (tντ sτ )ν ∈ Λ is a HOL term of type ν. Hereby τ, ν ∈ T
are types and the abstraction type ντ denotes the type of functions from
arguments of type τ to values of type ν. Abstraction types are considered
left-associative, i.e. τνµ ≡ (τν)µ. As usual for Church-style typing, a
term’s type is given as subscript and considered a part of its name, hence
intrinsic to it. Nevertheless, type subscripts are omitted in the following
if clear from the context.

We choose the signature Σ to consist at least of the primitive logical
connectives, that are negation ¬oo, disjunction ∨ooo, and universal quan-
tification Πτ

o(oτ) for each type τ ∈ T . The remaining (non-primitive) log-
ical connectives can be defined as abbreviations in the usual way. By T
and F we denote the HOL symbols for truth and falsehood, respectively.
T can e.g. be defined as T := Πo(λXo. X ∨ ¬X).

We use binder notation ∀Xτ . so as shorthand for universal quan-
tification given by Πτ

(τ→o)→o(λXτ . so). For additional convenience, we
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allow infix notation for the common binary logical connectives, i.e. write
(s ∨ t) instead of ((∨ s) t).

A formula of HOL is a term so ∈ Λ, hence of type o. As usual, a
sentence is a closed formula.

Semantics of HOL. The usual rules of λ-conversions (α-, β-, and η-
conversion) are intrinsically included in HOL. Using these conversions,
especially β-reduction, all quantifier instantiations can be expressed very
concisely.

The meta-operation of substituting a variable Xτ by some term tτ

in sν is denoted s[Xτ /tτ ]. Hereby, we assert that there is no variable
capture happening in sτ by assuming α-conversion as implicit when nec-
essary. A β-redex of the form (λXτ . sν) tτ then β-reduces to sν[Xτ /tτ ].
A term sτ is said to be in β-normal form if it does not contain any
β-redex as a subterm. The β-normal form of sτ is denoted sτ↓β , equiva-
lence modulo β-conversion (and α-conversion) is denoted =β . Reduction,
normal forms and equivalence modulo η and βη are defined analogously.
We refer to the literature for a thorough study of typed λ-calculi [4].

The semantics of HOL is meanwhile well-understood [9] and vari-
ous semantic generalizations have been studied: We here summarize the
most important points: As a consequence of Gödel’s incompleteness the-
orem [24], the so-called standard semantics of HOL is necessarily incom-
plete. However, it shows that in many practical applications Henkin’s
weaker form of general semantics [28, 1, 2] is sufficiently expressive. For
Henkin’s generalized semantics sound and complete proof calculi exists.
And such proof calculi provide the theoretical foundations of modern
theorem provers for HOL such as LEO-II [11], Leo-III [36] and Satallax
[18]. Next, standard and Henkin semantics are introduced more formally.
We start out with the notion of frames.

A frame is a collection {Dτ }τ∈T of non-empty sets (called domains),
where Do is the domain of classical truth-values, chosen to be Do =
{T, F} (for truth and falsehood, respectively) and sets Dντ , which de-
note the domain of functions of type ντ and range over functions from
domain Dτ to co-domain Dν. The domain of individuals Dι is not further
restricted (except for being non-empty).

A HOL model M is a pair M =
(

{Dτ }τ∈T , I
)

, where {Dτ }τ∈T is
a frame and I is a function that maps each constant symbol cτ ∈ Στ

to an element of Dτ (the denotation of cτ ). It is assumed that I is
chosen such that the logical connectives ¬oo, ∨ooo, and Πo(oα) have their
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usual meaning, e.g. I
(

¬oo

)

is the set-theoretic function that inverts the
truth-values of Do:

I
(

¬oo

)

= v 7→

{

T if v = F ,

F if v = T .

A variable assignment g is a map that assigns each variable Xτ ∈ Vτ

an element in Dτ . With g[Y/s] we mean the variable assignment that is
identical to g except that variable Y is now mapped to s.

Finally, given a HOL model M =
(

{Dτ }τ∈T , I
)

and a variable as-
signment g, the value of a HOL term (with respect to M and g), denoted
by ‖.‖M,g, is given by

(i) ‖Xτ ‖M,g = g(Xτ ) and ‖cτ ‖M,g = I(cτ ),
(ii) ‖(sντ tτ )‖M,g = ‖sντ ‖M,g ‖tτ ‖M,g,
(iii) ‖(λXτ . sν)‖M,g is a function f ∈ Dντ s.t. for all z ∈ Dτ it holds

that f(z) = ‖sν‖M,g[Xτ /z].

A HOL model M is called a standard model if and only if the sets
Dντ are chosen to be the complete set DDτ

ν of functions from domain
τ to co-domain ν. The notion of general models (or Henkin models)
is, in contrast, defined by choosing Dντ as a subset of DDτ

ν such that
it contains “sufficiently many”, but not necessarily all, functions. More
formally, M is a general model if and only if ‖.‖M,g is a total function
(that is, every term is assigned a value). The function ‖.‖M,g is uniquely
determined for every general model. Of course, every standard model is
also a general model.

For a model M and a variable assignment g, a formula so is valid in
M wrt. variable assignment g, denoted M, g |=HOL so, if ‖so‖M,g = T . It
is called valid in M if M, g |=HOL so for all variable assignments g. This
is written as M |=HOL so. Finally, a formula so is called Henkin-valid
(or simply valid), written |=HOL so, if so is valid in every Henkin model.
In the following, we always assume general semantics of HOL (i.e. only
Henkin models).

4. Embedding of Ltf

This section presents a semantic embedding of the logic Ltf  and
thereby automatically also of Lt and Lf  in HOL. The idea is essentially
to exploit the expressiveness of HOL for encoding the semantics of the
given truth-degrees and the operations on them.
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The truth-degrees of SIXTEEN have been introduced as sets of sets
of (classical) truth-values T and F (cf. Section 2). Note that sets can
be elegantly represented via characteristic functions in HOL and λ-
abstraction can be utilized for this purpose. Exploiting this idea, we
below encode all sixteen sets that match the respective truth-degree.
More precisely, a set M = {x | P (x)} is modeled in HOL by its char-
acteristic function χM = λx.P x, which is a predicate that holds for
any element m contained in M and does not hold for any other ele-
ment m /∈ M . The λ-abstractions of HOL are typed. For example, the
characteristic function for a set of truth values, λxo.P x, has type oo.
Consequently, the characteristic function for a set of sets of truth values
has type o(oo). Thus, truth-degrees of SIXTEEN correspond to func-
tions of type o(oo). A single truth-degree is then a function λnoo. P n
where Po(oo) is an explicit predicate that  via function application 
determines which elements are to be contained within (the set) n so that
n is itself contained in the set (of sets) under consideration. In other
words the sets as characteristic functions approach is applied here in
nested fashion.

The usual set operations are defined as follows (we use the conven-
tional infix notation):

soτ ∪ toτ := λxτ . (s x) ∨ (t x),

soτ ∩ toτ := λxτ . (s x) ∧ (t x),

where τ ∈ T is some type.
As an example, consider the truth-degree N, which corresponds to

the set {∅}, i.e. the set only containing the empty set of truth values.
Note that this set N contains exactly those sets of truth values that
neither contain T nor F; the empty set of truth values is hence the sole
candidate fulfilling this condition. Consequently, our encoding of N is
λnoo. ¬(n F) ∧ ¬(n T). The list of all sixteen truth degrees and their
respective encoding in HOL is presented at Table 1.

The appropriateness of the encodings can be shown by verifying that
the set-theoretic denotation of the characteristic function representing
the truth-degree is indeed isomorphic (denoted ≃) to its interpretation
as (set-theoretic) set.

Lemma 4.1. Let ⌈v⌉ denote the HOL encoding of truth-degree v ∈ V
(as given in Table 1) and let v ∈ V be a truth-degree. Then, for any

HOL model M and variable assignment g it holds that ‖⌈v⌉‖M,g ≃ v.
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N = λnoo. F
N = λnoo. ¬(n F) ∧ ¬(n T)
T = λnoo. ¬(n F) ∧ n T
F = λnoo. n F ∧ ¬(n T)
B = λnoo. n F ∧ n T

NF = λnoo. ¬(n T)
NT = λnoo. ¬(n F)
NB = λnoo. (¬(n F) ∧ ¬(n T)) ∨ (n F ∧ n T)
FT = λnoo. (n F ∧ ¬(n T)) ∨ (¬(n F) ∧ n T)
FB = λnoo. n F
TB = λnoo. n T

NFT = λnoo. ¬(n F) ∨ ¬(n T)
NFB = λnoo. n F ∨ ¬(n T)
NTB = λnoo. ¬(n F) ∨ n T
FTB = λnoo. n F ∨ n T

NFTB = λnoo. T

Table 1. Encoding of all truth-degrees of SIXTEEN in HOL

Proof. Simple application of definitions and the fact that ‖T‖M,g = T
and ‖F‖M,g = F for all HOL models M and variable assignments g.

We now present the encoding of the logical operations of Ltf . Recall
that their semantics is defined using the lattice operations ⊔, ⊓ and the
inversion operation − as introduced in Section 2.

Again, the notion of truthful subsets
(

.
)t

and truthless subsets
(

.
)−t

(cf. (1)) is needed to define the ordering ≤t on truth-degrees:

(v)t
o(oo) := λnoo. (v n) ∧ (n T) (v)−t

o(oo) := λnoo. (v n) ∧ ¬(n T).

For any truth degree v,
(

v
)t

is itself again a set of sets of truth-values,
hence its encoding is similar to that of truth-degrees. Here, the sub-
expression (v n) asserts that n is contained in v, and (n T) ensures that
T is contained in n. The analogous embedding of (2) is given by

(v)f
o(oo) := λnoo. (v n) ∧ (n F) (v)−f

o(oo) := λnoo. (v n) ∧ ¬(n F).

The orderings ≤t and ≤f can then be encoded to match the definition
of (3) using the same techniques as before:

≤t := λvo(oo).λwo(oo).∀noo.
(

(vt n) ⇒ (wt n)
)

∧
(

(w−t n) ⇒ (v−t n)
)

,

≤f := λvo(oo).λwo(oo).∀noo.
(

(vf n) ⇒ (wf n)
)

∧
(

(w−f n) ⇒ (v−f n)
)

.
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Lemma 4.2. Let � ∈ {t, f} and let ⌈≤�⌉ denote the HOL encoding of

≤�. Then, for all v, w ∈ V , it holds that |=HOL
(

⌈≤�⌉ ⌈v⌉ ⌈w⌉
)

if and

only if v ≤� w.

Proof. By Lemma 4.1, we know that ⌈v⌉ ≃ v for any v ∈ V . The
remaining embeddings are well-known set operations of HOL.

The embedding of ⊔, ⊓, and − are slightly more complicated as we
need a closed algebraic description for these operators. In the original
description, only an implicit characterization via properties is given for
each of these operations. Up to the authors’ knowledge, there has not
been any such closed algebraic formulation in the literature. As it turns
out, the join and meet operations can be defined as

⊔t := λvo(oo).λwo(oo).v
t ∪ wt ∪

(

w−t ∩ v−t
)

,

⊓t := λvo(oo).λwo(oo).v
−t ∪ w−t ∪

(

wt ∩ vt
)

,

⊔f := λvo(oo).λwo(oo).v
f ∪ wf ∪

(

w−f ∩ v−f
)

,

⊓f := λvo(oo).λwo(oo).v
−f ∪ w−f ∪

(

wf ∩ vf
)

.

The intuition behind these definitions is as follows: Join operations (here
for ⊔t) construct a set that combines the “truthful” elements of the
truth-degree while only containing those “truthless” elements that were
contained in both sets. Note that this is compatible with the ordering
idea of ≤t, where bigger elements increase ( . )t but do not increase ( . )−t.
A similar argumentation holds for the meet operations, yielding smaller
elements with respect to the respective ordering.

Lemma 4.3. Let � ∈ {t, f} and ⌈⊔�⌉ denote the HOL encoding of ⊔�.

Then, for all v, w ∈ V and every HOL model M and variable assignment

g, it holds that ‖⌈⊔�⌉ ⌈v⌉ ⌈w⌉‖M,g ≃ v ⊔� w.

Proof. By Lemma 4.1 and 4.2, we know that ⌈v⌉ and ⌈≤�⌉ are ap-
propriate embeddings, for v ∈ V , � ∈ {t, f}. Since joins are unique, if
they exist, it suffices to show that ‖⌈⊔�⌉ ⌈v⌉ ⌈w⌉‖M,g is indeed a join of
⌈v⌉ and ⌈w⌉.

Analogous to Lemma 4.3 we obtain:

Lemma 4.4. Let � ∈ {t, f} and ⌈⊓�⌉ denote the HOL encoding of ⊓�.

Then, for all v, w ∈ V and every HOL model M and variable assignment

g, it holds that ‖⌈⊓�⌉ ⌈v⌉ ⌈w⌉‖M,g ≃ v ⊓� w.
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Finally, the inversion operation −tv can be encoded by explicitly
constructing sets (λbo. · · · ) for each element n of the original truth-degree
v such that it contains T whenever n does not contain T, and it contains
F if and only if F is contained in n. That way we only swap the property
whether an element of v contains T, hence inverting it with respect to ≤t:

−t := λvo(oo).λnoo. v
(

λbo.(¬b ⇒ n F) ∧ (b ⇒ ¬(n T))
)

.

An analogous construction is employed for −f v, where elements of v
containing F are swapped for elements that do not contain F but still
contain T if they originally did:

−f := λvo(oo).λnoo. v
(

λbo.(¬b ⇒ ¬(n F)) ∧ (b ⇒ n T)
)

.

Lemma 4.5. Let � ∈ {t, f} and ⌈−�⌉ denote the HOL encoding of −�.

Then, for any v ∈ V and every HOL model M and variable assignment

g, it holds that ‖⌈−�⌉ ⌈v⌉‖M,g ≃ −�v.

Proof. Since both −t and −f are uniquely determined [33, Table 3.1,
p. 58], it suffices to verify each of the sixteen cases for both operations.
Simple calculation confirms that each v ∈ V is mapped to the appropri-
ate inverse −�v.

All three entailment relations |=16
t , |=16

f and |=16
tf can be expressed

by the above definitions since they are defined via increase of truth (or
decrease of falsity), i.e., by means of ≤t and ≤f .

Soundness and Completeness. Using the afore stated results, we can now
prove soundness and completeness of the embedding of Ltf . By simple
application of the above lemmas we obtain:

Theorem 4.6. Let Φ, Ψ be Ltf formulas and let ⌈Φ⌉, ⌈Ψ⌉ be the cor-

responding embedded formulas in HOL according to our encoding from

above. It holds that

Φ |=16
t Ψ iff |=HOL ⌈≤t⌉ ⌈Φ⌉ ⌈Ψ⌉

and

Φ |=16
f Ψ iff |=HOL ⌈≤f ⌉ ⌈Ψ⌉ ⌈Φ⌉ .

Corollary 4.7. Let Φ, Ψ be Ltf formulas and let ⌈Φ⌉, ⌈Ψ⌉ be the cor-

responding embedded formulas in HOL according to our encoding from

above. It holds that

Φ |=16
tf Ψ iff |=HOL

(

⌈≤t⌉ ⌈Φ⌉ ⌈Ψ⌉
)

∨
(

⌈≤f ⌉ ⌈Ψ⌉ ⌈Φ⌉
)

.
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Theorem 4.6 and Corollary 4.7 now enable us to employ standard
HOL reasoning systems for reasoning within Ltf (and its sublanguages
Lt and Lf ). Since these systems can access the meta-logical definitions
of SIXTEEN operations during proof search, we also can automatically
prove (to some degree) meta-logical results of these logics. In fact, all of
the key properties of ≤�, ⊔�, ⊓�, −� given by Shramko and Wansing
in their monograph [33, Chapter 3.5] have been verified automatically
for the presented embedding.

5. Experiments and Results

To enable experiments and further utilization of the embedding in prac-
tice, we have encoded the above embedding in TPTP THF syntax [37,
38], which is a concrete syntax format for HOL. An excerpt of this TPTP
THF encoding is given in Figure 1. Altogether this encoding consists of
approx. 150 lines of code, including comments. It can simply be loaded
as axiomatization file by any TPTP-compatible HOL ATP for reasoning
within Ltf . Additionally, we provided the embedding as a theory for
the renowned interactive proof assistant Isabelle/HOL [30]. As a proof
of concept for the practical usability of our automation approach, we
formulated several proof tasks within and about SIXTEEN for ATP
systems.

Concerning object-level reasoning within Ltf , we formulated small
exemplary proof problems. The most interesting problems for this kind
of reasoning might be those which employ a joint “truth-falsehood frame-
work”, i.e., where the proof problem contains mixed truth- and false-
hood-based operators. As an example, consider the valid entailment
A ∧t B |=t A. If we now, however, assume entailment by decrease of
falsity, neither A nor B can be inferred from A ∧t B. More formally,

A ∧t B 6|=f A and A ∧t B 6|=f B .

Proving the first entailment and disproving the two latter entailments
is an easy task for the employed HOL provers that use our embedding.
In fact, also counter-model finders for HOL, such as Nitpick [17], can be
used in order to find a concrete counter example to the last two invalid
entailments. Table 2 shows the object-level reasoning benchmarks.

Another interesting suite of experiments aims at verifying the cor-
rectness of our closed formulations and encoding of the lattice operations
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%-- Truth degrees

thf(n_type,type,( n: ($o>$o)>$o )).

thf(n_def,definition,( n=(^[X:$o>$o]:$false) )).

thf(nn_type,type,( nn: ($o>$o)>$o )).

thf(nn_def,definition,( nn = (^[X:$o>$o]:(~(X@$false)&~(X@$true))) )).

...

thf(ftb_type,type,( ftb: ($o>$o)>$o )).

thf(ftb_def,definition,(ftb = (^[X:$o>$o]:((X@$false)|(X@$true))) )).

thf(all_type,type,( all: ($o>$o)>$o )).

thf(all_def,definition,( all = (^[X:$o>$o]:$true) )).

%-- Truthful/Truthless subsets

thf(tpos_subset_type,type,( tpos_subset: ((($o>$o)>$o)>($o>$o)>$o) )).

thf(tpos_subset_def,definition,( tpos_subset =

(^[T:($o>$o)>$o,X:$o>$o]:((T@X)&(X@$true))) )).

thf(tneg_subset_type,type,( tneg_subset: ((($o>$o)>$o)>($o>$o)>$o) )).

thf(tneg_subset_def,definition,( tneg_subset =

(^[T:($o>$o)>$o,X:$o>$o]:((T@X)&~(X@$true))) )).

...

%-- Orderings

thf(ord_t_type,type,( ord_t: ((($o>$o)>$o)>(($o>$o)>$o)>$o) )).

thf(ord_t_def,definition,( ord_t = (^[X:($o>$o)>$o,Y:($o>$o)>$o]:

(![A:$o>$o]: (((tpos_subset@X@A)=>(tpos_subset@Y@A))

&((tneg_subset@Y@A)=>(tneg_subset@X@A))))) )).

...

%-- Lattice operations

thf(inverse_t_type,type,( inverse_t: ((($o>$o)>$o)>($o>$o)>$o) )).

thf(inverse_t_def,definition,( inverse_t = (^[T:($o>$o)>$o,X:$o>$o]:

(T@(^[Y:$o]:((~(Y)=>(X@$false))&(Y=>~(X@$true)))))) )).

thf(join_t_ty,type,( join_t: (($o>$o)>$o)>(($o>$o)>$o)>($o>$o)>$o )).

thf(join_t_def,definition,( join_t = (^[X:($o>$o)>$o,Y:($o>$o)>$o]:

(union@(union@(tpos_subset@X)@(tpos_subset@Y))

@(intersect@(tneg_subset@X)@(tneg_subset@Y)))) )).

thf(meet_t_ty,type,( meet_t: (($o>$o)>$o)>(($o>$o)>$o)>($o>$o)>$o )).

thf(meet_t_def,definition,( meet_t = (^[X:($o>$o)>$o,Y:($o>$o)>$o]:

(union@(union@(tneg_subset@X)@(tneg_subset@Y))

@(intersect@(tpos_subset@X)@(tpos_subset@Y)))) )).

...

Figure 1. THF encoding excerpt. Some truth-degrees and operations are omit-
ted for brevity. Some notes concerning the THF format: The type of truth-
values is written $o, and $o>$o represents the type of (characteristic) functions
from truth-values to truth-values, etc. $true and $false represent truth and
falsity. λ-abstractions and applications are denoted with ˆ and @, respectively.
˜, |, &, => encode negation, disjunction, conjunction and implication, and !

denotes universal quantification. Comments are lines starting with %.
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Statement Result Time

A ∧t B |=t A Theorem 5ms
A ∧t B |=f A Countersatisfiable 6ms
∼f (A ∧t B) |=t ∼f A Theorem 8ms
∼f ∼t A |=t ∼t∼f A Theorem 5ms
A ∧f B |=t A ∨t B Theorem 6ms
A ∧t B |=f A ∨t B Countersatisfiable 7ms

Table 2. Automated verification results of object-level reasoning tasks. The
time results refer to the measurements with Satallax 2.7.

⊔, ⊓, and −. To that end, we have checked its definitions against the
respective properties given in the monograph of Shramko and Wansing
[33, Prop. 3.2, Def. 3.6]. Table 3 displays the respective properties that
have been given to ordinary HOL theorem provers. The automatically
verified meta-logical encodings empirically confirm that our embedding
indeed captures the intended semantics.

For our measurements, the two automated theorem provers LEO-
II [11] and Satallax [18] were used. As it can be seen, all proof tasks
were solved successfully, which provides strong evidence in addition to
theoretical results above, for the soundness (and completeness) of our
embedding. In most cases, the desired properties could be automatically
proved in less than 10ms. This provides further evidence for the practical
relevance of our approach.

6. Conclusion

Various techniques to automate reasoning in many-valued logics have
been presented in the literature [26, 3]. The approach presented here,
which employs a semantic embedding in classical higher-order logic, pro-
vides a theoretically and pragmatically appealing alternative. In partic-
ular, it is readily applicable (with off the shelf higher-order reasoners),
it enables object-level and meta-level reasoning and it supports further
logic extensions and combinations.

Various extensions of many-valued logics have been studied in the
literature. Examples include many-valued modal logics or many-valued
predicate logics.

Respective extensions of our embedding of SIXTEEN in HOL are
analogously feasible. In particular, it should be possible to adapt the
embedding of quantified modal logics [10] and combine it with the work
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Source Statement Result Time

Prop 3.2 1. ∀s, t.(T ∈ s ∧ T ∈ t) ⇔ T ∈ s ⊓t t Theorem 8ms
∀s, t.(B ∈ s ∧ B ∈ t) ⇔ B ∈ s ⊓t t Theorem 9ms
∀s, t.(F ∈ s ∨ F ∈ t) ⇔ F ∈ s ⊓t t Theorem 8ms
∀s, t.(N ∈ s ∨ N ∈ t) ⇔ N ∈ s ⊓t t Theorem 9ms

Prop 3.2 2. ∀s, t.(T ∈ s ∨ T ∈ t) ⇔ T ∈ s ⊔t t Theorem 8ms
∀s, t.(B ∈ s ∨ B ∈ t) ⇔ B ∈ s ⊔t t Theorem 8ms
∀s, t.(F ∈ s ∧ F ∈ t) ⇔ F ∈ s ⊔t t Theorem 8ms
∀s, t.(N ∈ s ∧ N ∈ t) ⇔ N ∈ s ⊔t t Theorem 9ms

Prop 3.2 3. ∀s, t.(T ∈ s ∧ T ∈ t) ⇔ T ∈ s ⊔f t Theorem 8ms
∀s, t.(N ∈ s ∧ N ∈ t) ⇔ N ∈ s ⊔f t Theorem 8ms
∀s, t.(F ∈ s ∨ F ∈ t) ⇔ F ∈ s ⊔f t Theorem 8ms
∀s, t.(B ∈ s ∨ B ∈ t) ⇔ B ∈ s ⊔f t Theorem 8ms

Prop 3.2 4. ∀s, t.(T ∈ s ∨ T ∈ t) ⇔ T ∈ s ⊓f t Theorem 8ms
∀s, t.(N ∈ s ∨ N ∈ t) ⇔ N ∈ s ⊓f t Theorem 8ms
∀s, t.(F ∈ s ∧ F ∈ t) ⇔ F ∈ s ⊓f t Theorem 8ms
∀s, t.(B ∈ s ∧ B ∈ t) ⇔ B ∈ s ⊓f t Theorem 8ms

Def 3.6 1. ∀a, b.a ≤t b ⇒ −tb ≤t −ta Theorem 421ms
∀a, b.a ≤f b ⇒ −ta ≤f −tb Theorem 422ms
∀a, b.a ≤i b ⇒ −ta ≤i −tb Theorem 8ms
∀a. −t −ta = a Theorem 15ms

Def 3.6 2. ∀a, b.a ≤t b ⇒ −f a ≤t −f b Theorem 419ms
∀a, b.a ≤f b ⇒ −f b ≤f −f a Theorem 423ms
∀a, b.a ≤i b ⇒ −f a ≤i −f b Theorem 9ms
∀a. −f −f a = a Theorem 17ms

Table 3. Automated verification results of soundness relevant properties
from [33]. The time results refer to the measurements with Satallax 2.7.

presented here. Shramko and Wansing [33, p. 216], for example, present
an idea to develop first-order trilattice logics from modal trilattice logics.
In this context, a Kripke-style semantics for quantification is provided
in the following form:

M, α |= ∀xA iff for every state β : if αRxβ, then M, β |= A .

In previous work [10] we have illustrated that similar clauses (e.g. the
modal box operator) can easily be encoded. Here, the accessibility rela-
tion Rx depends on the individual x, but such a dependency can easily
be captured.

Further future work includes the application of the presented automa-
tion technique to more practically motivated examples. We are confident
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that this approach can indeed be used to deal with meaningful reasoning
tasks where e.g. linguistic vagueness or uncertainty is involved. Also the
meta-level reasoning capabilities of our approach leave room for much
further work. In fact, we are positive that many meta-level statements
and theorems in textbooks and publications can at least partially be
verified (or falsified) with it.

Moreover, it should be possible to provide human-intuitive proof tac-
tics in proof assistants to support interactive proof development. It was
shown in previous work that similar tactics for modal logic could suc-
cessfully be employed in such proof assistants [16]. In combination with
proof automation, this should lead to fruitful employment for computer-
aided argumentation and reasoning within theoretical philosophy.
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