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SIMPLE CUT ELIMINATION PROOF

FOR HYBRID LOGIC

Abstract. In the paper we present a relatively simple proof of cut elimina-
tion theorem for variety of hybrid logics in the language with satisfaction
operators and universal modality. The proof is based on the strategy intro-
duced originally in the framework of hypersequent calculi but it works well
also for standard sequent calculi. Sequent calculus examined in the paper
works on so called satisfaction formulae and cover all logics adequate with
respect to classes of frames defined by so called geometric conditions.
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1. Introduction

Hybrid logic (HL) is an interesting generalization of standard modal logic
obtained by enrichment of ordinary modal languages. The first versions
of HL were provided by Prior [1957] in 50s but at first this proposal
did not find any attention. Modern studies on HL were developed first
by so called Sofia School (Gargov and Goranko [1993], Goranko [1994])
and then by Blackburn [1992] and others. We are not going to enter
into details of the history, theory and applications of HL; one may find
enough information in [Indrzejczak, 2007] or [Braüner, 2014]. However,
some basic information is needed to make a text self-contained.

The basic language of HL is obtained by the addition of the second
sort of propositional atoms called nominals. Informally, they denote
propositions true in exactly one world of a model and may serve as
names of these worlds. Additionally one can add several specific op-
erators and binders (if nominals are treated as variables). The most
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important specific constants are so called satisfaction operators indicat-
ing that a formula is satisfied in the world denoted by some nominal.
This allows to internalize in the language the devices which are used
in labelled systems but as extralinguistic additions. What is nice with
HL is the fact that changes in the language do not affect seriously the
rest of the machinery applied in standard modal logic. In particular,
modifications in the relational semantics are minimal. The concept of a
frame is the same as in ordinary normal modal (or tense) logics, only on
the level of models we have some small changes.

These relatively small modifications of standard modal languages
gives us many advantages, like: more expressive language, better be-
havior in completeness theory, more natural and simpler proof theory.
In particular, one may define in HL such frame conditions like irreflexiv-
ity, assymetry, trichotomy and other not expressible in standard modal
languages. Proof theory of HL, developed in the framework of tableaux
or natural deduction offers even more general approach than application
of labels popular in proof theory for standard modal logic.1

The aim of this paper is to present a uniform cut elimination theo-
rem for a wide class of of hybrid logics formulated in the framework of
sequent calculus (SC). Although proof theory of HL is developed in quite
satisfying way2 this problem was not treated extensively so far. There
are cut-free SC for some HL due to [Blackburn, 2000; Braüner, 2009;
Seligman, 2001], but all of them were obtained indirectly on the basis of
other systems like tableaux or natural deduction.

In Section 2 we will recall the basic information concerning HL. In
Section 3 we will introduce respective sequent calculi and in Section 4
we will prove cut elimination theorem for them.

2. Hybrid logics

In what follows we are using a monomodal language with denumerable
set of propositional variables PROP := {p, q, r, p1, p2, . . .} and constants:
¬, ∧, ♦. The basic hybrid propositional modal language LH@ is obtained
by adding to this modal language:

(a) the second sort of propositional symbols called nominals. We assume
the denumerable set NOM = {i, j, k, i1, i2, . . .}; members of NOM

1 See, for example, a discussion in [Indrzejczak, 2010].
2 See especially [Braüner, 2009; Zawidzki, 2013], [Indrzejczak, 2010, Chapter 12].
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are introduced for naming states of a model domain. Moreover,
PROP ∪ NOM =: AT is the set of atomic formulae.

(b) denumerable collection of unary satisfaction operators @ı indexed
by nominals.

Now we define the set FOR of formulae of LH@ with the new clause for
non-atomic formulae. The set FOR is the smallest set that satisfies the
following conditions:
• AT ⊆ FOR,
• if ϕ ∈ FOR, then both ¬ϕ ∈ FOR and ♦ϕ ∈ FOR,
• if ϕ, ψ ∈ FOR then (ϕ ∧ ψ) ∈ FOR,
• if ϕ ∈ FOR and ı ∈ NOM, then @ıϕ ∈ FOR.
A new formula @ıϕ we read as “formula ϕ is satisfied in a state ı”.

Note two important features of LH@:
• Both nominals and satisfaction operators are genuine language ele-

ments not an extra metalinguistic machinery.3

• Although nominals are terms they are treated as ordinary sentences.
In particular, they can be connected with the help of boolean oper-
ators and combined with modal and tense operators. In fact, they
play double role:
– of propositional symbols representing propositions of the form

“the name of the actual state is i”;
– of names of states when they occur as indexes of unary satisfaction

operators.
The notion of a frame is defined as for standard modal logic. A model

on the frame F is any structure M = 〈F, V, a〉, where V is a valuation
function on propositional symbols, i.e. V : PROP → P(W), and a is an
assignment function on nominals, i.e. a : NOM → W . Satisfaction of
new formulae in states of a model M = 〈F, V, a〉 is defined as follows:

M �w ı iff w = a(ı)

M �w @ıϕ iff M �a(ı) ϕ

The concepts of global satisfiability and of validity are the same as
for ordinary modal language. Also definitions of consequence relations
remain intact. The only difference is that if we say “model” we mean a
model in a hybrid sense with a constraint on valuation of nominals.

Let us focus on some consequences of the above definitions. The most
important features of LH@ seem to be:

3 This is the main difference with labelled systems of Fitting or Gabbay.
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1. Internalization of local discourse  nominals give direct representa-
tion of states in a language (we have an object-language mechanism
for storing model data).

2. Possible jumping to already specified states in a model (we have a
mechanism for retrieving model data).

3. Internalization of � by sat-formulae @ıϕ.
4. Representation of identity theory (for states) by pure formulae of the

form @ı. Indeed, we have: M �w @ı iff a(ı) = a().
5. Internalization of accessibility relation by pure formulae of the form

@ı♦. Indeed, we have: M �w @ı♦ iff 〈a(ı), a()〉 ∈ R, where
F = 〈W,R〉.

Although the basic hybrid language offers many improvements over
standard modal language it has still strong limitations which may be
overcome by further strengthenings. In what follows we consider an ex-
tensions obtainable by addition of global modality E . Such an extension
is very expressive but the logic is still decidable. The semantic clause for
this modality looks like this:

M �w Eϕ iff M �v ϕ, for some v ∈ W

3. Cut-free SC for HL

So far various deductive systems were offered as formalizations of differ-
ent hybrid logics. The most popular, except axiomatic systems, were
tableaux systems [Blackburn, 2000] and natural deduction [Braüner,
2004]. One may also find sequent calculi for some hybrid logics. The
earliest proposal is that of [Seligman, 2001] which was first formulated in
the context of situation theory. One may also find some nonstandard SC
of [Demri, 1999] and [Demri and Goré, 1999], but these are of different
kind than ours.

The most popular approach in proof theory for HL is to devise so
called sat-calculus where each formula is preceded with satisfaction oper-
ator. Such a solution corresponds nicely to labelled calculi although one
should remember that satisfaction operators are not metalogical devices
but elements of the language of HL. Using sat-calculi instead of calculi
working with any formulae is justified by the fact that ϕ holds in (any)
HL iff @ıϕ holds, provided a nominal i is not a subformula of ϕ. So to
provide a proof for @ıϕ is the same as providing a proof for ϕ in some
hybrid logic.
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One may find several cut-free sat-SC for some HL in slightly dif-
ferent languages independently proposed by Blackburn [2000], Braüner
[2004], Bolander and Braüner [2006], Indrzejczak and Zawidzki [2013].
In all these cases, proposed systems are obtained by translation; either
from tableau system or [in Braüner, 2004] from normalizable natural
deduction system. Hence these systems are cut-free but with no direct
syntactical proof for cut elimination. In what follows we will define
a sat calculus which is equivalent to Bolander and Braüner’s system
from [2006] although some of the rules are taken rather from different
Braüner’s system from [2004]. Our main aim is to provide a cut elimi-
nation theorem which holds for this particular sat-SC.

Since the present calculus is sat-SC, sequents are composed from fi-
nite multisets of sat-formulae of the form @ıϕ. It consists of the following
rules.

Structural rules:

(AX) @ıϕ ⇒ @ıϕ

(Cut)
Γ ⇒ ∆,@ıϕ @ıϕ,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ

(W⇒)
Γ ⇒ ∆

@ıϕ,Γ ⇒ ∆
(⇒W)

Γ ⇒ ∆

Γ ⇒ ∆,@ıϕ

(C⇒)
@ıϕ,@ıϕ,Γ ⇒ ∆

@ıϕ,Γ ⇒ ∆
(⇒C)

Γ ⇒ ∆,@ıϕ,@ıϕ

Γ ⇒ ∆,@ıϕ

Logical rules for connectives:

(¬⇒)
Γ ⇒ ∆,@ıϕ

@ı¬ϕ,Γ ⇒ ∆
(⇒¬)

@ıϕ,Γ ⇒ ∆

Γ ⇒ ∆,@ı¬ϕ

(∧⇒)
@ıϕ,@ıψ,Γ ⇒ ∆

@ı(ϕ ∧ ψ),Γ ⇒ ∆
(⇒∧)

Γ ⇒ ∆,@ıϕ Γ ⇒ ∆,@ıψ

Γ ⇒ ∆,@ı(ϕ ∧ ψ)

Modal rules:

(@⇒)
@ıϕ,Γ ⇒ ∆

@@ıϕ, Γ ⇒ ∆
(⇒@)

Γ ⇒ ∆,@ıϕ

Γ ⇒ ∆, @@ıϕ

(♦⇒)1,2 @ı♦, @ϕ,Γ ⇒ ∆

@ı♦ϕ,Γ ⇒ ∆
(⇒♦)

Γ ⇒ ∆,@ı♦ Γ ⇒ ∆,@ϕ

Γ ⇒ ∆,@ı♦ϕ

(E⇒)1 @ϕ,Γ ⇒ ∆

@ıEϕ, Γ ⇒ ∆
(⇒E)

Γ ⇒ ∆,@ϕ

Γ ⇒ ∆, @ıEϕ
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side condition:

1.  does not occur in the conclusion,
2. ϕ is not a nominal.

Remark. Strictly speaking the side condition 2 is not necessary since
this rule is correct when applicable to nominals. However, there are
two important obstacles for allowing nominals in this rule in a role of
principal formulae. The first is connected with proof search; uncontrolled
application of these rules to nominals leads to unwanted introduction of
new nominals in the proof-tree. For our purposes more serious is the fact
that if we allow nominals as arguments of ♦ in this rule we encounter
problems in our proof of cut elimination theorem. It will be commented
in the proper place. ⊣

Special rules for nominals:

(Ref)
@ıı,Γ ⇒ ∆

Γ ⇒ ∆

(Nom1⇒)
Γ ⇒ ∆,@ı Γ ⇒ ∆,@ıϕ

Γ ⇒ ∆,@ϕ
where ϕ ∈ AT

(Nom2⇒)
Γ ⇒ ∆,@ı Γ ⇒ ∆,@ı♦κ

Γ ⇒ ∆,@♦κ

Note that almost all rules are context-insensitive i.e. one may replace
any parametric formula with any other formula without loosing correct-
ness. Only rules with side conditions do not satisfy this characteristics.
A definition of proof is standard, as well as the notions of principal, side
and parametric (context) formulae. A calculus comprising all these rules
provides a formalization of the weakest logic with universal modality HL-
K which is adequate with respect to the class of all models. One may
easily prove:

Lemma 1 (Validity-preservation). All rules of SC-HL-K are validity-

preserving in HL; i.e., if all premisses are valid, then the conclusion is

valid.

The next results is more involved:

Theorem 1 (Weak adequacy). If ı is not in ϕ: |= ϕ iff ⊢K ⇒ @ıϕ.

Suitable completeness proof is provided by Bolander and Braüner
[2006] (see also [Braüner, 2009]). However to justify our claim we should
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demonstrate that our sat-SC is indeed equivalent to their system. One
should mention the following differences:

1. Their system is formulated in sequents build from finite sets not
multisets. Moreover, they use axioms in general form Γ ⇒ ∆ with non-
empty intersection. In our system there are primitive structural rules of
weakening and contraction and axioms in simple form. However, this is
a well known fact that such solutions provide provably equivalent forms
of SC.

2. Bolander and Braüner’s rules (♦⇒), (Nom1⇒), and (Nom2⇒)
are slightly different. One may easily show that their original rules are
derivable in our system (the opposite also holds), hence our calculus is
also complete. All differences in the shape of rules are forced by the
technical demands of our proof of cut elimination theorem.

In order to cover stronger logics adequate with respect to restricted
classes of frames one must add some special rules for frame conditions. It
may be done in an uniform fashion for many logics by means of standard
hybrid translation HT of atomic formulae of the first-order language
for standard frames into atomic formulae of the basic hybrid language.
Let us assume that individual variables of the former language are just
nominals, and that its atomic formulae are of the form: Rı or ı = .
Suitable clauses of HT are the following:

HT(Rı) = @ı♦

HT(ı = ) = @ı

We are interested in frame conditions expressible by means of so called
universal implications of the form ∀ı1 . . .∀ık(α1 ∧ · · · ∧ αn → β1 ∨ · · · ∨
βm), where all α’s and β’s are atomic formulae. To each such universal
implication, the general schema of SC rule is:

Γ ⇒ ∆,HT(α1) . . . Γ ⇒ ∆,HT(αn)

Γ ⇒ ∆,HT(β1), . . . ,HT(βm)

For example, transitivity is expressed by the rule:

(Tr)
Γ ⇒ ∆,@ı♦ Γ ⇒ ∆,@♦κ

Γ ⇒ ∆,@ı♦κ

Although it is sufficient for most of well known and popular modal
logic we may strengthen the scope of application of the method following
Braüner. For every basic geometric formula of the form:

∀ı1 . . .∀ık
(

α1 ∧ · · · ∧ αn → ∃1 . . .∃l(β1 ∨ · · · ∨ βm)
)

,
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where k > 1, l, n,m > 0, α’s are atomic formulae and β’s are either
atomic formulae or finite conjunctions of atoms, there corresponds a
rule of the following form:

Γ ⇒ ∆,HT(α1) . . . Γ ⇒ ∆,HT(αn) Ψ1,Γ ⇒ ∆ . . . Ψm,Γ ⇒ ∆

Γ ⇒ ∆

where no nominals of 1, . . . , l occur in Γ, ∆, α1, . . . , αn, and for each
i = 1, . . .m: Ψi is the set of HT-translations of atoms that form the
conjunction βi.

4. Cut elimination

At first it seems that the best solution to our problem is to apply Ne-
gri’s approach [2005] based on Dragalin’s strategy but defined in a way
suitable for labelled SC. However, this approach requires all basic rules
invertible and this property fails for some rules in SC-HL. That is why
we have introduced contraction rules as primitive in our system instead
of proving it as (height-preserving) admissible.

We apply the strategy of proof due to [Ciabattoni, Metcalfe, and
Montagna, 2010] originally introduced in the framework of hypersequent
calculi. As we will see it works well for standard SC as well. The nice
thing with this method is that we need only one preliminary result for
proving cut elimination (in contrast to Dragalin’s strategy).

Lemma 2 (Substitution). If ⊢K Γ ⇒ ∆, then ⊢K (Γ ⇒ ∆)[ı/].

Proof. By induction on the height of a proof. It is straightforward
but tedious exercise. Note that we provided not sheer admissibility but
height-preserving admissibility. ⊣

Complexity of formulae is counted in the following way:
• Every nominal is of complexity 0 and every propositional variable of

complexity 1.
• For every unary functor or binder (with argument) added to formula

of complexity n we have n+ 1.
• For every binary functor we have n + m + 1, where n and m are

complexities of arguments.
Thus for every formula of complexity n a corresponding sat-formula has
complexity n+1. In particular, the nominal atom @ij is of complexity 1,
whereas the Boolean atom @ip is of complexity 2. Formulae @i¬ϕ,
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@i♦ϕ, and @j@iϕ are of complexity n + 2, if ϕ is of complexity n.
Formulae @i(j ∧ k), @i(p ∧ j), @i(p ∧ q), and @i(@jk ∧ @ki) are of
complexity 2, 3, 4, and 4, respectively.

Again the difference in the length of nominals and propositional vari-
ables is needed for the proof of cut elimination to go through induction
on cut-degree. Let us define the notions of cut-degree and proof-degree:

1. Cut-degree is the complexity of cut-formula @ıϕ (d@ıϕ),
2. Proof-degree is the maximal cut-degree in D (dD).

Moreover, we assume that all proofs satisfy the condition of regularity:
every fresh nominal is fresh in the entire proof. Note that every proof
may be systematically transformed into regular proof by Substitution
lemma.

The proof of cut elimination theorem is based on two lemmata which
make a reduction first on the right and secondly on the left premiss of cut.
The general strategy of proof is somewhat similar to Curry’s proof [1963]
of cut admissibility but simpler in some respects and still based rather
on local transformations of proof instead of global ones characteristic for
Curry’s proof.

Lemma 3 (Right reduction). Let D1 ⊢ Γ ⇒ ∆,@ıϕ, D2 ⊢ @ıϕ
n,Π ⇒ Σ,

dD1, dD2 < d@ıϕ, and @ıϕ principal in Γ ⇒ ∆,@ıϕ. Then we can

construct a proof D such that D ⊢ Γn,Π ⇒ ∆n,Σ and dD < d@ıϕ.

Proof. By induction on the height of D2. The basis is trivial. In-
duction step requires consideration of all cases of possible derivation
of @ıϕ

n,Π ⇒ Σ and the role of cut-formula in the transition. In all
cases where all occurrences of @ıϕ are parametric we simply apply the
induction hypotheses to premisses of @ıϕ

n,Π ⇒ Σ and then apply to
them respective rule  it is essentially due to the context independence
of almost all rules and regularity of proofs. In case of troubles with side
condition on fresh nominals we must first apply Substitution lemma.
In the case one of the occurrence of @ıϕ in the premisse(s) is a side
formula of the last rule we must additionally apply weakening to restore
the lacking formula before the application of a rule.

Note that this situation covers also applications of rules Ref and Nom
and rules for frame conditions since either all have active formulae in
succedents or only in antecedents of premisses. In the latter case even if
active formula is identical with @ıϕ we need only additional applications
of contraction.
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In cases where one occurrence of @ıϕ in @ıϕ
n,Π ⇒ Σ is principal we

make use of the fact that @ıϕ in the left premiss is principal too (note
that for C and W it is trivial).

Let us consider an example with ϕ = ψ ∧ χ. By the induction hy-
pothesis we get D′

2 ⊢ @ıψ,@ıχ,Γ
n−1,Π ⇒ ∆n−1,Σ with dD′

2 < d@ıϕ.
Then we continue with the premisses of Γ ⇒ ∆,@ıϕ:

Γ ⇒ ∆,@ıχ

Γ ⇒ ∆,@ıψ @ıψ,@ıχ,Γ
n−1,Π ⇒ ∆n−1,Σ

(Cut)
@ıχ,Γ

n,Π ⇒ ∆n,Σ
(Cut)

Γn+1,Π ⇒ ∆n+1,Σ
(C)

Γn,Π ⇒ ∆n,Σ

This new proof has obviously the degree lower than d@ıϕ.
In case the last rule in D2 is (♦⇒) we have the following situation:

Γ ⇒ ∆,@ı♦ Γ ⇒ ∆,@ϕ
(⇒♦)

Γ ⇒ ∆@ı♦ϕ

@ı♦κ,@κϕ,@ı♦ϕ
n−1Π ⇒ Σ

(♦⇒)
@ı♦ϕ

n,Π ⇒ Σ
(Cut)

Γn,Π ⇒ ∆n,Σ

By the induction hypothesis and Substitution lemma (note that its
application does not affect the left premiss since κ is fresh in it) we obtain
@ı♦,@ϕ,Γ

n−1,Π ⇒ ∆n−1,Σ and continue:

Γ ⇒ ∆,@ϕ

Γ ⇒ ∆,@ı♦ @ı♦,@ϕ,Γ
n−1,Π ⇒ ∆n−1,Σ

(Cut)
@ϕ,Γ

n,Π ⇒ ∆n,Σ
(Cut)

Γn+1,Π ⇒ ∆n+1,Σ
(C)

Γn,Π ⇒ ∆n,Σ

A new proof has obviously the degree lower than d@ıϕ even if ϕ is a
propositional variable. It cannot be a nominal since it is excluded by
the restriction 2 on (♦⇒). Although it is allowed for (⇒♦) to have a
nominal as an argument in principal formula it does not make harm since
(all occurrences of) cut-formula on the right may be only parametric and
this is tackled easily by the induction hypothesis. ⊣

We make an analogous transformation on the left premiss but this
time we do not need to assume that cut-formula in the left premiss is
principal.

Lemma 4 (Left reduction). Let D1 ⊢ Γ ⇒ ∆,@ıϕ
n, D2 ⊢ @ıϕ,Π ⇒ Σ,

and dD1, dD2 < d@ıϕ. Then we can construct a proof D such that

D ⊢ Γ,Πn ⇒ ∆,Σn and dD < d@ıϕ.
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Proof. Similarly, now by induction on the height of D1. Note that we
do not require @ıϕ principal in @ıϕ,Π ⇒ Σ. Now in cases where one
occurrence of @ıϕ in Γ ⇒ ∆,@ıϕ

n is principal we make use of Right
reduction lemma. For example: let ϕ = ψ ∨ χ, then by the induction
hypothesis we get D′

1 ⊢ Γ,Πn−1 ⇒ ∆,Σn−1,@ıψ,@ıχ with dD′

1 <
d@ıϕ, and by (⇒∨) we get Γ,Πn−1 ⇒ ∆,Σn−1,@ıϕ. Since @ıϕ is
principal in this sequent, the Right reduction lemma applies to it and to
D2 and we obtain D ⊢ Γ,Πn ⇒ ∆,Σn with dD < d@ıϕ.

Additionally we must consider now the cases of the application of
rules for frame conditions being universal implications. Let us consider
the situation with the application of (Tr). We have the following:

Γ ⇒ ∆,@ı♦κ
n−1,@ı♦ Γ ⇒ ∆,@ı♦κ

n−1,@♦κ
(Tr)

Γ ⇒ ∆,@ı♦κ
n @ı♦κ,Π ⇒ Σ

(Cut)
Γ,Πn ⇒ ∆,Σn

which by the induction hypothesis is transformed into

Γ, Πn−1 ⇒ ∆, Σn−1
, @ı♦ Γ, Πn−1 ⇒ ∆, Σn−1

, @♦κ
(Tr)

Γ, Πn−1 ⇒ ∆, Σn−1
, @ı♦κ @ı♦κ, Π ⇒ Σ

(Cut)
Γ, Πn ⇒ ∆, Σn

where the last application of cut is justified by the Right reduction
lemma. ⊣

Now we can prove:

Theorem 2. Every proof may be transformed into cut-free proof.

Proof. By double induction: primary on d and subsidiary on the num-
ber of maximal cuts (in the basis and in the inductive step of the primary
induction; in the basis cut elimination is trivial, in the inductive step we
refer to Left reduction lemma). We always take the topmost maximal
cut, hence we have the following situation:

Γ ⇒ ∆,@ıϕ @ıϕ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ ∆,Σ

If @ıϕ is not atomic, then by Left reduction lemma we obtain a proof
of Γ,Πk ⇒ ∆@ıϕ,Σ

k of lower degree. This, by applications of (⇒W) and
(C) (if necessary) yields Γ,Π ⇒ ∆,Σ. By successive repetition of this
procedure we diminish either the degree of a proof or the number of
maximal cuts in it. ⊣
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