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PARTIAL AND PARACONSISTENT

THREE-VALUED LOGICS

Abstract. On the sidelines of classical logic, many partial and paracon-
sistent three-valued logics have been developed. Most of them differ in the
notion of logical consequence or in the definition of logical connectives. This
article aims, firstly, to provide both a model-theoretic and a proof-theoretic
unified framework for these logics and, secondly, to apply these general
frameworks to several well-known three-valued logics. The proof-theoretic
approach to which we give preference is sequent calculus. In this perspec-
tive, several results concerning the properties of functional completeness,
cut redundancy, and proof-search procedure are shown. We also provide a
general proof for the soundness and the completeness of the three sequent
calculi discussed.
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1. Introduction

Three semantic assumptions underlie this discussion: only truth and
falsehood exist and they are a priori neither exhaustive nor exclusive.
This means that four semantic states are possible for a single sentence:
‘true and not false’, ‘false and not true’, ‘neither true nor false’, and ‘both
true and false’. A logic is called partial if it does not reject the possibility
that a sentence is neither true nor false, and it is called paraconsistent if
it does not reject the possibility that a sentence is both true and false.

Yet the fact remains that on the sidelines of classical logic many three-
valued logics (which are closely related to these assumptions) have been
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developed. Most of them differ in the notion of logical consequence or
in the definition of logical connectives. Indeed, from a semantic point of
view, a plurality of three-valued logics can be distinguished by changing
the designated truth-values or the truth-functions associated with the
logical connectives.

Starting with the aforementioned threefold assumption, this article
aims, firstly, to provide both a model-theoretic and a proof-theoretic
unified framework for these logics and, secondly, to apply these gen-
eral frameworks to several well-known three-valued logics. The proof-
theoretic approach to which we give preference is sequent calculus. In-
sofar as it consists in developing a unified sequent calculus for the inves-
tigation of three-valued logics (dealing sometimes with truth-value gaps,
sometimes with truth-value gluts), this article is faced with two issues:
the plurality of interpretations of logical consequence and the plurality
of interpretations of logical connectives.

Based on the distinction between the surface structure and the deep
structure in the context of transformational grammar, we distinguish
between the surface language and semantics on the one hand, and the
deep language and semantics on the other. The central idea of trans-
formational grammar is that they [deep and surface structures] are, in
general, distinct and that the surface structure is determined by repeated
application of certain formal operations called “grammatical transforma-
tions” to objects of a more elementary sort (see [9]). For our purposes,
we borrow from theoretical linguistics this philosophical idea and imple-
ment it in the context of three-valued logics. While the surface language
is a propositional language whose logical symbols can be interpreted in
various ways depending on the many-valued notion of negation, conjunc-
tion, disjunction, or implication that they are supposed to reflect, the
deep language is assigned a unique interpretation in terms of truth and
falsehood. To address the diversity of the three-valued interpretations
of logical symbols, we then show that any surface semantics can be em-
bedded in the deep semantics through a suitable translation from the
surface language into the deep language.

On the other hand, to address the distinction between the partial
and paraconsistent notions of logical consequence, we propose a general-
ization of the notion of sequent introduced by Gentzen and a set of rules
of inference for the deep language. By means of this single set of rules,
three sequent calculi for the deep language are defined so that they differ
only in the definition of axiomatic sequent.
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Besides the fact that the proposed frameworks provide a unified un-
derstanding of partial and paraconsistent three-valued logics, more ar-
guments are advanced in favor of this approach. The main arguments
can be summarized as follows. First, the deep language (containing
only two logical symbols) is functionally complete with regard to the
deep semantics. Second, the sequent calculi considered enjoy a uniform
proof-search method. Third, several forms of the original cut rule are
admissible in these sequent calculi. Fourth, the general sequent calculus
is sound and complete for the deep semantics and can be adapted in a
straightforward way to three- or four-valued logics modulo a translation
from the surface language into the deep language.

In order to illustrate our point, some well-known three-valued logics
are discussed, such as Kleene’s strong three-valued logic (K3), Łukasie-
wicz’s three-valued logic (Ł3), Gödel’s three-valued logic (G3), the maxi-
mal paracomplete three-valued logic (I1), Priest’s logic of paradox (LP),
Dunn’s R-mingle three-valued logic (RM3), Gödel’s dual three-valued
logic (G∗

3), and the maximal paraconsistent three-valued logic (P 1).

2. Deep language and surface language

This section is devoted to introducing two predicate languages without
quantifiers, namely the surface language and the deep language. The
main reason why we prefer to use predicate languages without quan-
tifiers rather than propositional languages or full first-order languages
is twofold. First, most of the results presented in this article may be
extended to first-order logic. Second, not using full predicate languages
allows us to preserve the clarity of the text without omitting any essential
detail.

A surface language L is composed of an at most countable set of
proper symbols including a non-empty set of n-ary relation symbols and
a countably infinite set of constant symbols. In addition to these proper
symbols, a surface language consists of the logical symbols ∼, ∩, ∪ and ⊃,
which correspond roughly to the usual notions of negation, conjunction,
disjunction, and implication.

The deep language LD of a surface language L is composed of the
proper symbols of L plus the unary logical symbol − and the binary
logical symbol ⊖. Insofar as the meaning of these symbols is not imme-
diately obvious, their interpretation will be given after presenting some
preliminary semantic notions.
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As for the syntax of these languages, the notion of formula is defined
inductively in the usual way. The nullary relation symbols are called
propositional symbols. To simplify the notation, the following abbrevi-
ations are introduced:

¬A = (−(A ⊖ A) ⊖ −(A ⊖ A))

⊳ A = (A ⊖ A)

⊲ A = −(− A ⊖ − A)

(A ∨ B) = ((A ⊖ A) ⊖ (B ⊖ B))

(A ∧ B) = ¬(¬A ∨ ¬B)

(A → B) = (¬A ∨ B)

�A = ((A ∨ ⊲ A) ∧ (A ∨ − A))

♦A = ((A ∨ ⊳ A) ∧ (A ∨ − A))

�A = ((A ∧ ⊳ A) ∨ (A ∧ − A))

�A = ((A ∧ ⊲ A) ∨ (A ∧ − A))

△A = ♦�A

▽A = ��A

Remark. The reader who wishes to get an idea of the meaning of these
expressions is invited to anticipate their semantic interpretation which
is provided in Section 3.1.

Let P1, . . . , Pn be a finite sequence of distinct atomic formulas of a
surface language L. Then, F (P1, . . . , Pn) denotes a formula of LD whose
atomic formulas are exactly those occurring in the sequence. Also, if
A1, . . . , An are formulas of LD, then F (P1, . . . , Pn)[P1 := A1, . . . , Pn :=
An] denotes the formula resulting from the simultaneous substitution of
Ai for Pi in F (P1, . . . , Pn), for all i (1 ¬ i ¬ n). Roughly speaking,
a translation from a surface language into its deep language consists
in matching each n-ary logical symbol ♯ of the surface language with
the structure of a formula F♯(P1, . . . , Pn) of its deep language. More
precisely, a translation from L into LD is a function τ from the set F of
formulas of L to the set FD of formulas of LD such that:

τ [Rt1 . . . tn] = Rt1 . . . tn

τ [∼ A] = F∼(P )[P := τ [A]]

τ [(A ∩ B)] = F∩(P1, P2)[P1 := τ [A], P2 := τ [B]]
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τ [(A ∪ B)] = F∪(P1, P2)[P1 := τ [A], P2 := τ [B]]

τ [(A ⊃ B)] = F⊃(P1, P2)[P1 := τ [A], P2 := τ [B]]

Many translations from a surface language into its deep language are
possible. For our purposes, four of them are defined here below. They
will allow us to focus our discussion on some well-known three-valued
logics.

τ1 : F → FD such that:

τ1[Rt1 . . . tn] = Rt1 . . . tn

τ1[∼ A] = ¬ τ1[A]

τ1[(A ∩ B)] = (τ1[A] ∧ τ1[B])

τ1[(A ∪ B)] = (τ1[A] ∨ τ1[B])

τ1[(A ⊃ B)] = (τ1[A] → τ1[B])

τ2 : F → FD such that:

τ2[Rt1 . . . tn] = Rt1 . . . tn

τ2[∼ A] = ¬ τ2[A]

τ2[(A ∩ B)] = (τ2[A] ∧ τ2[B])

τ2[(A ∪ B)] = (τ2[A] ∨ τ2[B])

τ2[(A ⊃ B)] = ((△ τ2[A] → τ2[B]) ∧ (τ2[A] → ▽ τ2[B]))

τ3 : F → FD such that:

τ3[Rt1 . . . tn] = Rt1 . . . tn

τ3[∼ A] = ¬▽ τ3[A]

τ3[(A ∩ B)] = (τ3[A] ∧ τ3[B])

τ3[(A ∪ B)] = (τ3[A] ∨ τ3[B])

τ3[(A ⊃ B)] = ((▽ τ3[A] → ▽ τ3[B]) ∧ (� τ3[A] → ♦ τ3[B]))

τ4 : F → FD such that:

τ4[Rt1 . . . tn] = Rt1 . . . tn

τ4[∼ A] = ¬▽ τ4[A]

τ4[(A ∩ B)] = (△ τ4[A] ∧ △ τ4[B])

τ4[(A ∪ B)] = (△ τ4[A] ∨ △ τ4[B])

τ4[(A ⊃ B)] = (△ τ4[A] → △ τ4[B])
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Remark. For every translation τi (1 ¬ i ¬ 4), an inverse function τ−1
i

restricted to the image of τi can be defined such that τ−1
i [τi[A]] = A, for

all formulas A of L.

3. Semantics

A model M for a surface language L and its deep language LD is com-
posed of a structure for L and an interpretation of the proper symbols
of L in this structure.

A structure for L consists of a universe and a set of relations on this
universe such that, for every n ∈ N, if L has some n-ary relation symbols,
the structure must have at least one n-ary relation.

The universe |M| of a model M is a non-empty set. An n-ary relation
R is an ordered pair of subsets of |M|n such that R = 〈R+, R−〉. The
first term of the ordered pair denotes the set of n-tuples of elements
of the universe that verify the relation R and the second term of the
ordered pair denotes the set of n-tuples of elements of the universe that
falsify the relation [see 23].

An interpretation of L assigns an object in the universe to every
constant symbol and an n-ary relation to every n-ary relation symbol of
L. The interpretation of an n-ary relation symbol R of L in the universe
of the model M is denoted RM and is equated with the ordered pair
〈

(Rn)+
M

, (Rn)−

M

〉

of subsets of |M|n. The interpretation of a constant
symbol t of L in |M| is denoted tM.

3.1. Deep semantics

The deep semantics plays a crucial role in the development of the model-
theoretic and the proof-theoretic frameworks that will be discussed later.
In contrast to the surface (many-valued) semantics, the deep semantics
suggests that partial and paraconsistent three-valued logics should ul-
timately be regarded as logics that involve only truth and falsehood,
but do not assume they are exhaustive or exclusive. While the surface
semantics provides a fragmented many-valued understanding of these
logics, the deep semantics is intended to provide a philosophically more
fundamental and conceptually more unified view. In this sense, we call
this semantics ‘deep’.

Moreover, this semantics can also be described as ‘deep’ in a weaker
sense. Any surface semantics can be embedded in the deep semantics
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due to the fact that the deep language is functionally complete with
regard to the deep semantics (see Theorem 1). However, the reason why
this semantics is deep does not rely directly on the definition of logi-
cal connectives. As such, any functionally complete language including
other logical connectives could also be described as ‘deep’. The two main
advantages of the set of connectives we have chosen are that it is more
concise and it does not suggest that some notions of negation, conjunc-
tion, disjunction, and implication are more fundamental than others.

The truth and the falsehood of a formula of a deep language LD are
defined in a model. Given a model M, the truth (denoted by M �+)
and the falsehood (denoted by M �−) of the formulas of LD in M are
defined inductively:

M �+ Rt1 . . . tn if and only if 〈t1M, . . . , tnM〉 ∈ R+
M

M �− Rt1 . . . tn if and only if 〈t1M, . . . , tnM〉 ∈ R−

M

M �+ − A if and only if M 2
− A

M �− − A if and only if M 2
+ A

M �+ (A ⊖ B) if and only if M �+ A or M �+ B

M �− (A ⊖ B) if and only if M 2
− A and M 2

− B

The unary logical symbol − is interpreted as a dualisation connective
that inverts truth and non-falsehood on the one hand and falsehood and
non-truth on the other hand. In this way, this logical connective corre-
sponding to what Fitting [15] calls conflation highlights the symmetry
between the approaches dealing with truth-value gaps and those dealing
with truth-value gluts. As for the binary logical symbol denoted ⊖ [see
11], its semantic interpretation can be regarded as a combination of two
well-known classical connectives, namely the inclusive disjunction (with
regard to the definition of truth) and the Sheffer stroke (with regard to
the definition of falsehood).

Through the semantic interpretation of the logical symbols of a deep
language, it is easy to verify the following properties for the abbreviations
previously described:

M �+ ¬A if and only if M �− A

M �− ¬A if and only if M �+ A

M �+ (A ∨ B) if and only if M �+ A or M �+ B
M �− (A ∨ B) if and only if M �− A and M �− B

M �+ (A ∧ B) if and only if M �+ A and M �+ B

M �− (A ∧ B) if and only if M �− A or M �− B
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M �+ (A → B) if and only if M �− A or M �+ B

M �− (A → B) if and only if M �+ A and M �− B

M �+ ⊳ A if and only if M �+ A

M �− ⊳ A if and only if M 2
− A

M �+ ⊲ A if and only if M 2
+ A

M �− ⊲ A if and only if M �− A

M �+ �A if and only if M �+ A or M 2
− A

M �− �A if and only if M �− A

M �+ ♦A if and only if M �+ A

M �− ♦A if and only if M 2
+ A and M �− A

M �+
�A if and only if M �+ A

M �−
�A if and only if M 2

+ A or M �− A

M �+
�A if and only if M �+ A and M 2

− A

M �−
�A if and only if M �− A

M �+ △A if and only if M �+ A

M �− △A if and only if M 2
+ A

M �+ ▽A if and only if M 2
− A

M �− ▽A if and only if M �− A

The first four abbreviations correspond respectively to the notions of
negation, disjunction, conjunction, and implication as defined in Dunn-
Belnap’s [see 13, 5] four-valued logic. Abbreviations ⊳ A and ⊲ A can
be thought of as reflecting a swap between what Belnap [5] calls the
approximation lattice and the logical lattice. The expression ⊳ A is both
true and false if and only if A is true, and it is neither true nor false if and
only if A is false. On the other hand, the expression ⊲ A is neither true
nor false if and only if A is true, and it is both true and false if and only if
A is false. As for the following four abbreviations, they can be regarded
as a generalization of the possibility and the necessity logical connectives
proposed by Łukasiewicz [20] for his three-valued modal logic. According
to this interpretation, the abbreviations �A and �A correspond to the
gappy notions of possibility and necessity applied to the formula A while
the abbreviations ♦A and �A correspond to the glutty ones. Finally,
the last two abbreviations reflect the truth and the falsehood conditions
of the abbreviations ♦�A and ��A, respectively. Note that the order
of the logical symbols has no effect on the truth nor on the falsehood of
these expressions. Indeed, the abbreviations ♦�A and �♦A as well as
the abbreviations ��A and ��A are semantically equivalent.
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3.2. Surface semantics

Starting with the deep semantics, the development of three-valued logics
does not simply consist in adding a third truth-value. Instead, it consists
in giving new definitions of truth and falsehood. In general, we can say
that a formula is true in a many-valued logic if and only if it is both true
and not false in the deep semantics. Similarly, we can say that a formula
is false in a many-valued logic if and only if it is both false and not true
in the deep semantics.

As for the third truth-value, two options are possible from the deep
semantics viewpoint. The truth-value gap interpretation suggests that
the third truth-value in three-valued logic is assigned to a formula if and
only if it is neither true nor false in the deep semantics. On the other
hand, the truth-value glut interpretation suggests that the third truth-
value in three-valued logic is assigned to a formula if and only if it is
both true and false in the deep semantics.

This choice concerning the third truth-value highlights the distinction
between glutty and gappy interpretations of three-valued logic. In light
of the deep semantics, four new truth-values can therefore be defined.

The valuation associated to a model M for a surface language L,
denoted vM, is the function from the set of atomic formulas of L to the
set of truth-values {t, f, n, b} such that:

vM[Rt1...tn] = t iff 〈t1M, ..., tnM〉 ∈ R+
M

and 〈t1M, ..., tnM〉 /∈ R−

M

vM[Rt1...tn] = f iff 〈t1M, ..., tnM〉 /∈ R+
M

and 〈t1M, ..., tnM〉 ∈ R−

M

vM[Rt1...tn] = n iff 〈t1M, ..., tnM〉 /∈ R+
M

and 〈t1M, ..., tnM〉 /∈ R−

M

vM[Rt1...tn] = b iff 〈t1M, ..., tnM〉 ∈ R+
M

and 〈t1M, ..., tnM〉 ∈ R−

M

This definition can be extended inductively to all formulas of the lan-
guage by assigning an n-ary function f♯ defined on the set of truth-values
to every n-ary logical symbol ♯. A many-valued assignment for a surface
language L is a function that maps each model M for L to a function
M[ . ] from the set of formulas of L to the set {t, f, n, b} such that:

M[Rt1 . . . tn] = vM[Rt1 . . . tn]

M[∼ A] = f∼(M[A])

M[(A ∩ B)] = f∩(M[A], M[B])

M[(A ∪ B)] = f∪(M[A], M[B])

M[(A ⊃ B)] = f⊃(M[A], M[B])
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In this way, the meaning of the logical connectives can be speci-
fied in different ways. Indeed, it is possible to define a wide variety of
many-valued assignments that differ only in their interpretation of the
logical symbols. Insofar as this article intends to address specific gappy
and glutty semantics, an order relation and some operations suitable for
these semantics are defined on the set of truth-values.

Let 〈{t, f, n, b}, ≤〉 be the lattice such that t is the greatest element,
f is the least element, and the values n and b are two intermediate
elements that are incomparable:

r

r

r r

@
@@I

�
���

�
���

@
@@I

t

f

n b

Then, let 〈{t, f, n, b}, ∨, ∧,�,♦,�,�,△,▽, . 〉 be an algebraic structure
where:

(x ∨ y) is the supremum of {x, y} with respect to 〈{t, f, n, b}, ≤〉
(x ∧ y) is the infimum of {x, y} with respect to 〈{t, f, n, b}, ≤〉

�x =

{

t if x = n
x otherwise

�x =

{

f if x = n
x otherwise

△x = ♦�x

x =







f if x = t
t if x = f
x otherwise

♦x =

{

t if x = b
x otherwise

�x =

{

f if x = b
x otherwise

▽x = ��x

Using this structure, four particular many-valued assignments are intro-
duced.

3.2.1. A many-valued assignment for K3 and LP

The interpretation of the logical symbols given by the many-valued as-
signment that maps each model to the function M1 is none other than
that of Dunn-Belnap’s [see 13, 5] four-valued logic L4. From a three-
valued point of view, it can be regarded as a joint extension of Kleene’s
[19] strong three-valued logic K3 and Priest’s [24] logic of paradox LP.
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M1 : F → {t, f, n, b} such that:

M1[Rt1...tn] = vM[Rt1...tn]

M1[∼ A] = M1[A]

M1[(A ∩ B)] = (M1[A] ∧ M1[B])

M1[(A ∪ B)] = (M1[A] ∨ M1[B])

M1[(A ⊃ B)] = (M1[A] ∨ M1[B])

∼

t f
f t
n n
b b

∩ t f n b

t t f n b
f f f f f
n n f n f
b b f f b

∪ t f n b

t t t t t
f t f n b
n t n n t
b t b t b

⊃ t f n b

t t f n b
f t t t t
n t n n t
b t b t b

3.2.2. A many-valued assignment for Ł3 and RM 3

The many-valued assignment that maps each model to the function M2

corresponds to the matrices of the four-valued logic M4 proposed by
Brady [7] in the context of relevance logic. The function M2 differs
from M1 only in the interpretation of the logical symbol of implication.
This interpretation corresponds to the implication of Łukasiewicz’s [21]
three-valued logic Ł3 when the domain of the function is restricted to
the set {t, f, n} and to the implication of Dunn’s [see 1] R-mingle three-
valued logic RM3 when it is restricted to the set {t, f, b}.

M2 : F → {t, f, n, b} such that:

M2[Rt1...tn] = vM[Rt1...tn]

M2[∼ A] = M2[A]

M2[(A ∩ B)] = (M2[A] ∧ M2[B])

M2[(A ∪ B)] = (M2[A] ∨ M2[B])

M2[(A ⊃ B)] = ((△M2[A] ∨ M2[B]) ∧ (M2[A] ∨ ▽M2[B]))

∼

t f
f t
n n
b b

∩ t f n b

t t f n b
f f f f f
n n f n f
b b f f b

∪ t f n b

t t t t t
f t f n b
n t n n t
b t b t b

⊃ t f n b

t t f n f
f t t t t
n t n t n
b t f n b
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3.2.3. A many-valued assignment for G3 and G
∗

3

The many-valued assignment that maps each model to the function M3

results from the combination of the definition of the logical connectives
involved in Gödel’s [18] three-valued logic G3 and its dual version pro-
posed by Brunner and Carnielli [8], here referred to as Gödel’s dual
three-valued logic G∗

3. Its main feature concerns the interpretation of
the negation symbol, which differs both from M1 and M2.

M3 : F → {t, f, n, b} such that:

M3[Rt1...tn] = vM[Rt1...tn]

M3[∼ A] = ▽M3[A]

M3[(A ∩ B)] = (M3[A] ∧ M3[B])

M3[(A ∪ B)] = (M3[A] ∨ M3[B])

M3[(A ⊃ B)] = ((▽M3[A] ∨ ▽M3[B]) ∧ (�M3[A] ∨ ♦M3[B]))

∼

t f
f t
n f
b t

∩ t f n b

t t f n b
f f f f f
n n f n f
b b f f b

∪ t f n b

t t t t t
f t f n b
n t n n t
b t b t b

⊃ t f n b

t t f n f
f t t t t
n t f t f
b t b t t

3.2.4. A many-valued assignment for I
1 and P

1

The interpretation of the logical symbols as defined by the many-valued
assignment that maps each model to the function M4 is characterized by
the fact that the image of the functions corresponding to these symbols
is the set of classical truth-values. When the domain of these functions
is restricted to the set {t, f, n}, these correspond to the definition of
the logical connectives introduced by Sette and Carnielli [26] for their
maximal paracomplete three-valued logic I1. On the other hand, when
these functions are restricted to the set {t, f, b}, these correspond to
the interpretation of the logical symbols of the maximal paraconsistent
three-valued logic P 1 proposed by Sette [25].

M4 : F → {t, f, n, b} such that:

M4[Rt1...tn] = vM[Rt1...tn]

M4[∼ A] = ▽M4[A]

M4[(A ∩ B)] = (△M4[A] ∧ △M4[B])
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M4[(A ∪ B)] = (△M4[A] ∨ △M4[B])

M4[(A ⊃ B)] = (△M4[A] ∨ △M4[B])

∼

t f
f t
n f
b t

∩ t f n b

t t f f t
f f f f f
n f f f f
b t f f t

∪ t f n b

t t t t t
f t f f t
n t f f t
b t t t t

⊃ t f n b

t t f f t
f t t t t
n t t t t
b t f f t

3.3. Translation and many-valued assignment

Several surface semantics can be developed on the basis of the deep
semantics. While a surface language is not functionally complete with
regard to every many-valued assignment, Lemma 1 states that any deep
language is functionally complete with regard to the deep semantics.
This result follows directly from the fact that any language containing
the two logical connectives − and ⊖ is functionally complete with regard
to the deep semantics. As a consequence of this characteristic, Theorem 1
establishes that any surface semantics can be embedded in the deep
semantics through a suitable translation from the surface language into
the deep language.

The many-valued interpretation of a deep language LD is the function
that maps each model M for L to the function IM from the set of
formulas of LD to the set {t, f, n, b} such that for every model M and
for every formula A of LD:

IM[A] = t if and only if M �+ A and M 2
− A

IM[A] = f if and only if M 2
+ A and M �− A

IM[A] = n if and only if M 2
+ A and M 2

− A

IM[A] = b if and only if M �+ A and M �− A

Based on the definition of many-valued interpretation, truth tables
for the logical symbols and the abbreviations of the deep language can
be set out. The truth tables for − and ⊖ are as follows:

−
t t
f f
n b
b n

⊖ t f n b

t b t b t
f t n n t
n b n f t
b t t t t
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Lemma 1. For every n-ary truth-function f♯ : {t, f, n, b}n → {t, f, n, b},

there exists a formula F♯(P1, . . . , Pn) of LD such that, for every model

M for LD, f♯(IM[P1], . . . , IM[Pn]) = IM[F♯(P1, . . . , Pn)].

Proof. Although the functional completeness of the set of connectives
{−, ⊖} can be verified on the basis of previous results, especially those
obtained by Muskens [22] and Avron [2], an original and self-contained
proof of this result is provided in [11]. ⊣

Theorem 1. For all many-valued assignments for a surface language L,

there exists a translation τ from L into LD such that for every model

M and for every formula A of L:

1. M[A] = t if and only if M �+ τ [A] and M 2
− τ [A]

2. M[A] = f if and only if M 2
+ τ [A] and M �− τ [A]

3. M[A] = n if and only if M 2
+ τ [A] and M 2

− τ [A]
4. M[A] = b if and only if M �+ τ [A] and M �− τ [A]

Proof. Let be a many-valued assignment for a surface language L such
that:

M[Rt1...tn] = vM[Rt1...tn]

M[∼ A] = f∼(M[A])

M[(A ∩ B)] = f∩(M[A], M[B])

M[(A ∪ B)] = f∪(M[A], M[B])

M[(A ⊃ B)] = f⊃(M[A], M[B])

Using Lemma 1, it can be shown that for every n-ary truth-function f♯

defined on the set of truth-values, there is a formula F♯(P1, ..., Pn) of
LD such that for every model M and for every sequence of formulas
A1, . . . , An of LD f♯(IM[A1], ..., IM[An]) = IM[F♯(P1, ..., Pn)[P1 :=
A1, ..., Pn := An]].

Then, let τ be a translation from L into LD such that:

τ [Rt1...tn] = Rt1...tn

τ [∼ A] = F∼(P )[P := τ [A]]

τ [(A ∩ B)] = F∩(P1, P2)[P1 := τ [A], P2 := τ [B]]

τ [(A ∪ B)] = F∪(P1, P2)[P1 := τ [A], P2 := τ [B]]

τ [(A ⊃ B)] = F⊃(P1, P2)[P1 := τ [A], P2 := τ [B]]

and such that:
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f∼(IM[A]) = IM[F∼(P )[P := A]]

f∩(IM[A1], IM[A2]) = IM[F∩(P1, P2)[P1 := A1, P2 := A2]]

f∪(IM[A1], IM[A2]) = IM[F∪(P1, P2)[P1 := A1, P2 := A2]]

f⊃(IM[A1], IM[A2]) = IM[F⊃(P1, P2)[P1 := A1, P2 := A2]]

The proof consists in showing that M[A] = IM[τ [A]], for every model
M and every formula A of L. The proof proceeds by induction on the
complexity of A. The initial step is trivial. As for the induction step,
all the connectives are treated in the same way. For example, let us
examine the negation. By the definition of the many-valued assignment
considered, M[∼ A] = f∼(M[A]). In addition, from the induction hy-
pothesis, it follows that f∼(M[A]) = f∼(IM[τ [A]]). Also, by the defi-
nition of τ , we know that f∼(IM[τ [A]]) = IM[F∼(P )[P := τ [A]]] and
IM[F∼(P )[P := τ [A]]] = IM[τ [∼ A]]. Finally, we conclude the proof by
observing that M[∼ A] = IM[τ [∼ A]]. ⊣

Remark. Theorem 1 also applies to any broader notion of surface lan-
guage containing additional propositional connectives. For example,
the paraconsistent three-valued logic J3 introduced by D’Ottaviano and
da Costa [12] can be easily embedded in the deep semantics through a
suitable extension of the translation τ1. Indeed, the possibility logical
connective involved in J3 can be translated in an obvious way into the
deep language by means of the abbreviation ♦A. Moreover, all theorems
in this article can be extended to first-order logic. This can be done by
adding a universal quantifier and an existential quantifier both to the
surface language and the deep language. A semantic interpretation of
these quantifiers as well as a set of rules of inference suitable for this
purpose can be found in [10].

By means of the different translations previously proposed, Proposi-
tion 1 establishes a correspondence between each of the four many-valued
assignments introduced and the general notions of truth and falsehood.

By induction on the complexity of A we obtain:

Proposition 1. Let L be a surface language and LD be its deep lan-

guage. Then, for all formulas A of L and for all i such that 1 ¬ i ¬ 4:

1. Mi[A] = t if and only if M �+ τi[A] and M 2
− τi[A]

2. Mi[A] = f if and only if M 2
+ τi[A] and M �− τi[A]

3. Mi[A] = n if and only if M 2
+ τi[A] and M 2

− τi[A]
4. Mi[A] = b if and only if M �+ τi[A] and M �− τi[A]
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3.4. Gappy semantics and glutty semantics

Several semantic approaches can be specified according to the class of
models considered. Two of these approaches seem particularly relevant
for our purposes, namely the gappy semantics and the glutty semantics.
These two types of semantics can be distinguished by defining some
properties on the models.

A model M is consistent if (Rn)+
M

∩ (Rn)−

M
= ∅, for every n-ary

relation R on |M|. A model M is complete if (Rn)+
M

∪ (Rn)−

M
= |M|n,

for every n-ary relation R on |M|. In this sense, a model is called classical
if it is both consistent and complete.

Depending on whether a semantics restricts the class of models to
that of consistent or complete models, this semantics will be called gappy
or glutty, respectively. Also, a semantics may be characterized as gappy
or glutty regardless of whether we are dealing with a deep semantics or
a surface semantics.

The reason why we call these semantics gappy or glutty lies in the
fact that they do not obey the ‘metalinguistic’ Law of Excluded Middle
(stating that any sentence of the object-language has at least one of the
values true and false) or the ‘metalinguistic’ Law of Non-Contradiction
(stating that any sentence of the object-language has at most one of
the values true and false), respectively [see 14]. Furthermore, although
any atomic formula of a deep language is always either true or false in
a complete model and never both true and false in a consistent model,
these properties do not apply to the complex formulas. For this reason,
restricting oneself to the class of consistent models does not imply that
there is no translation from the surface language to the deep language
such that some complex formulas are both true and false. Similarly,
restricting oneself to the class of complete models does not mean that
there is no translation such that some complex formulas are neither true
nor false. In this connection, it is important to note that propositions 2
and 3 do not hold for any translation. Regarding the surface semantics,
this feature is reflected in the fact that the truth-functions associated
with the logical symbols of a surface language are not necessarily con-
servative when their domain is restricted to the set {t, f, n} or {t, f, b}
[see 6]. By induction on the complexity of A we obtain:

Proposition 2 (Meta-law of excluded middle). Let M be a complete

model for a surface language L and its deep language LD. Then, for all

A of L and for all i such that 1 ¬ i ¬ 4, M �+ τi[A] or M �− τi[A].
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Proposition 3 (Meta-law of non-contradiction). Let M be a consistent

model for a surface language L and its deep language LD. Then, for all

A of L and for all i such that 1 ¬ i ¬ 4, M 2
+ τi[A] or M 2

− τi[A].

4. Logical consequence

In order to address the distinction between the partial and paraconsis-
tent notions of logical consequence involved in three-valued logic, we
propose a unified proof-theoretic framework based on a generalization
of Gentzen’s [16] definition of sequent. This notion is closely related to
those developed by Girard [17]), Muskens [23], and Bochman [6]. Also
be noted that this notion can be regarded as a particular instance of
labeled sequent introduced in the context of many-valued logics (see,
among others [3, 4]).

A sequent is a quadruple 〈Π, Γ, ∆, Σ〉, where Π, Γ, ∆, and Σ are finite
multisets over the set of formulas of a deep language LD. The sequent
〈Π, Γ, ∆, Σ〉 is denoted Π; Γ 
 ∆; Σ (see [10]).

A multiset is a sequence modulo the ordering. More specifically,
a multiset M over S is an ordered pair 〈S, f〉, where S is a set and
f : S → N is a function that indicates the multiplicity of each element
of S. The underlying set of a multiset M = 〈S, f〉 is the set µ such that
µ = {s ∈ S | f(s) 6= 0}. M is called finite, if µ is finite. The sum of
the multisets M1 and M2 is denoted by M1, M2 and the multiset 〈S, f〉
where {s ∈ S | f(s) 6= 0} = {A} and f(A) = 1 is denoted by A.

Let Π; Γ 
 ∆; Σ be a sequent such that π, γ, δ and σ are the under-
lying sets of Π, Γ, ∆ and Σ, respectively. Then, Π; Γ 
 ∆; Σ is valid if
for every model M, M 2

− A, for all A ∈ π, and M �+ A, for all A ∈ γ,
implies M �+ A, for some A ∈ δ, or M 2

− A, for some A ∈ σ.
This definition of validity can be preserved for the gappy and the

glutty semantics. Depending on whether the notion of valid sequent is
restricted to the consistent models or to the complete models, a sequent
is called gap-valid or glut-valid, respectively.

4.1. Some well-known many-valued logics

In general, the notion of logical consequence for many-valued logics is
defined in terms of designated values selected from a set of truth-values.
Roughly speaking, a Gentzen sequent is said to be valid in a many-valued
logic L (or L-valid) if some formula in the succedent gets a designated
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truth-value whenever all the formulas in the antecedent get a designated
truth-value.

The many-valued logics mentioned so far can be divided into three
categories according to the set of truth-values and the set of designated
values. The set of truth-values for the four-valued logics L4 and M4 is
{t, f, n, b} and the set of designated values is {t, b}. Regarding the three-
valued logics K3, Ł3, G3, and I1, the set of truth-values is {t, f, n} and
the set of designated values is {t}. As for the three-valued logics LP,
RM3, G∗

3, and P 1, the set of their truth-values is {t, f, b} and their
designated values are t and b.

However, from the deep semantics standpoint, these logics share a
common feature in that their notion of validity can be reformulated in
terms of truth-preservation (from antecedent to succedent). In this sense,
we see that a sequent is valid in these logics if when all formulas in the
antecedent are at least true (that is to say, either ‘true and not false’ or
‘both true and false’), so is some formula in the succedent. Based on these
observations, propositions 4–6 follow directly from propositions 1–3.

Proposition 4. Let Γ 
 ∆ be a sequent of the usual kind.

1. Γ 
 ∆ is L4-valid if and only if ; τ1[Γ] 
 τ1[∆] ; is valid.

2. Γ 
 ∆ is M4-valid if and only if ; τ2[Γ] 
 τ2[∆] ; is valid.

Proposition 5. Let Γ 
 ∆ be a sequent of the usual kind.

1. Γ 
 ∆ is K3-valid if and only if ; τ1[Γ] 
 τ1[∆] ; is gap-valid.

2. Γ 
 ∆ is Ł3-valid if and only if ; τ2[Γ] 
 τ2[∆] ; is gap-valid.

3. Γ 
 ∆ is G3-valid if and only if ; τ3[Γ] 
 τ3[∆] ; is gap-valid.

4. Γ 
 ∆ is I1-valid if and only if ; τ4[Γ] 
 τ4[∆] ; is gap-valid.

Proposition 6. Let Γ 
 ∆ be a sequent of the usual kind.

1. Γ 
 ∆ is LP-valid if and only if ; τ1[Γ] 
 τ1[∆] ; is glut-valid.

2. Γ 
 ∆ is RM3-valid if and only if ; τ2[Γ] 
 τ2[∆] ; is glut-valid.

3. Γ 
 ∆ is G∗
3-valid if and only if ; τ3[Γ] 
 τ3[∆] ; is glut-valid.

4. Γ 
 ∆ is P 1-valid if and only if ; τ4[Γ] 
 τ4[∆] ; is glut-valid.

These propositions can be summarized by means of Table 1.

4.2. Three sequent calculi

To define a sequent calculus and a notion of derivability for a deep lan-
guage, some rules of inference governing the behavior of the logical con-
nectives are to be set out. The main feature of the rules given below
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τ1 τ2 τ3 τ4

Validity L4 M4

Gap-validity K3 Ł3 G3 I1

Glut-validity LP RM 3 G∗
3 P 1

Table 1.

is that the weakening and contraction structural rules are absorbed into
the rules of inference [see 27].

Π, A; Γ 
 ∆; Σ
−

i

LΠ; Γ, − A 
 ∆; Σ

Π; Γ 
 ∆; A, Σ
−

i

RΠ; Γ 
 − A, ∆; Σ

Π; Γ, A 
 ∆; Σ
−

e

LΠ, − A; Γ 
 ∆; Σ

Π; Γ 
 A, ∆; Σ
−

e

RΠ; Γ 
 ∆; − A, Σ

Π; Γ, A 
 ∆; Σ Π; Γ, B 
 ∆; Σ
⊖

i

LΠ; Γ, (A ⊖ B) 
 ∆; Σ

Π; Γ 
 A, B, ∆; Σ
⊖

i

RΠ; Γ 
 (A ⊖ B), ∆; Σ

Π; Γ 
 ∆; A, Σ Π; Γ 
 ∆; B, Σ
⊖

e

L
Π, (A ⊖ B); Γ 
 ∆; Σ

Π, A, B; Γ 
 ∆; Σ
⊖

e

R
Π; Γ 
 ∆; (A ⊖ B), Σ

The notion of derivation as well as those of initial sequent and end-
sequent are defined inductively in the usual way. Roughly speaking, a
derivation is a finite rooted tree in which the nodes are sequents. The
root of the tree (at the bottom) is called the endsequent and the leaves of
the tree (at the top) are called initial sequents. The length of a derivation
is the number of sequents in that derivation.

Starting with the single set of rules of inference set out above, three
notions of derivability are distinguished so that they differ only in the
definition of axiomatic sequent. A sequent is derivable, gap-derivable, or
glut-derivable if there exists a derivation in which it is the endsequent
and all initial sequents are respectively axiomatic, gap-axiomatic, or glut-
axiomatic.

A sequent Π; Γ 
 ∆; Σ is axiomatic if there exists an atomic formula
P such that P ∈ γ ∩ δ or P ∈ π ∩ σ.

A sequent Π; Γ 
 ∆; Σ is gap-axiomatic if it is axiomatic or there is
an atomic formula P such that P ∈ γ ∩ σ.

A sequent Π; Γ 
 ∆; Σ is glut-axiomatic if it is axiomatic or there is
an atomic formula P such that P ∈ π ∩ δ.
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A set of rules involving the previously mentioned abbreviations are
provided below. These rules of inference are admissible in the three
sequent calculi. In other words, if all the premisses of one of these rules
are derivable, gap-derivable, or glut-derivable, then so is the conclusion.
These rules essentially play a practical role. They facilitate the use of
the sequent calculi by greatly reducing the number of instances of rules
in a derivation.

Π; Γ 
 ∆; A, Σ
¬

i

LΠ; Γ, ¬A 
 ∆; Σ

Π, A; Γ 
 ∆; Σ
¬

i

RΠ; Γ 
 ¬A, ∆; Σ

Π; Γ 
 A, ∆; Σ
¬

e

LΠ, ¬A; Γ 
 ∆; Σ

Π; Γ, A 
 ∆; Σ
¬

e

RΠ; Γ 
 ∆; ¬A, Σ

Π; Γ, A 
 ∆; Σ Π; Γ, B 
 ∆; Σ
∨

i

LΠ; Γ, (A ∨ B) 
 ∆; Σ

Π; Γ 
 A, B, ∆; Σ
∨

i

RΠ; Γ 
 (A ∨ B), ∆; Σ

Π, A; Γ 
 ∆; Σ Π, B; Γ 
 ∆; Σ
∨

e

L
Π, (A ∨ B); Γ 
 ∆; Σ

Π; Γ 
 ∆; A, B, Σ
∨

e

R
Π; Γ 
 ∆; (A ∨ B), Σ

Π; Γ, A, B 
 ∆; Σ
∧

i

LΠ; Γ, (A ∧ B) 
 ∆; Σ

Π; Γ 
 A, ∆; Σ Π; Γ 
 B, ∆; Σ
∧

i

RΠ; Γ 
 (A ∧ B), ∆; Σ

Π, A, B; Γ 
 ∆; Σ
∧

e

L
Π, (A ∧ B); Γ 
 ∆; Σ

Π; Γ 
 ∆; A, Σ Π; Γ 
 ∆; B, Σ
∧

e

R
Π; Γ 
 ∆; (A ∧ B), Σ

Π; Γ 
 ∆; A, Σ Π; Γ, B 
 ∆; Σ
→

i

LΠ; Γ, (A → B) 
 ∆; Σ

Π, A; Γ 
 B, ∆; Σ
→

i

RΠ; Γ 
 (A → B), ∆; Σ

Π; Γ 
 A, ∆; Σ Π, B; Γ 
 ∆; Σ
→

e

L
Π, (A → B); Γ 
 ∆; Σ

Π; Γ, A 
 ∆; B, Σ
→

e

R
Π; Γ 
 ∆; (A → B), Σ

Π; Γ, A 
 ∆; Σ Π, A; Γ 
 ∆; Σ
�

i

LΠ; Γ,�A 
 ∆; Σ

Π; Γ 
 A, ∆; A, Σ
�

i

RΠ; Γ 
 �A, ∆; Σ

Π, A; Γ 
 ∆; Σ
�

e

LΠ,�A; Γ 
 ∆; Σ

Π; Γ 
 ∆; A, Σ
�

e

RΠ; Γ 
 ∆;�A, Σ

Π; Γ, A 
 ∆; Σ
♦

i

LΠ; Γ,♦A 
 ∆; Σ

Π; Γ 
 A, ∆; Σ
♦

i

RΠ; Γ 
 ♦A, ∆; Σ

Π; Γ, A 
 ∆; Σ Π, A; Γ 
 ∆; Σ
♦

e

LΠ,♦A; Γ 
 ∆; Σ

Π; Γ 
 A, ∆; A, Σ
♦

e

RΠ; Γ 
 ∆;♦A, Σ

Π; Γ, A 
 ∆; Σ
�

i

LΠ; Γ,�A 
 ∆; Σ

Π; Γ 
 A, ∆; Σ
�

i

RΠ; Γ 
 �A, ∆; Σ

Π, A; Γ, A 
 ∆; Σ
�

e

LΠ,�A; Γ 
 ∆; Σ

Π; Γ 
 A, ∆; Σ Π; Γ 
 ∆; A, Σ
�

e

RΠ; Γ 
 ∆;�A, Σ

Π, A; Γ, A 
 ∆; Σ
�

i

LΠ; Γ,�A 
 ∆; Σ

Π; Γ 
 A, ∆; Σ Π; Γ 
 ∆; A, Σ
�

i

RΠ; Γ 
 �A, ∆; Σ
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Π, A; Γ 
 ∆; Σ
�

e

LΠ,�A; Γ 
 ∆; Σ

Π; Γ 
 ∆; A, Σ
�

e

RΠ; Γ 
 ∆;�A, Σ

4.3. Soundness and completeness

This section is devoted to showing that the general sequent calculus as
well as the gappy and glutty sequent calculi are sound and complete
with regard to the deep semantics. These properties are contained in
theorems 2 and 3.

Lemma 2. The conclusion of a rule instance is valid, gap-valid, or glut-

valid iff every premiss of that instance is valid, gap-valid, or glut-valid,

respectively.

Proof. These properties should be proved for each rule of inference.
For example, let us show that the ⊖e

L rule preserves validity both from
premisses to conclusion and from conclusion to premisses. The proof is
entirely similar when we only consider the class of consistent or complete
models.

Assume that Π; Γ 
 ∆; A, Σ and Π; Γ 
 ∆; B, Σ are valid. Let M
be a model such that M 2

− C, for all C ∈ π, M �+ C, for all C ∈ γ,
and M 2

− (A ⊖ B). From the semantic definition of ⊖, it follows that
M �− A or M �− B. By the validity of premisses, we conclude that
M �+ C, for some C ∈ δ, or M 2

− C, for some C ∈ σ.
Assume that Π, (A ⊖ B); Γ 
 ∆; Σ is valid. Let M be a model

such that M 2
− C, for all C ∈ π and M �+ C, for all C ∈ γ. If

there is some C ∈ δ such that M �+ C or some C ∈ σ such that
M 2

− C, the two premisses of the rule are valid. On the other hand,
if there is no such formula, it follows from the validity of the conclusion
that M �− (A ⊖ B). By the semantic definition of ⊖, this means that
M 2

− A and M 2
− B. Therefore, we conclude that, in this case also,

Π; Γ 
 ∆; A, Σ and Π; Γ 
 ∆; B, Σ are valid. ⊣

Theorem 2 (Soundness). If a sequent is derivable, gap-derivable, or

glut-derivable, then it is respectively valid, gap-valid, or glut-valid.

Proof. The proof proceeds by an induction on the derivation length.
The initial step consists in showing that if a sequent is axiomatic, gap-
axiomatic, or glut-axiomatic, then it is respectively valid, gap-valid, or
glut-valid. The induction step follows immediately from Lemma 2.

As an example, we prove that every glut-axiomatic sequent is glut-
valid. Let Π; Γ 
 ∆; Σ be a glut-axiomatic sequent and let M be a
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complete model such that M 2
− A, for all A ∈ π, and M �+ A, for

all A ∈ γ. If there is a formula in γ ∩ δ or π ∩ σ, then Π; Γ 
 ∆; Σ is
obviously valid. If there is an atomic formula P in π ∩ δ, then M 2

− P .
Since M is complete, it follows that M �+ P . In other words, some
formula A ∈ δ is such that M �+ A. ⊣

Theorem 3 (Completeness). If a sequent is valid, gap-valid, or glut-

valid, then it is respectively derivable, gap-derivable, or glut-derivable.

Proof. Let Π; Γ 
 ∆; Σ be a sequent. Also, let us say that a sequent
is atomic if it contains only atomic formulas. The proof consists, firstly,
in constructing a derivation in which Π; Γ 
 ∆; Σ is the endsequent
and every initial sequent is atomic and, secondly, in showing that if
Π; Γ 
 ∆; Σ is valid, then all the initial sequents of that derivation are
axiomatic.

The first part of the proof is based on the observation that the number
of logical symbols occurring in a sequent is finite and the number of
logical symbols contained in each premiss of a rule instance is strictly
less than the number of logical symbols contained in the conclusion.
From this observation, it follows that a backwards application of the
rules of inference from Π; Γ 
 ∆; Σ necessarily leads to a derivation of
Π; Γ 
 ∆; Σ in which every initial sequent is atomic.

The second part of the proof is intended to show that if Π; Γ 
 ∆; Σ
is valid, then all the initial sequents of such a derivation are axiomatic.
By Lemma 2, we know that if the endsequent of a derivation is valid,
then every initial sequent of that derivation is also valid. So, it remains
to prove that if a sequent is both valid and atomic, then it is axiomatic.

The argument is similar for the gappy and glutty cases. As an exam-
ple, let us show this last property for the glutty case: if an atomic sequent
is not glut-axiomatic, then it is not glut-valid. Let Π′; Γ′ 
 ∆′; Σ′ be an
atomic but not glut-axiomatic sequent. Then, let M be a model such
that:

〈t1M, ..., tnM〉∈R+
M

, if the formula Rt1... tn appears in π′ ∪ γ′

〈t1M, ..., tnM〉 /∈R+
M

, if the formula Rt1... tn does not appear in π′∪γ′

〈t1M, ..., tnM〉∈R−

M
, if the formula Rt1... tn appears in π′

〈t1M, ..., tnM〉 /∈R−

M
, if the formula Rt1... tn does not appear in π′

It suffices to note that M is complete and M 2
− A for all A ∈ π′,

M �+ A for all A ∈ γ′, M 2
+ A for all A ∈ δ′, and M �− A for all

A ∈ σ′. ⊣
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By combining theorems 1, 2, and 3, we obtain corollaries 1 and 2.

Corollary 1. Let Γ 
 ∆ be a sequent of the usual kind, where Γ and ∆
are finite multisets over the set of formulas of a surface language L. Then

for all many-valued assignments MV for L, there exists a translation τ
from L into LD such that Γ 
 ∆ is truth-preserving with regard to MV

iff ; τ [Γ] 
 τ [∆] ; is derivable.

Corollary 2. Let Γ 
 ∆ be a sequent of the usual kind, where Γ and ∆
are finite multisets over the set of formulas of a surface language L. Then

for all many-valued assignments MV for L, there exists a translation τ
from L into LD such that:

1. If MV is gappy, then Γ 
 ∆ is truth-preserving with regard to MV

if and only if ; τ [Γ] 
 τ [∆] ; is gap-derivable.

2. If MV is glutty, then Γ 
 ∆ is truth-preserving with regard to MV

if and only if ; τ [Γ] 
 τ [∆] ; is glut-derivable.

On the basis of corollaries 1–2, we conclude that the proposed sequent
calculi are suitable for all partial and paraconsistent truth-preserving
four-valued logics as well as their gappy and glutty restrictions. More-
over, from the observations made in the proof of Theorem 3, it follows
that a uniform proof-search method can be provided for any of these
logics by a backwards application of the rules of inference.

Remark. Many other notions of logical consequence can in principle be
defined in three-valued and four-valued logics [see 3]. Some of them
can be obtained in a natural way from the definition of valid sequent by
simply changing the position of the translated formulas within a sequent.

4.4. Cut redundancy

Several formulations of the redundancy of cut are possible in the sequent
calculi mentioned above. According to the position of the cut formula,
four different forms of the original cut rule are distinguished. The ad-
missibility of these rules can be easily obtained from theorems 2 and 3
by noting that if the premisses of one of these rules are valid, then so is
the conclusion. While this proof has the advantage of being very short,
it has two main drawbacks: firstly, it fails to provide a better insight
into the nature of the sequent calculi involved and, secondly, it makes
use of model-theoretic notions that are superfluous and extraneous to
these systems.
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Instead, we adopt a purely proof-theoretic approach. As part of the
study of some formulations of the cut rule, the weakening and contraction
structural properties as well as the inversion property of the inference
rules are proved for these calculi. These results are contained in propo-
sitions 7–9. Although these properties hold for the three sequent calculi,
we only give a sketch of the proof for the general sequent calculus.

A sequent is l-derivable if it is the endsequent of a derivation such
that its length is at most l and all its initial sequents are axiomatic.

Proposition 7 (Weakening). Let A be a formula of a deep language.

1. If Π; Γ 
 ∆; Σ is l-derivable, then Π, A; Γ 
 ∆; Σ is l-derivable.

2. If Π; Γ 
 ∆; Σ is l-derivable, then Π; Γ, A 
 ∆; Σ is l-derivable.

3. If Π; Γ 
 ∆; Σ is l-derivable, then Π; Γ 
 A, ∆; Σ is l-derivable.

4. If Π; Γ 
 ∆; Σ is l-derivable, then Π; Γ 
 ∆; A, Σ is l-derivable.

Proof. By induction on the derivation length of Π; Γ 
 ∆; Σ. ⊣

Proposition 8 (Inversion). If the conclusion of a rule instance is l-
derivable, then every premiss of that instance is also l-derivable.

Proof. The proof consists in showing the inversion property for each
of the eight rules of inference by using an induction on the derivation
length. As an example, we give the proof for the ⊖e

L rule. Assume there
exists a derivation of length at most l in which Π, (A ⊖ B); Γ 
 ∆; Σ
is the endsequent and every initial sequent is axiomatic. If l = 1, then
Π, (A ⊖ B); Γ 
 ∆; Σ is axiomatic and so are Π; Γ 
 ∆; A, Σ and Π; Γ 


∆; B, Σ. If l > 1, then Π, (A ⊖ B); Γ 
 ∆; Σ is the conclusion of an
instance of a rule R. Two cases are possible. If (A ⊖ B) is the principal
formula of that rule instance, then it follows from the inductive definition
of derivation that Π; Γ 
 ∆; A, Σ and Π; Γ 
 ∆; B, Σ are l-derivable. If
(A ⊖ B) is not the principal formula of that rule instance, we apply the
induction hypothesis to each premiss of the rule instance and then use
the rule R to obtain derivations of Π; Γ 
 ∆; A, Σ and Π; Γ 
 ∆; B, Σ. ⊣

Proposition 9 (Contraction). Let A be a formula of a deep language.

1. If Π, A, A; Γ 
 ∆; Σ is l-derivable, then Π, A; Γ 
 ∆; Σ is l-derivable.

2. If Π; Γ, A, A 
 ∆; Σ is l-derivable, then Π; Γ, A 
 ∆; Σ is l-derivable.

3. If Π; Γ 
 A, A, ∆; Σ is l-derivable, then Π; Γ 
 A, ∆; Σ is l-derivable.

4. If Π; Γ 
 ∆; A, A, Σ is l-derivable, then Π; Γ 
 ∆; A, Σ is l-derivable.
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Proof. The proof of these four assertions proceeds by a simultaneous
induction on the derivation length. We only consider the first asser-
tion assuming that the others are treated symmetrically. Assume there
exists a derivation of length at most l in which Π, A, A; Γ 
 ∆; Σ is
the endsequent and every initial sequent is axiomatic. If l = 1, then
Π, A, A; Γ 
 ∆; Σ is axiomatic, in which case Π, A; Γ 
 ∆; Σ is also ax-
iomatic. If l > 1, then Π, A, A; Γ 
 ∆; Σ is the conclusion of an instance
of a rule R. Two cases are possible. If A is the principal formula of that
rule, then we distinguish different sub-cases depending on the last rule
applied: −e

L or ⊖e
L. In both sub-cases, the proof consists in applying

Proposition 8 and using the induction hypothesis. If A is not the princi-
pal formula of that rule instance, we apply the induction hypothesis to
each premiss of the rule instance and then extend each new derivation
by using the rule R in order to obtain a derivation of Π, A; Γ 
 ∆; Σ. ⊣

Theorem 4 shows that the cut property is satisfied for the general
sequent calculus when the cut formula appears either in the right and
left internal sides or in the right and left external sides of sequents. This
property also holds for the gappy and glutty sequent calculi. On the
other hand, Theorem 5 states that the gappy and glutty sequent calculi
admit one form of cut (restricted to the atomic formulas) in addition
to the two that hold for the general sequent calculus. Note that this
theorem can be extended to the complex formulas of LD obtained by
means of a translation τi (1 ¬ i ¬ 4) from L into LD.

Theorem 4 (Cut redundancy). Let A be a formula of a deep language.

1. If Π; Γ 
 A, ∆; Σ and Π; Γ, A 
 ∆; Σ are derivable, then

Π; Γ 
 ∆; Σ is derivable.

2. If Π; Γ 
 ∆; A, Σ and Π, A; Γ 
 ∆; Σ are derivable, then

Π; Γ 
 ∆; Σ is derivable.

Proof. The proof of these two assertions proceeds by a main simulta-
neous induction on the complexity of A. When A is an atomic formula,
the proof uses a sub-induction on the sum of the derivation lengths of
the sequents Π; Γ 
 A, ∆; Σ and Π; Γ, A 
 ∆; Σ, for the first assertion,
or Π; Γ 
 ∆; A, Σ and Π, A; Γ 
 ∆; Σ, for the second assertion. We
only consider the first assertion. The second is assumed to be treated
symmetrically.

Assume that A is an atomic formula. Let be l = l1 + l2. Then,
by induction on l, we show that if Π; Γ 
 A, ∆; Σ is l1-derivable and
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Π; Γ, A 
 ∆; Σ is l2-derivable, then Π; Γ 
 ∆; Σ is derivable. If l = 2,
then Π; Γ 
 A, ∆; Σ and Π; Γ, A 
 ∆; Σ are axiomatic and so is Π; Γ 


∆; Σ. If l > 2, either l1 > 1 or l2 > 1. In both cases, the fact that
Π; Γ 
 ∆; Σ is derivable can be established by applying Proposition 8
and using the induction hypothesis.

Assume now that A is a formula of the form − B. Then, Π; Γ 


− B, ∆; Σ and Π; Γ, − B 
 ∆; Σ are derivable. By Proposition 8, it fol-
lows that Π; Γ 
 ∆; B, Σ and Π, B; Γ 
 ∆; Σ are also derivable. There-
fore, by the induction hypothesis on the complexity of A, we conclude
that Π; Γ 
 ∆; Σ is derivable.

Finally, assume that A is a formula of the form (B⊖C). Then, Π; Γ 


(B ⊖ C), ∆; Σ and Π; Γ, (B ⊖ C) 
 ∆; Σ are derivable. By Proposition 8,
it follows that Π; Γ 
 B, C, ∆; Σ as well as Π; Γ, B 
 ∆; Σ and Π; Γ, C 


∆; Σ are derivable. In addition, by Proposition 7, if Π; Γ, B 
 ∆; Σ is
derivable, then Π; Γ, B 
 C, ∆; Σ is also derivable. Therefore, by using
the induction hypothesis on the complexity of A twice, we conclude that
Π; Γ 
 ∆; Σ is derivable. ⊣

Theorem 5 (Cut redundancy). Let P be an atomic formula of a deep

language.

1. If Π; Γ 
 ∆; P, Σ and Π; Γ, P 
 ∆; Σ are glut-derivable, then

Π; Γ 
 ∆; Σ is glut-derivable.

2. If Π; Γ 
 P, ∆; Σ and Π, P ; Γ 
 ∆; Σ are gap-derivable, then

Π; Γ 
 ∆; Σ is gap-derivable.

Proof. The proof for the first assertion uses an induction on the sum of
the derivation lengths of the sequents Π; Γ 
 ∆; P, Σ and Π; Γ, P 
 ∆; Σ.
As for the second assertion, it is obtained by a symmetric treatment.
Basically, both proofs are similar to that provided for Theorem 4 when
A is an atomic formula. ⊣

5. Conclusion

Our aim is to provide a unified framework for partial and paraconsistent
three-valued logics. In this connection, the main philosophical idea of
the article is that a (surface) many-valued semantics leads to a frag-
mented understanding of these logics, while a (deep) gappy or glutty
semantics involving only truth and falsehood yields a conceptually more
fundamental and unified view. This feature is, among others, reflected in
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the fact that a single notion of model, sequent, and validity are defined
regardless of whether we are dealing with a partial three-valued logic, a
paraconsistent three-valued logic, or a both partial and paraconsistent
four-valued logic.

In addition to providing a unified framework suitable to address the
model-theoretic as well as the proof-theoretic issues related to these log-
ics, the main results presented in this article are as follows.

At the model-theoretic level, we showed that two logical symbols (one
being unary and the other binary) are enough to define a functionally
complete four-valued language. Due to this property, we have also shown
that every formula of the surface language can be translated into the
deep language while preserving its semantic interpretation. Finally, four
translations that capture the notions of validity specific to some well-
known three-valued and four-valued logics have been identified.

Regarding the proof-theoretic aspects, we introduced a ‘general’ se-
quent calculus that can be easily modified to obtain either a ‘gappy’
sequent calculus or a ‘glutty’ sequent calculus, by simply changing the
definition of axiomatic sequent. These three calculi (sharing the same
rules of inference) feature several interesting properties.

First, the weakening and contraction structural properties as well as
the inversion property of the rules of inference are satisfied by these three
calculi. Furthermore, they admit the two most natural formulations of
the original cut rule. In particular, the gappy and glutty sequent calculi
each admit an additional hybrid version of the cut rule where the cut
formula appears in the internal side of one of the premisses and in the
external side of the other.

Then, we also pointed out that the three sequent calculi allow a uni-
form proof-search procedure which is ultimately based on the inversion
property of the rules of inference. This method consists in constructing a
derivation from the bottom up, i.e. by means of a backwards application
of the rules of inference from the sequent supposed to be derivable to
sequents containing no logical symbol. In this way, if all the initial se-
quents of the derivation are axiomatic, then the endsequent is derivable.
But it is also true that if some initial sequent of such a derivation is not
axiomatic, then the endsequent is not derivable.

Finally, we showed that the three sequent calculi are sound and com-
plete with respect to the deep semantics as well as its gappy and glutty
restrictions. In addition, the soundness and the completeness proof pro-
vided in this article are general enough to apply to any partial or para-
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consistent truth-preserving logic modulo a suitable translation from the
surface language into the deep language.
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