
Logic and Logical Philosophy
Volume 25 (2016), 285–308

DOI: 10.12775/LLP.2016.007

Joel David Hamkins

Makoto Kikuchi

SET-THEORETIC MEREOLOGY∗

Abstract. We consider a set-theoretic version of mereology based on the
inclusion relation ⊆ and analyze how well it might serve as a foundation of
mathematics. After establishing the non-definability of ∈ from ⊆, we iden-
tify the natural axioms for ⊆-based mereology, which constitute a finitely
axiomatizable, complete, decidable theory. Ultimately, for these reasons, we
conclude that this form of set-theoretic mereology cannot by itself serve as
a foundation of mathematics. Meanwhile, augmented forms of set-theoretic
mereology, such as that obtained by adding the singleton operator, are
foundationally robust.
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Introduction

In light of the comparative success of membership-based set theory in
the foundations of mathematics, since the time of Cantor, Zermelo and
Hilbert, a mathematical philosopher naturally wonders whether one
might find a similar success for mereology, based upon a mathematical
or set-theoretic parthood relation rather than the element-of relation ∈.
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Can set-theoretic mereology serve as a foundation of mathematics? And
what should be the central axioms of set-theoretic mereology?

We should like therefore to consider a mereological perspective in set
theory, analyzing how well it might serve as a foundation while identi-
fying the central axioms. Although set theory and mereology, of course,
are often seen as being in conflict, what we take as the project here is to
develop and investigate, within set theory, a set-theoretic interpretation
of mereological ideas. Mereology, by placing its focus on the parthood
relation, seems naturally interpreted in set theory by means of the inclu-
sion relation ⊆, so that one set x is a part of another y, just in case x is a
subset of y, written x ⊆ y. This interpretation agrees with David Lewis’s
[Lew91] interpretation of set-theoretic mereology in the context of sets
and classes (see also [Hel09]), but we restrict our attention to the universe
of sets. So in this article we shall consider the formulation of set-theoretic
mereolo gy as the study of the structure 〈V,⊆〉, which we shall take as
the canonical fundamental structure of set-theoretic mereology, where
V is the universe of all sets; this is in contrast to the structure 〈V,∈〉,
usually taken as central in set theory. The questions are: How well does
this mereological structure serve as a foundation of mathematics? Can
we faithfully interpret the rest of mathematics as taking place in 〈V,⊆〉
to the same extent that set theorists have argued (with whatever degree
of success) that one may find faithful representations in 〈V,∈〉? Can we
get by in mathematics with merely the subset relation ⊆ in place of the
membership relation ∈?

Ultimately, we shall identify grounds supporting generally negative
answers to these questions. On the basis of various mathematical results,
our main philosophical thesis will be that the particular understanding
of set-theoretic mereology via the inclusion relation ⊆ cannot adequately
serve by itself as a foundation of mathematics. Specifically, Theorem 2
and Corollary 4 show that ∈ is not definable from ⊆, and we take this
to show that one may not interpret membership-based set theory itself
within set-theoretic mereology in any straightforward, direct manner. A
counterpoint to this is provided by Theorem 5, however, which identifies
a weak sense in which ⊆ may identify ∈ up to definable automorphism of
the universe. That counterpoint is not decisive, however, in light of Ques-
tion 7 and its resolution by Theorem 12, which shows that set-theoretic
mereology does not actually determine the ∈-isomorphism class or even
the ∈-theory of the ∈-model in which it arises. For example, we cannot
determine in ⊆-based set-theoretic mereology whether the continuum
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hypothesis holds or fails, whether the axiom of choice holds or fails or
whether there are large cardinals or not. Initially, Theorem 8 may appear
to be a positive result for mereology, since it identifies precisely what
are the principles of set-theoretic mereology, considered as the theory
of 〈V,⊆〉. Namely, ⊆ is an atomic unbounded relatively complemented
distributive lattice, and this is a finitely axiomatizable complete theory.
So in a sense, this theory simply is the theory of ⊆-based set-theoretic
mereology. But upon reflection, since every finitely axiomatizable com-
plete theory is decidable, the result actually appe ars to be devastating
for set-theoretic mereology as a foundation of mathematics, because a
decidable theory is much too simple to serve as a foundational theory for
all mathematics. The full spectrum and complexity of mathematics nat-
urally includes all the instances of many undecidable decision problems
and so cannot be founded upon a decidable theory. Finally, Corollary 11
shows that the structure consisting of the hereditarily finite sets un-
der inclusion forms an elementary substructure of the full set-theoretic
mereological universe

〈HF,⊆〉 ≺ 〈V,⊆〉 .

Consequently, set-theoretic mereology cannot properly treat or even ex-
press the various concepts of infinity that arise in mathematics.

Let us briefly clarify the foundational dialectic of this article. We
study set-theoretic mereology within set theory itself, studying 〈V,⊆〉
as it is defined in set theory, by working in ZFC, for example, although
much weaker set theories would suffice for our analysis. Every model
〈

M,∈M
〉

of ZFC gives rise to the associated canonical model
〈

M,⊆M
〉

of set-theoretic mereology. So we make claims about ⊆ when we are able
to prove them in our ∈-based set theory. If a mereologist desires instead
to work axiomatically purely within set-theoretic mereology itself, then
in light of Theorem 8 there will be no disagreement on the fundamental
mereological truths, if ⊆ is regarded as an atomic unbounded relatively
complemented distributive lattice, since this is a complete theory. To be
sure, some of the axiomatizations of mereology that have been proposed
in the literature do not agree with those axioms, particularly on the
issue of atomicity as we discuss in Section 4; but to the extent that they
disagree with those elementary set-theoretic properties of inclusion ⊆, we
regard them as concerned with another kind of mereology and not with
⊆-based set-theoretic mereology, the topic on which we are focussing.
In our membership-based set theory, meanwhile, we argue that there
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are substantive mathematical concepts and truths that are not captured
by the mereological theory of ⊆, and for this reason, it does not serve
adequately as a foundation of mathematics.

Let us also briefly remark on the distinction between the parthood
relation and the proper parthood relation, as some mereologists prefer to
take the proper-part relation as fundamental, rather than the parthood
relation. In set theory, this distinction amounts to the distinction be-
tween the inclusion relation ⊆, which is reflexive, and the proper-subset
relation (, which is irreflexive. These two relations, however, are easily
interdefinable in the first-order language of set theory as follows:

x ⊆ y ←→ x ( y ∨ x = y

x ( y ←→ x ⊆ y ∧ x 6= y.

For our conclusions, therefore, it does not seem to matter which of these
relations we consider to be fundamental. In particular, ∈ is not definable
from either of them, and set-theoretic mereology is decidable, whether
one is considering the theory of 〈V,⊆〉 or of 〈V,(〉. Henceforth, therefore,
we shall without loss of generality focus on the reflexive relation ⊆.

Finally, although we argue in this article that the particular formu-
lation of set-theoretic mereology interpreted via the inclusion relation ⊆
cannot by itself serve adequately as a foundation of mathematics, nev-
ertheless we should like to remark that there may be alternative mereo-
logical perspectives in set theory, using a different interpretation of the
parthood relation, that do allow it to serve as a suitable foundation of
mathematics. For example, Theorem 13 shows that if one augments
set-theoretic mereology with the singleton operator a 7→ {a}, then it
becomes interdefinable with ∈-based set theory, and therefore just as
adequate as ∈ in foundations. Meanwhile, there are still other interpre-
tations of mereology in set theory. See [Var15] for a general survey of
mereology.

1. Non-definability of ∈ from ⊆

Our initial task, of course, is to settle the question of whether the two
set-theoretic relations ∈ and ⊆ might be definable from one another or
otherwise bi-interpretable in set theory. For if the two relations were
interdefinable, then we would reasonably see them as fundamentally
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equivalent in their capacity to serve as a foundation of mathematics,
since either would serve as a foundation for the other, and this would
settle the entire issue. Furthermore, elementary classical set theory al-
ready provides one direction, since ⊆ is easily definable from ∈ in set
theory via

x ⊆ y ←→ ∀z (z ∈ x→ z ∈ y).

So the question really is whether one may conversely define ∈ from ⊆.
At the CTFM 2015 in Tokyo, the second author specifically asked for a
counterexample model:

Question 1 (Kikuchi). Can there be two models of set theory with
different membership relations, but the same inclusion relation?

More specifically, he asks for models of set theory 〈V,∈〉 and 〈V,∈∗〉
on the same underlying universe of sets V , with different membership
relations ∈ 6= ∈∗, but for which the correspondingly defined inclusion
relations ⊆ and ⊆∗, respectively, are identical. The answer is yes, and
indeed, every model of set theory has many such alternative membership
relations with the same inclusion relation:

Theorem 2. In any universe of set theory 〈V,∈〉, there is a definable
relation ∈∗, different from ∈, such that 〈V,∈∗〉 is a model of set theory,
in fact isomorphic to the original universe 〈V,∈〉, for which the corre-
sponding inclusion relation

u ⊆∗ v ←→ ∀a (a ∈∗ u→ a ∈∗ v)

is identical to the usual inclusion relation u ⊆ v.

Proof. The result requires very little about the theory of 〈V,∈〉, and
even extremely weak set theories suffice. Let θ : V → V be any definable
non-identity permutation of the universe, such as the permutation that
swaps ∅ and {∅} and leaves all other sets unchanged. Let τ : u 7→ θ "u =
{ θ(a) | a ∈ u } be the function determined by pointwise image under θ.
Since θ is bijective and definable, it follows that τ is also a bijection of
V to V , since every set is the θ-image of a unique set. Furthermore, τ is
an automorphism of 〈V,⊆〉, since

u ⊆ v ←→ θ " u ⊆ θ " v ←→ τ(u) ⊆ τ(v).

The first author had used this idea a few years ago in [Ham13] in order to
prove that there are always many nontrivial ⊆-automorphisms of the set-
theoretic universe, as expressed in Corollary 3. Note that since τ({a}) =
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{θ(a)}, it follows that any instance of nontriviality θ(a) 6= a in θ leads
immediately to an instance of nontriviality in τ .

Using the map τ , we define a ∈∗ b ←→ τ(a) ∈ τ(b). By definition,
therefore, and since τ is bijective, it follows that τ is an isomorphism
of the structures 〈V,∈∗〉 ∼= 〈V,∈〉, and so in particular, 〈V,∈∗〉 has the
same theory as 〈V,∈〉, making it just as much a model of set theory as
〈V,∈〉 is. Let us show next that ∈∗ 6=∈. Since θ is nontrivial, there is
an ∈-minimal set a with θ(a) 6= a (one can take a = ∅ for the particular
θ that we provided above). By minimality, θ " a = a and so τ(a) = a.
But as mentioned, τ({a}) = {θ(a)} 6= {a}. So we have a ∈ {a}, but
τ(a) = a /∈ {θ(a)} = τ({a}) and hence a /∈∗ {a}. So the two relations ∈
and ∈∗ are different.

Meanwhile, consider the corresponding subset relation. Specifically,
u ⊆∗ v is defined to mean ∀a (a ∈∗ u→ a ∈∗ v), which holds if and only
if ∀a (τ(a) ∈ τ(u)→ τ(a) ∈ τ(v)); but since τ is surjective, this holds if
and only if τ(u) ⊆ τ(v), which as we observed at the beginning of the
proof, holds if and only if u ⊆ v. So the corresponding subset relations
⊆∗ and ⊆ are identical, as desired.

Corollary 3 ([Ham13]). Set-theoretic mereology is not rigid. That
is, in every model of set theory 〈V,∈〉, there are numerous nontrivial
definable automorphisms of the inclusion relation τ : 〈V,⊆〉 ∼= 〈V,⊆〉.

Proof. This is precisely what the construction of the map τ in the proof
of Theorem 2 provides. Note that distinct choices of θ lead to distinct
such ⊆-automorphisms τ .

Another way to express what is going on in the proof is that τ is an
isomorphism of the structure 〈V,∈∗,⊆〉 with 〈V,∈,⊆〉, and so ⊆ is in
fact the same as the corresponding inclusion relation ⊆∗ that one would
define from ∈∗. Corollary 3 contrasts with the fact that ZFC proves that
〈V,∈〉 and indeed any transitive set or class is rigid, since if π : V → V is
an ∈-respecting bijection, there can be no ∈-minimal set a with π(a) 6= a.

Corollary 4. One cannot define ∈ from ⊆ in any model of set theory,
even allowing parameters in the definition.

Proof. For any parameter z, let us choose z-definably the bijection θ in
the proof of Theorem 2 to be nontrivial, while still having θ " z = z. For
example, perhaps θ swaps z and {z}, and leaves all other sets unchanged.
From this, it follows by the proof of Theorem 2 that the map τ : a 7→ θ"a
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is an ⊆-automorphism, and our choice of θ ensures that τ(z) = z. So τ
preserves every relation definable from ⊆ and parameter z. But τ does
not preserve ∈, and consequently, ∈ must not be definable from ⊆ using
parameter z.

Nevertheless, for a counterpoint, we claim that there is a weak sense
in which the isomorphism type of 〈V,∈〉 is implicit in the inclusion rela-
tion ⊆, namely, any other class relation ∈∗ having that same inclusion
relation is isomorphic to the ∈ relation.

Theorem 5. Assume ZFC in the universe 〈V,∈〉. Suppose that ∈∗

is a definable class relation in 〈V,∈〉 for which 〈V,∈∗〉 is a model of set
theory (a weak set theory suffices), such that the corresponding inclusion
relation

u ⊆∗ v ←→ ∀a (a ∈∗ u→ a ∈∗ v)

is the same as the usual inclusion relation u ⊆ v. Then the two mem-
bership relations are isomorphic

〈V,∈〉 ∼= 〈V,∈∗〉 .

Proof. Since a singleton set {a} has exactly two subsets with respect
to the usual ⊆ relation  the empty set and itself  this must also be
true with respect to the inclusion relation ⊆∗ defined via ∈∗, since we
have assumed ⊆∗=⊆. Since only singletons have exactly two subsets, the
object {a} must also be a singleton with respect to ∈∗, and consequently
there is a unique object η(a) such that x ∈∗ {a} ←→ x = η(a). Since
every object has a singleton with respect to ∈∗, it follows that η is
surjective, and since every object has a unique singleton with respect to
∈∗, it follows that η is injective. So η : V → V is bijective. Let θ = η−1

be the inverse permutation.
Unwrapping things, we may observe that

a ∈ u ←→ {a} ⊆ u ←→ {a} ⊆∗ u ←→ η(a) ∈∗ u,

and so a ∈ u←→ η(a) ∈∗ u. By taking inverses, we deduce for any sets
b and u that

b ∈∗ u ←→ θ(b) ∈ u .

Using ∈-recursion, let us define

b∗ = { θ(a∗) | a ∈ b }.
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This is the step of the proof where we need ∈∗ to be a definable class
with respect to ∈, in order that the class function η and hence also θ
are classes with respect to ∈, so that we may legitimately undertake
∈-recursion using them. We do not actually need that ∈∗ is definable in
〈V,∈〉, but rather we need that ∈∗ is an amenable class to this structure,
in the sense that the axioms of ZFC hold even if we allow a predicate for
∈∗. For example, the argument would work in Gödel-Bernays set theory,
provided that ∈∗ is a class, as we state in Corollary 6.

Continuing with the proof, we claim next by ∈-induction that the
map b 7→ b∗ is one-to-one, since if there is no violation of this for the
elements of b, then we may recover b from b∗ by applying θ−1 to the
elements of b∗ and then using the induction assumption to find the unique
a from a∗ for each θ(a∗) ∈ b∗, thereby recovering b. So b 7→ b∗ is injective.

We claim that this map is also surjective. If y0 6= b∗ for any b, then
there must be an element of y0 that is not of the form θ(a∗) for any a,
since otherwise we would be able to realize y0 as the corresponding b∗.
Since θ is surjective, this means there is θ(y1) ∈ y0 with y1 6= b∗ for any
b. Continuing, there is yn+1 with θ(yn+1) ∈ yn and yn+1 6= b∗ for any
b. Let z = { θ(yn) | n ∈ ω }. Since x ∈∗ u ←→ θ(x) ∈ u, it follows
that the ∈∗-elements of z are precisely the yn’s. But θ(yn+1) ∈ yn, and
so yn+1 ∈∗ yn. So z has no ∈∗-minimal element, violating the axiom of
foundation for ∈∗, a contradiction. So the map b 7→ b∗ is a bijection of
V with V .

Finally, we observe that because

a ∈ b←→ θ(a∗) ∈ b∗ ←→ a∗ ∈∗ b∗,

it follows that the map b 7→ b∗ is an isomorphism of 〈V,∈〉 with 〈V,∈∗〉,
as desired.

The conclusion is that although ∈ is not definable from ⊆, never-
theless, the isomorphism type of ∈ is implicit in ⊆, in the weak sense
that any other class relation ∈∗ giving rise to the same inclusion relation
⊆∗ = ⊆ is isomorphic to ∈. The proof actually shows the following:

Corollary 6. In Gödel-Bernays set theory, if ∈∗ is a class binary
relation and 〈V,∈∗〉 happens to be a model of set theory and has the
same inclusion relation ⊆∗ = ⊆ as the usual inclusion relation ⊆ defined
from ∈, then 〈V,∈∗〉 is isomorphic to 〈V,∈〉.
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As we have mentioned, the argument uses that ∈∗ is a class (so that
we have ZFC in the language of the structure 〈V,∈,∈∗〉), and it is natural
to wonder whether one can omit that hypothesis. For example, perhaps
∈∗ is not definable in 〈V,∈〉 nor even amenable to this structure. It
would be a much stronger result with philosophical significance to show
that ⊆ can truly identify the isomorphism class of ∈.

Question 7. Can there be two models of set theory 〈W,∈〉 and 〈W,∈∗〉,
not necessarily classes with respect to each other in the sense of Gödel-
Bernays set theory, which have the same underlying universe W and the
same inclusion relation ⊆ = ⊆∗, but which are not isomorphic?

For example, can we arrange that 〈W,∈〉 has the continuum hypoth-
esis and 〈W,∈∗〉 does not? In Theorem 12, we prove that the answer is
affirmative. In fact, one can arrange that the models have any desired
consistent theories extending ZFC, but with the same inclusion relation.
This result shows that, contrary to what might have been suggested
by Theorem 5, the inclusion relation ⊆ does not actually identify the
∈-isomorphism class of the universe, or even the ∈-theory of the model
of set theory in which it arises.

2. Set-theoretic mereology is a decidable theory

Let us turn now to the fact that set-theoretic mereology, considered
as the theory of the structure 〈V,⊆〉, constitutes a decidable theory.
This, on our view, appears to be devastating for any attempt to use
set-theoretic mereology by itself as a foundation of mathematics, a view
we shall discuss further in Section 5. Meanwhile, while proving the
decidability result in this section, we shall also identify exactly what is
the complete theory of ⊆-based set-theoretic mereology.

To warm up, consider first the easier case of the set HF of hereditarily
finite sets, which in terms of the von Neumann hierarchy is the same as
HF = Vω. Note that 〈HF,⊆〉 is a lattice order. Furthermore, every
element of HF is a finite subset of HF, a countable set, and every such
finite subset is realized in HF. Hence, 〈HF,⊆〉 is simply isomorphic to
the lattice of finite subsets of a countable set, such as the collection of
finite subsets of N under inclusion. Such a lattice structure is well-known
to be decidable. This lattice is isomorphic, for example, to the lattice of
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square-free natural numbers under divisibility, associating each square-
free number with the set of its prime divisors, and in this sense, inclusion
in HF is analogous to divisibility in arithmetic. The lattice of divisibility
for square-free numbers, in turn, is definable in the natural numbers 〈N, |〉
under divisibility |, a structure also known to be d ecidable; divisibility
is definable from multiplication, and 〈N, ·〉 also is decidable. So 〈HF,⊆〉
has a decidable theory.

Let us now consider more generally the full structure 〈V,⊆〉, where
V is the entire set-theoretic universe. We shall prove that this structure
also has a decidable theory, and indeed it will follow from our analysis
that it has exactly the same theory as 〈HF,⊆〉.

Theorem 8. Set-theoretic mereology, considered as the theory of 〈V,⊆〉,
is precisely the theory of an atomic unbounded relatively complemented
distributive lattice, and furthermore, this theory is finitely axiomatiz-
able, complete and decidable.

We shall prove this theorem by means of the more specific quantifier-
elimination argument of Theorem 9. These results should be viewed as
partaking in Tarski’s classification of the elementary classes of Boolean
algebras by means of the Tarski invariants (see [CK90, Theorem 5.5.10])
and Eršov’s extension of that work to the case of relatively complemented
distributive lattices [Erš64]. Tarski had used a quantifier-elimination ar-
gument to show the decidability of atomless Boolean algebras, which
led him to the Tarski invariants for all Boolean algebras. Eršov’s gen-
eralization proceeds by a general technique (described in [Mon76, Theo-
remf 15.6] and also [BSTW85, Theorem 3.1.1]) allowing him to establish
a large nu mber of decidability results. For example, Eršov’s method
enabled him to handle a Boolean algebra expanded by a predicate for a
prime ideal (see [Wee89, p. 1054]). The statement and proof of Theo-
rem 9 has an affinity with the corresponding quantifier-elimination result
for infinite atomic Boolean algebras, as in [Poi00, Theorem 6.20]; see also
[Hod93, p. 66]. So the decidability result we are claiming here is not new
and follows immediately from Eršov’s proof that the theory of relatively
complemented distributive lattices is decidable (regardless of atomicity
and unboundedness), and the quantifier-elimination result is similar to
that for infinite atomic Boolean algebras. Nevertheless, in order to pro-
vide a self-contained presentation, let us give here a direct elimination-
of-quantifiers argument for the central case of set-theore tic mereology:
an atomic unbounded relatively complemented distributive lattice.
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Theorem 9. If
〈

W,∈W
〉

is a model of set theory with the correspond-
ing inclusion relation ⊆, then 〈W,⊆〉 is an atomic unbounded relatively
complemented distributive lattice, and this theory satisfies the elimina-
tion of quantifiers in the language containing the Boolean operations of
intersection x∩ y, union x∪ y, relative complement x− y and the unary
size relations |x| = n, for each natural number n.

Proof. In any model of set theory, the subset relation ⊆ is of course a
partial order and indeed a lattice order, since any two sets a and b have
a least upper bound, the union a ∪ b, and a greatest lower bound, the
intersection a ∩ b. The lattice is distributive, because intersection and
union both distribute over the other. The lattice has a least element ∅,
but no greatest element (and this is what we mean by unbounded; for
a relatively complemented distributive lattice, it is equivalent to saying
that it is not a Boolean algebra). The lattice is relatively complemented,
since for any two sets a, b, the difference set a − b is the complement
of b relative to a, meaning that b ∩ (a − b) = 0 and a = (a ∩ b) ∪
(a − b). The lattice is atomic, since every nonempty set is the join of
the singleton sets below it, and those singletons are atoms with respect
to inclusion. In summary, 〈W,⊆〉 is an atomic unbounded relatively
complemented distributive lattice, and this is what we shall use for the
quantifier-elimination argument.

In any lattice, for any natural number n we may introduce a unary
predicate, which we shall write as |x| = n, which we define to hold
precisely when x is the join of n distinct atoms. For any particular n,
this relation is expressible in the language of lattices, that is, from ⊆
in our case. In our model of set theory, this relation expresses that x
is a finite set with n elements. Similarly, in any lattice let us introduce
the unary predicate denoted |x| ≥ n, which expresses that x admits a
decomposition as the join of n distinct nonzero incompatible elements:
x = y1 ∪ · · · ∪ yn, where yi 6= 0 and yi ∩ yj = 0 for i 6= j. In an atomic
relatively complemented lattice, the relation |x| ≥ n holds just in case
there are at least n atoms a ≤ x. This relation is also definable from the
lattice order.

We shall prove that every formula in the language of lattices is equiv-
alent, over the theory of atomic unbounded relatively complemented
distributive lattices, to a quantifier-free formula in the language of the
order a ⊆ b, equality a = b, meet a ∩ b, join a ∪ b, relative complement
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a − b, constant 0, the unary relations |x| = n and |x| ≥ n, where n is
respectively any natural number.

We prove the result by induction on formulas. The collection of for-
mulas equivalent to a quantifier-free formula in that language clearly in-
cludes all atomic formulas and is closed under Boolean combinations. So
it suffices to eliminate the quantifier in a formula of the form ∃x ϕ(x, . . .),
where ϕ(x, . . .) is quantifier-free in that language. Let us make a number
of observations that will enable various simplifying assumptions about
the form of ϕ.

Because equality of terms is expressible by the identity a = b ←→
a ⊆ b ⊆ a, we do not actually need = in the language (and here we
refer to the use of equality in atomic formulas of the form s = t where
s and t are terms, and not to the incidental appearance of the symbol
= in the unary predicate |x| = n). Similarly, in light of the equivalence
a ⊆ b ←→ |a− b| = 0, we do not need to make explicit reference to the
order a ⊆ b. So we may assume that all atomic assertions in ϕ have the
form |t| ≥ n or |t| = n for some term t in the language of meet, join,
relative complement and 0. We may omit the need for explicit negation
in the formula by systematically applying the equivalences:

¬(|t| ≥ n)←→
∨

k<n

|t| = k and

¬(|t| = n)←→ (|t| ≥ n + 1 ∨
∨

k<n

|t| = k).

So we have reduced to the case where ϕ is a positive Boolean combination
of expressions of the form |t| ≥ n and |t| = n.

Let us consider the form of the terms t that may arise in the for-
mula. List all the variables x0, x1, . . . , xN that arise in any of the terms
appearing in ϕ, where x0 is the variable x, and consider the Venn di-
agram corresponding to these variables. The cells of this Venn dia-
gram can each be described by a term of the form

⋂

i≤N ±xi, which we
shall refer to as a cell term, where ±xi means that either xi appears
or else we have subtracted xi from the other variables. For example,
(x0 ∩ x3) − (x1 ∪ x2 ∪ x5) is a cell term in five variables, describing a
cell of the corresponding Venn diagram. Since we have only relative
complements and not absolute complements, we need only consider the
cells where at least one variable appears positively, since the exterior
region in the Venn diagram is not actually represented by any term. In
this way, every term in the language of relatively complemented lattices
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is equivalen t to a term that is a finite union of such cell terms, plus
∅ (which could be viewed as an empty union). Note that distinct cell
terms are definitely representing disjoint objects in the lattice.

i

s

k

t

j

Next, by considering the possible sizes of s − t, s ∩ t and t − s as
illustrated in the diagram above, we may observe the identities

|s ∪ t| = n ←→
∨

i+j+k=n

(

|s| = i + j ∧ |s ∩ t| = j ∧ |t| = j + k
)

,

|s ∪ t| ≥ n←→
∨

i+j+k=n

(

|s| ≥ i + j ∧ |s ∩ t| ≥ j ∧ |t| ≥ j + k
)

.

Through repeated application of this, we may reduce any size assertion
about any term t to a Boolean combination of assertions about cell terms.
(Note that size assertions about ∅ are trivially settled by the theory and
can be eliminated.)

Let us now focus on the quantified variable x separately from the
other variables, for it may appear either positively or negatively in such
a cell term. More precisely, each cell term in the variables x, x1, . . . ,
xN is equivalent to x ∩ c or c − x, for some cell term c in the variables
x1, . . . , xN , that is, not including x, or to the term x− (x1 ∪ · · · ∪ xN ),
which is the cell term for which x is the only positive variable.

We have reduced the problem to the case where we want to eliminate
the quantifier from ∃x ϕ, where ϕ is a positive Boolean combination of
size assertions about cell terms. We may express ϕ in disjunctive normal
form and then distribute the quantifier over the disjunct to reduce to the
case where ϕ is a conjunction of size assertions about cell terms. Each
cell term has the form x ∩ c or c − x or x − (x1 ∪ · · · ∪ xN ), where c
is a cell term in the list of variables without x. Group the conjuncts of
ϕ that use the same cell term c in this way together. The point now
is that assertions about whether there is an object x in the lattice such
that certain cell terms obey various size requirements amount to the
conjunction of various size requirements about cells in the variables not
including x. For example, the assertion

∃x
(

|x ∩ c| ≥ 3 ∧ |x ∩ c| ≥ 7 ∧ |c− x| = 2
)
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is equivalent (over the theory of atomic unbounded relatively comple-
mented distributive lattices) to the assertion |c| ≥ 9, since we may simply
let x be all but 2 atoms of c, and this will have size at least 7, which is
also at least 3, and the complement c−x will have size 2. If contradictory
assertions are made, such as ∃x(|x∩ c| ≥ 5∧ |x∩ c| = 3), then the whole
formula is equivalent to ⊥, which can be expressed without quantifiers
as 0 6= 0.

Next, the key observation of the proof is that positive assertions
about the existence of such x for different cell terms in the variables not
including x will succeed or fail independently, since those cell terms are
representing disjoint elements of the lattice, and so one may take the
final witnessing x to be the union of the witnesses for each piece. So to
eliminate the quantifier, we simply group together the atomic assertions
being made about the cell terms in the variables without x, and then
express the existence assertion as a size requirement on those cell terms.
For example, the assertion

∃x
(

|c ∩ x| ≥ 5 ∧ |c− x| = 6 ∧ |d ∩ x| ≥ 7
)

,

where c and d are distinct cell terms in the other variables, is equivalent
to

|c| ≥ 11 ∧ |d| ≥ 7 ,

since c and d are disjoint and so we may let x be the appropriate part of
c and a suitable piece of d. The only remaining complication concerns
instances of the term x−(x1∪· · ·∪xN ). But for these, the thing to notice
is that any single positive size assertion about this term is realizable in
our theory, since we have assumed that the lattice is unbounded, and so
there will always be as many atoms as desired disjoint from any finite list
of objects. But we must again pay attention to whether the requirements
expressed by distinct clauses are contradictory.

Altogether, this provides a procedure for eliminating quantifiers from
any assertion in the language of lattices down to the language augmented
by unary predicates expressing the size of an object. This procedure
works in any atomic unbounded relatively complemented distributive
lattice, and so the theorem is proved.

Corollary 10. The theory of atomic unbounded relatively comple-
mented distributive lattices is complete and decidable.

Proof. Theorem 9 shows that every sentence in this theory is equivalent
to a quantifier-free sentence in the expanded language with the unary size
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predicates. But since such sentences have no variables, they must simply
be a Boolean combination of trivial size assertions about 0, such as
|0| ≥ 2∨¬(|0| = 5), and the truth value of all such assertions is settled by
the theory. So the theory of atomic unbounded relatively complemented
distributive lattices is finitely axiomatizable and complete. Every such
theory is decidable: given any sentence, simply search for a proof of it
or the negation.

Theorem 8 follows from Theorem 9 and Corollary 10. One can also
view the proof of Theorem 9 as providing an explicit decision procedure:
given a sentence, use the procedure to find the quantifier-free equivalent,
which will be a trivial assertion about 0, whose truth is easily determined.

The quantifier-elimination result also has the following consequence,
which unifies Theorem 8 with our remarks about HF.

Corollary 11. The structure of hereditarily finite sets HF under in-
clusion is an elementary substructure of the entire set-theoretic universe
V under inclusion:

〈HF,⊆〉 ≺ 〈V,⊆〉 .

Proof. These structures are both atomic unbounded relatively com-
plemented distributive lattices, and so they each support the quantifier-
elimination procedure. But they agree on the truth of any quantifier-free
assertion about the sizes of hereditarily finite sets, and so they agree on
all truth assertions about objects in HF in the language of ⊆.

3. Mereology does not identify ∈ up to isomorphism

We would like to tie up a loose end from our presentation of Theorem 5,
which identified a weak sense in which we are able to define the iso-
morphism class of ∈ from ⊆. We had left it unsettled in Question 7
whether this weak sense could hold more robustly. We should like now
to prove that in fact it does not. The following theorem shows that
⊆-based set-theoretic mereology is unable to distinguish the ∈-theory of
the model of set theory in which it arises, and so ⊆ cannot truly identify
the ∈-isomorphism class of the model in which it resides.

Theorem 12. For any two consistent theories extending ZFC, there are
models 〈W,∈〉 and 〈W,∈∗〉 of those theories, respectively, with the same
underlying set W and the same induced inclusion relation ⊆ = ⊆∗.
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Proof. Suppose that T and T ∗ are two consistent theories extending
ZFC in the language of set theory. Note that by the Löwenheim-Skolem
theorem, if there are models as stated in the conclusion of the theorem,
then there are countable models like that, and so the conclusion of the
theorem has complexity Σ1

1 in descriptive set theory. By the Shoenfield
absoluteness theorem, therefore, it follows that the conclusion of the
theorem is absolute to every forcing extension, including forcing exten-
sions where the continuum hypothesis holds. We may therefore assume,
without loss of generality, that the continuum hypothesis holds. It fol-
lows that there are models 〈W,∈〉 and 〈W, ∈̂〉 of T and T ∗, respectively,
which are countably saturated on a common domain W of size ℵ1. That
is, for each of the models and for any countable list of formulas ϕi(x)
using countably many parameters from W , if every finite subcollection
of the formulas is real ized in the model, then the whole collection is
realized, meaning that some a in the model satisfies every ϕi(a). It

follows that the corresponding defined structures 〈W,⊆〉 and
〈

W, ⊆̂
〉

are also both saturated. By Theorem 8, these are both models of the
theory of infinite atomic relatively complemented distributive lattices
with no largest element, and this is a complete theory. In particular,
these two structures are elementarily equivalent and saturated. It follows
by the usual back-and-forth construction that there is an isomorphism

π : 〈W,⊆〉 ∼=
〈

W, ⊆̂
〉

. To construct π, simply enumerate the elements of

W as 〈aα | α < ω1〉 and define π in stages. At stage α, consider the type
of aα in 〈W,⊆〉 using parameters aβ for β < α, and find an element π(aα)

that realizes the same type over
〈

W, ⊆̂
〉

using parameters π(aβ); thi s

type is finitely realizable since each instance of this was part of the earlier
types, and therefore it is realized by saturation; we can similarly ensure

that π is surjective, and so it is an isomorphism π : 〈W,⊆〉 ∼=
〈

W, ⊆̂
〉

, as

desired. Given the isomorphism, define a ∈∗ b just in case π(a) ∈̂ π(b),
so that π : 〈W,∈∗〉 ∼= 〈W, ∈̂〉, and so 〈W,∈∗〉 |= T ∗. Observe that

u ⊆∗ v ←→ π(u) ⊆̂ π(v) ←→ u ⊆ v ,

where the first equivalence follows from the fact that π is an isomorphism
of 〈W,∈∗〉 with 〈W, ∈̂〉, and the second follows from the fact that π is an

isomorphism of 〈W,⊆〉 with
〈

W, ⊆̂
〉

. So 〈W,∈〉 and 〈W,∈∗〉 are models of

T and T ∗, respectively, but the corresponding defined inclusion relations
are identical ⊆ = ⊆∗.
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As a consequence, set-theoretic mereology appears to be oblivious
to the independence phenomenon in set theory, otherwise widespread in
set theory, in that it fails to distinguish between models with extremely
different theories in the usual language of set theory with ∈, because
these models can be identical in the language with only ⊆. In particular,
contrary to what might have been taken as the suggestion of Theorem 5,
if we are given the inclusion relation ⊆ of a model of set theory, we
cannot generally identify the isomorphism class of the ∈ relation from
which it arose, or even the ∈-theory of that structure. Given only ⊆,
we cannot determine whether the continuum hypothesis holds or fails or
whether there are large cardinals or not (or indeed even whether there
are infinite sets or not).

4. Mereology with the singleton operator

Until now, we have undertaken what might be described as a study of a
pure set-theoretic mereology, where we have only the inclusion relation⊆.
But it might be natural to consider an expanded mereology, where we
augment the inclusion relation ⊆ by allowing reference also to other
kinds of set-theoretic structure. For example, let us now consider the
theory that arises when we augment mereology by adding the singleton
operator s : a 7→ {a}, which maps every object to its own singleton.

In the context of mereology, this is not as innocent as it may appear to
a contemporary set theorist. Indeed, there is a surprisingly rich history of
confusion and controversy about the singleton concept stretching back
into the earliest days of set theory and pre-set-theory (see [Kan03]),
and the concept is controversial in connection with mereology, from the
beginning of the subject. More recently, a literature of criticism of the
singleton has arisen in response to David Lewis’s [Lew91] development
of a class-based set-theoretic mereology. See [Hel09] and [CK] for further
discussion of the singleton and mereological atoms.

What we should like to observe here is merely that if we were to
expand the language by adding the singleton operator s as well as the
inclusion relation ⊆, then we would get a structure that is equally as
powerful as the usual membership-based set theory.

Theorem 13. Every model of membership-based set theory 〈V,∈〉 is
interdefinable with the corresponding singleton-expanded mereological
model 〈V,⊆, s〉.
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Proof. For the one direction, we can easily define ⊆ and the singleton
operator s using ∈ as follows:

u ⊆ v ←→ ∀x (x ∈ u→ x ∈ v)

y = s(x) ←→ ∀z (z ∈ y ←→ z = x).

Conversely, we may define ∈ from ⊆ and s via

x ∈ y ←→ s(x) ⊆ y .

So the theorem is proved.

Thus, this stronger version of mereology, expanded by the singleton
operator, is basically equivalent to membership-based set theory as far
as the foundations of mathematics is concerned. One could express,
for example, that the ∈-universe 〈V,∈〉 satisfied ZFC plus certain large
cardinals, by mereological assertions expressed purely in the language of
inclusion and the singleton operator. One would want to assert that ⊆ is
an atomic unbounded relatively complemented distributive lattice, that
s is a bijection of the universe with the ⊆-atoms, but also that additional
properties hold that ensure the axioms of infinity, separation, power set,
replacement and so on.

5. Conclusions

Let us now discuss our philosophical conclusions concerning the suitabil-
ity of the ⊆-based interpretation of set-theoretic mereology to serve as
a foundation of mathematics. These conclusions grow naturally out of
the mathematical ideas we have presented in the earlier sections of this
article.

Consider first Theorem 2 and Corollary 4, which show that ∈ is not
generally definable from ⊆ in models of set theory. Although this shows
that ∈-based set theory is not founded upon ⊆-based set theory in a
superficial, direct manner, we do not actually take these results to rule
out ⊆-based set-theoretic mereology as a foundation of mathematics.
Rather, the results merely close off what might have been naively hoped
for as an easy way to establish mereology as a powerful foundation,
namely, the idea that perhaps ∈ and ⊆ were interdefinable. They are
not interdefinable, as the theorem and corollary establish, and so the
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easy road is blocked. But in order for ⊆ to serve as a foundation of
mathematics, it is not required for these relations to be interdefinable.
Rather, all that would be required is that we should be able to find
faithful representations of all our other mathematica l structures, such
as ∈-based set theory, within the ⊆-based set-theoretic mereology. To
insist that ∈ is definable from ⊆ would be to insist further that the way
that ⊆ serves as a foundation is exactly the inverse of the way that ∈
happens to serve easily as a foundation for ⊆. But perhaps ⊆ might
serve as a foundation for ∈-based set theory in some other way; perhaps
∈-based set theory is simulated within ⊆-based set theory by means of
a much more complicated interpretation or structure. (In the end, we
don’t believe so, but not solely on the basis of Theorem 2 and Corollary 4,
which do not seem to rule this out.)

Indeed, hope for such a more complicated but successful interpreta-
tion of ∈ within ⊆ might have been buoyed up by Theorem 5 and Corol-
lary 6, which seem to suggest that perhaps ⊆-based set-theoretic mere-
ology might be able to identify the isomorphism class of the ∈ relation.
After all, many other non-set-theory-based foundations of mathematics,
such as those originating in category theory, weave the philosophy of
mathematical structuralism into the foundational theory, and for these
theories it is emphasized that one shouldn’t necessarily be able to define
a mathematical structure such as ∈ directly, but rather merely identify
mathematical structure up to isomorphism. Theorem 5 shows that any
two class relations ∈ and ∈∗ with the same ⊆ relation, provided that ∈∗

is a class with respect to ∈, are isomor phic, and thus as in Corollary 6,
it is correct to say as an internal matter of Gödel-Bernays set theory,
that ∈ is up to isomorphism the only class relation that forms a model
of set theory and gives rise to the actual ⊆ relation. This is a sense in
which ⊆ knows about ∈ up to isomorphism.

But our more considered view is that this is not the same as say-
ing that ⊆ determines the ∈-isomorphism class of the universe, and the
situation is clarified by Theorem 12, resolving Question 7. The fact
of the matter is that knowledge of the inclusion relation ⊆ tells you
almost nothing about the ∈-isomorphism class of the universe in which
it arises. Indeed, Theorem 12 shows you can learn very little even about
the ∈-theory of the universe from considering only ⊆, since any two
consistent set theories can have respective models on the same universe
of sets with the same ⊆ relation, even if otherwise they are extremely
different on set-theoretic matters. For example, the continuum hypoth-
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esis can hold in one model and fail in another, even when those models
have exactly the same objects and the same ⊆ relation (but different
in relations). Similarly, the models can disagree on other set-theoretic
issues, and Corollary 11 shows even that one cannot tell if there are
infinite sets or not by looking only at the theory of ⊆. At bottom, the
conclusion seems inescapable that the inclusion relation ⊆ knows very
little set theory.

Nevertheless, what we’ve said so far does not actually seem decisively
to rule out ⊆-based set theory as a foundation, because there is no
requirement that ⊆ need to capture the actual ∈-truth of a model of set
theory in which it might arise. Rather, in foundations we can be free to
find some other faithful simulation of mathematical structure.

So finally, let us come to Theorem 8, in which we notice that ⊆-based
set-theoretic mereology is an atomic unbounded relatively complemented
distributive lattice and prove that this is a finitely axiomatizable, com-
plete theory, which is therefore also decidable. This, on our view, is
devastating for this formulation of mereology as foundational. We base
this view on the following principle, which we should like now to discuss
in further detail.

Nondecidability requirement. If a theory is decidable, then it can-
not serve as a foundation of mathematics.

If this principle is correct, then since Theorem 8 shows that the par-
ticular formulation of set-theoretic mereology via the inclusion relation ⊆
is a decidable theory, we assert that this formulation of mereology cannot
serve as a foundation of mathematics. And a similar argument will apply
to other formulations of mereology, if they lead to a decidable theory.
For example, Lewis [Lew91] considers a proper-class-based formulation
of set-theoretic mereology that appears to result in an infinite atomic
Boolean algebra, which by Tarski’s analysis has a decidable theory (as
in [Poi00, Theorem 6.20], which is the Boolean-algebra analogue of The-
orem 9). So using only the ⊆ relation in that formulation of set-theoretic
mereology would seem similarly to be inadequate as a foundation. (But
Lewis also considers singletons, and in light of Theorem ??, allowing
the singleton operator would recover ∈ and therefore be foundationally
robust.)

So let us conclude this paper by discussing the grounds that one
might have for the non-decidability requirement. Part of what it means
for a theory to be foundational is that one might find faithful represen-
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tations of the principal mathematical structures within that theory. For
example, ∈-based set theory is commonly taken as a possible foundation
of mathematics, because set theorists have observed that one can find
within set theory seemingly faithful copies of all the usual mathematical
structures considered in mathematics, and we can formalize analogues of
all the usual mathematical procedures that mathematicians might em-
ploy in connection with those structures. In set theory, we have a way
of talking about ordered pairs and functions and relations and orders
and we can build a copy of the natural numbers and the rational field
and we can build a complete ordered field and so on. For a theory to
be acceptable as a foundation of mathematics, it must similarly be able
to find faithful representations for all the usual mathematical structures.
In particular, it must have a way of representing the natural numbers, so
that for any particular natural number n, we would have a correspond-
ing way of referring to the number n in the theory, and a way of moving
from the representation of n to that of n + 1 and so on with the other
arithmetic structure. Similarly, we would have representations of finite
combinatorial objects, including the operation, say, of Turing machines.

Suppose that we have a theory T that is foundational in the sense
described in the previous paragraph, but also decidable, so that we have
a decision procedure for determining whether a given statement is prov-
able from T or not. We do not assume that the theory T is sound,
although the representation of arithmetic will mean that it is ∆0-sound.
Working in the meta-theory, where the decision procedure for T exists,
let A and B be a computably inseparable pair of computably enumerable
sets. (For this argument, kindly allow us to assume that the meta-theory
is sufficiently strong to deal with computable enumerations and the exis-
tence of such sets, or rather, the existence of the programs enumerating
them.) So we have particular programs pA and pB that enumerate the
elements of A and B, respectively; these sets are disjoint; and there is
no computable set containing A while disjoint from B. But in the meta-
theory, consider the set C consisting of those natural numbers n that T
proves are enumerated first by pA (or only by pA) in comparison with
pB. Since T is foundational, we are able to express the operation of
the Turing machines pA and pB in the theory. And furthermore, if a
number n is actually in A, then it will be enumerated by pA by some
definite computation, which itself would be faithfully represented in T ,
and so T will agree that n is enumerated by pA. Since A and B are
disjoint (in the meta-theory), it follows that n will not be enumerated
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by pB by any computation of the same length or shorter, and so since
the operation of pB is faithfully represented in T to that same length, it
follows that T will agree that n is enumerated first by pA in comparison
with pB. So n will be in C, and thus C contains A. Similarly, if n is
in B, then it is enumerated by pB by some definite computation, which
is faithfully represented in T , alon g with all the shorter computations
of pA, and so T will agree in this case that n is not first enumerated by
pA, and so n will not be in C. So C contains A and is disjoint from B.
Finally, since T is decidable, it follows that C is computable, and so it
is a computable separation of A and B, contrary to our choice of A and
B to be computably inseparable. So this seems to provide grounds for
the non-decidability requirement.

One might summarize the argument as the following elementary fact,
applied in the meta-theory: if a theory T can formalize arithmetic and
is ∆0-sound, then it cannot be decidable, because if it were, we would
be able to find computable separations of computably inseparable sets,
which is a contradiction.

For one final remark, let us highlight a subtle aspect of the argu-
ment we have just given, particularly the distinction between arguing
in the meta-theory in comparison with the object theory, by consid-
ering how the analysis works in the confounding case of the theory
T = ZFC + ¬Con(ZFC). If ZFC is consistent, then the incompleteness
theorem shows that T also is consistent. If we regard ZFC as capable
of providing a foundation of mathematics in the sense described in the
previous paragraph, then it would seem that T also, being a consistent
extension of a foundational theory, would similarly be capable of pro-
viding a foundation of mathematics. For if in ZFC we can prove the
existence of mathematical objects and structures that faithfully repre-
sent our usual mathematical structures, then T being a stronger theory
can also prove the existence of these structures and more. Although
many set theorists regard T as unsound, because it asserts ¬Con(ZFC),
whi ch is to say, T asserts the existence of a certain finite combinatorial
object, the proof of a contradiction in ZFC, which we don’t expect to find
in the meta-theory, nevertheless, this by itself doesn’t seem to prevent
T from being foundational. One can easily see that T is not a decidable
theory, using a computably inseparable pair of computably enumerable
sets, as in the previous paragraph. But the confounding thing to notice,
here, is that while T is not decidable in the meta-theory, it actually
is decidable within the object theory of T itself. That is, externally, we
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think T is not decidable, but internally, arguing in T itself, we think that
ZFC and hence also T is inconsistent and therefore decidable, because
T thinks that everything is provable from T . Our view of this example
is that it is not a counterexample to the non-decidability principle. The
theory T is foundational, and not decidable in the meta-theory, even
though T itself thinks that T is decidable. Ultimately, we may regard
T as capable of serving as a foundation, if an unsound one, because in
the meta-theory we do not actually assert T and we recognize that it is
consistent although unsound. But a meta-theoretical context in which T
is asserted would not be able to regard T as foundational, since it would
look upon T as inconsistent.
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