Andrzej Pietruszczak

CLASSICAL MEREOLOGY IS NOT ELEMENTARILY AXIOMATIZABLE

Abstract

By the classical mereology I mean a theory of mereological structures in the sense of [10]. In [7] I proved that the class of these structures is not elementarily axiomatizable. In this paper a new version of this result is presented, which according to my knowledge is the first such presentation in English. A relation of this result to a certain Hsing-chien Tsai's theorem from [13] is emphasized.

Keywords: classical mereology; mereological structures; the absence of elementary definability of classical mereology

1. Mereological structures

By a mereological structure (in Tarski sense [10]) we mean any relational structure of the form $\langle M, \sqsubseteq\rangle$, with a non-empty set M and a transitive relation \sqsubseteq in $M,{ }^{1}$ satisfying the following condition: ${ }^{2}$

$$
\begin{equation*}
\forall_{S \in 2^{M} \backslash\{\emptyset\}} \exists_{x \in M}^{1} x \text { sum } S, \tag{1}
\end{equation*}
$$

where sum is the following binary relation in $M \times 2^{M}$:

$$
\begin{align*}
x \text { sum } S \Longleftrightarrow & \forall_{y \in S} y \sqsubseteq x \wedge \\
& \forall_{z \in M}\left(z \sqsubseteq x \Rightarrow \exists_{y \in S} \exists_{u \in M}(u \sqsubseteq y \wedge u \sqsubseteq z)\right) . \tag{dfsum}
\end{align*}
$$

[^0]The class of all mereological structures will be denoted by 'MS'. Following Leśniewski [4], we call \sqsubseteq an ingrediens relation and in the case of $x \sqsubseteq y$ we say that x is ingrediens of y (i.e., x is (proper) part of y or $x=y$; see $(\star))$. Moreover, in the case of x sum S we say that an object x is a mereological sum (or a collective class) of all members of a (distributive) set S. The axioms (t_{\sqsubseteq}) and (\exists^{1} sum) say, respectively, that the relation \sqsubseteq is transitive in M and that for every non-empty subset S of M there exists exactly one mereological sum of all members of S.

For any structure $\langle M, \sqsubseteq\rangle$ from the class MS we obtain that \sqsubseteq is a separative partial order, i.e., \sqsubseteq is also reflexive, antisymmetrical and separative, i.e., \sqsubseteq satisfies the conditions (r_{\sqsubseteq}), (antis and $_{\sqsubseteq}$), and (sep ${ }_{\sqsubseteq}$) (see $[6,7,8,10])^{3}$

From (r_{\sqsubseteq}) we obtain that sum is included in $M \times 2^{M} \backslash\{\emptyset\}$, that is:

$$
\forall_{S \in 2^{M}}\left(\exists_{x \in M} x \text { sum } S \Longrightarrow S \neq \emptyset\right),
$$

so, in the light of (\exists^{1} sum), we have:

$$
\begin{gather*}
\forall_{S \in 2^{M} \backslash\{\emptyset\}} \exists_{x \in M} x \operatorname{sum} S, \\
\forall_{S \in 2^{M}} \forall_{x, y \in M}(x \operatorname{sum} S \wedge y \operatorname{sum} S \Longrightarrow x=y), \tag{fun-sum}
\end{gather*}
$$

i.e., the relation sum is a (partial) function of the second argument.

By (\exists^{1} sum), there exists the unity 1 of this structure, since $M \neq \emptyset:{ }^{4}$

$$
\begin{align*}
& 1:=(\iota z) z \operatorname{sum} M, \tag{df1}\\
& 1=(\iota z) \forall_{y \in M} y \sqsubseteq z .
\end{align*}
$$

Moreover, we can introduce a unary (partial) operation on $2^{M} \backslash\{\emptyset\}$ of being of the mereological sum of all members of a given non-empty set:

$$
S \neq \emptyset \Longrightarrow \sqcup S:=(\iota z) z \operatorname{sum} S
$$

Thus, $1=\bigsqcup M$ and we can introduce the following binary operation in M :

$$
x \sqcup y:=\bigsqcup\{x, y\} .
$$

[^1]Of course, \sqcup is idempotent and commutative, and we obtain:

$$
\begin{gathered}
x \sqcup y=\bigsqcup\{u \in M: u \sqsubseteq x \vee u \sqsubseteq y\} . \\
x \sqsubseteq y \Longleftrightarrow y=x \sqcup y .
\end{gathered}
$$

For any mereological structure $\langle M, \sqsubseteq\rangle$ we introduce three auxiliary binary relations in M : of being (proper) part, of overlapping and of being exterior to:

$$
\begin{align*}
x \sqsubset y & \Longleftrightarrow x \sqsubseteq y \wedge x \neq y, \tag{df■}\\
x \circ y & \Longleftrightarrow \exists_{z \in M}(z \sqsubseteq x \wedge z \sqsubseteq y), \\
x \eta y & \Longleftrightarrow \neg x \circ y .
\end{align*}
$$

If $x \sqsubset y$ (resp. $x \circ y ; x(y)$, then we say that: x is (proper) part of y (resp. x overlaps $y ; x$ is exterior to y). Of course, O and $\{$ are symmetric. By $\left(\mathrm{r}_{\sqsubseteq}\right), \circ$ is reflexive, \langle is irreflexive, \sqsubseteq is included in \bigcirc (so \langle is disjoint from \sqsubseteq and $\sqsubset)$. The relation \sqsubset is irreflexive, asymmetric, and transitive. Thus, we have the following conditions: $\left(\operatorname{irr}_{\sqsubset}\right),\left(\mathrm{as}_{\sqsubset}\right),\left(\mathrm{t}_{\sqsubset}\right),\left(\mathrm{r}_{\mathrm{o}}\right),\left(\mathrm{s}_{\mathrm{o}}\right)$, (irr$)_{2}$), and $\left(\mathrm{s}_{2}\right) .{ }^{5}$ Moreover, all mereological structures satisfy the socalled Weak Supplementation Principle:

$$
\begin{equation*}
\left.\forall_{x, y \in M}\left(x \sqsubset y \Longrightarrow \exists_{z \in M}(z \sqsubset y \wedge z\} x\right)\right) . \tag{WSP}
\end{equation*}
$$

The aforementioned formula $\left(\mathrm{sep}_{\sqsubseteq}\right)$ is called Strong Supplementation Principle.

By (r_{\sqsubseteq}) and (antis $_{\sqsubseteq}$), we also obtain:

$$
\begin{align*}
& \forall_{x, y \in M}(x \sqsubseteq y \Longleftrightarrow x \sqsubset y \vee x=y), \tag{*}\\
& \forall_{x, y \in M}(x \sqsubset y \Longleftrightarrow x \sqsubseteq y \wedge y \nsubseteq x),
\end{align*}
$$

We say that a mereological structure $\langle M, \sqsubseteq\rangle$ is non-trivial iff M has at least two members. It is equivalent to the fact that M has at least two members which are exterior to each other and to the fact that in M there is no smallest element, that is:

$$
|M|>1 \Longleftrightarrow \exists_{x, y \in M} x\left\{y \Longleftrightarrow \neg \exists_{x \in M} \forall_{y \in M} x \sqsubseteq y,\right.
$$

where $|M|$ is the cardinality of M.
By $\left(\mathrm{r}_{\sqsubset}\right)$, we have $\{\langle x, y\rangle \in M \times M: x \bigcirc y\} \neq \emptyset$. So, by (\exists^{1} sum), we can introduce the following partial binary operation $\sqcap:\{\langle x, y\rangle \in M \times M$: $x \circ y\} \rightarrow M$:

$$
\begin{equation*}
x \bigcirc y \Longrightarrow x \sqcap y:=\bigsqcup\{u \in M: u \sqsubseteq x \wedge u \sqsubseteq y\} . \tag{dfп}
\end{equation*}
$$

[^2]The object $x \sqcap y$ is called the (mereological) product of two overlapping objects x and y. For the operations \sqcup and \sqcap we obtain:

$$
\begin{aligned}
& x \circ y \Longrightarrow(x=x \sqcap y \Leftrightarrow y=x \sqcup y), \\
& x \circ y \Longrightarrow \forall_{u \in M}(u \sqsubseteq x \sqcap y \Leftrightarrow u \sqsubseteq x \wedge u \sqsubseteq y) .
\end{aligned}
$$

Notice that we can prove the following equivalence (see e.g. $[6,7,8]$):

$$
\forall_{S \in 2^{M}} \forall_{x \in M}\left(x \text { sum } S \Longleftrightarrow \forall_{z \in M}\left(z \circ x \Leftrightarrow \exists_{y \in S} y \bigcirc z\right)\right)
$$

All members of M overlap 1, so in the light of (WSP) we have:

$$
\forall_{x \in M}\left(x \neq 1 \Longleftrightarrow \exists_{y \in M} y(x)\right.
$$

Hence, for any $x \neq 1$ we have $\{u \in M: u\{x\} \neq \emptyset$ and by (\%) we obtain $\bigsqcup\{u \in M: u\{x\} \neq 1$. Thus, in non-trivial mereological structures we can introduce the following unary operation $-: M \backslash\{1\} \rightarrow M \backslash\{1\}$:

$$
\begin{equation*}
x \neq 1 \Longrightarrow-x:=\bigsqcup\{u \in M: u\{x\} \tag{df-}
\end{equation*}
$$

The object $-x$ will be called the (mereological) complement of x. The following hold in all mereological structures (cf. e.g. [6, 7, 8]):

$$
\begin{gathered}
\forall_{x \in M \backslash\{1\}} x=--x, \\
\forall_{x \in M \backslash\{1\}} x(-x, \\
\forall_{x \in M \backslash\{1\}} x \sqcup-x=1, \\
\forall_{x, y \in M \backslash\{1\}}(-x=-y \Longleftrightarrow x=y), \\
\forall_{x, y \in M \backslash\{1\}}(x \sqsubseteq y \Longleftrightarrow-y \sqsubseteq-x), \\
\forall_{x, y \in M \backslash\{1\}}(x \sqsubset y \Longleftrightarrow-y \sqsubset-x), \\
\left.\forall_{x, y \in M}(x\} y \Longleftrightarrow y \neq 1 \wedge x \sqsubseteq-y\right), \\
\forall_{x, y \in M}(x \nsubseteq y \Longleftrightarrow y \neq 1 \wedge x \circ-y) .
\end{gathered}
$$

For every structure $\langle M, \sqsubseteq\rangle$ from MS we obtain:

$$
\begin{gathered}
\forall_{S \in 2^{M}} \forall_{x \in M}\left(x \operatorname{sum} S \Longleftrightarrow S \neq \emptyset \wedge x \sup _{\sqsubseteq} S\right) . \\
\forall_{S \in 2^{M} \backslash\{\emptyset\}}\left(\sqcup S=\sup _{\sqsubseteq} S\right)
\end{gathered}
$$

Thus, by $(\#):\langle M, \sqsubseteq\rangle$ is non-trivial iff there is no z such that $z \sup _{\sqsubseteq} \emptyset$ iff sum and $\sup _{\sqsubseteq}$ are equal:

$$
|M|>1 \Longleftrightarrow \forall_{S \in 2^{M}} \forall_{z \in M}\left(z \operatorname{sum} S \Leftrightarrow z \sup _{\sqsubseteq} S\right) .
$$

Of course: $x \sqcup y=\sup _{\sqsubseteq}\{x, y\}$. Moreover, we have:

$$
x \circ y \Longrightarrow x \sqcap y=\inf _{\sqsubseteq}\{x, y\} .
$$

In the light of (\%), and after Leśniewski [5, Chapter X], we can choose a different explication of the concept of a collective set. In [3] Leonard and Goodman expressed this concept in the language of set theory, as the relation of being a fusion of all elements of a given distributive set. This relation is designated by 'fu' and for all $x \in M$ and $S \subseteq M$ we put:

$$
\begin{equation*}
x \text { fu } S \Longleftrightarrow \forall_{z \in M}\left(z \circ x \Leftrightarrow \exists_{y \in S} y \circ z\right) \tag{dffu}
\end{equation*}
$$

Thus, by (\%), in all mereological structures $f u=$ sum.
We have the following equivalent axiomatizations of the class MS:
ThEOREM 1.1 ([6, 7, 8]). For any non-empty set M and any binary relation \sqsubseteq in M the following conditions are equivalent (relations \sqsubset, ○, sum, and fu are defined as above):

1. $\langle M, \sqsubseteq\rangle$ is a member of MS.
2. $\langle M, \sqsubseteq\rangle$ satisfies $\left(\mathrm{t}_{\sqsubseteq}\right)$, (fun-sum) and ($\exists \mathrm{sum}$).
3. $\langle M, \sqsubseteq\rangle$ satisfies $\left(\mathrm{t}_{\sqsubseteq}\right)$, $\left(\right.$ antis $\left._{\sqsubseteq}\right),\left(\operatorname{sep}_{\sqsubseteq}\right)$ and ($\left.\exists \mathrm{sum}\right)$.
4. $\langle M, \sqsubseteq\rangle$ satisfies $\left(\mathrm{t}_{\sqsubseteq}\right)$, (WSP), and ($\exists \mathrm{sum}$).
5. $\langle M, \sqsubseteq\rangle$ satisfies $\left(\mathrm{t}_{\sqsubseteq}\right)$, $\left(\right.$ antis $\left._{\sqsubseteq}\right)$, $\left(\operatorname{sep}_{\sqsubseteq}\right)$, and

$$
\begin{equation*}
\forall_{S \in 2^{M} \backslash\{\emptyset\}} \exists_{x \in M} x \text { fu } S . \tag{ヨfu}
\end{equation*}
$$

6. $\langle M, \sqsubseteq\rangle$ satisfies $\left(\mathrm{t}_{\sqsubseteq}\right)$, (antis $_{\sqsubseteq}$), ($\exists \mathrm{sum}$), and

$$
\begin{equation*}
\forall_{S \in 2^{M}} \forall_{x, y \in M}(x \text { fu } S \wedge y \text { fu } S \Longrightarrow x=y) . \tag{fun-fu}
\end{equation*}
$$

2. The connection between mereological structures and complete Boolean lattices (complete Boolean algebras)

The following theorems ${ }^{6}$ reveal some essential dependencies between mereological structures and complete Boolean lattices (resp. algebras).

ThEOREM 2.1 (cf. e.g. [11, 7]). Let $\langle B, \leq, o, 1\rangle$ be a non-trivial complete Boolean lattice. We put $M:=B \backslash\{0\}$ and $\sqsubseteq:=\leq\left.\right|_{M}:=\leq \cap(M \times M)$. Then $\langle M, \sqsubseteq\rangle$ is a mereological structure, 1 is the unity of $\langle M, \sqsubseteq\rangle$, and:

$$
\forall_{S \in 2^{M} \backslash\{\emptyset\}} \sup _{\leq} S=\sup _{\sqsubseteq} S=\bigsqcup S
$$

${ }^{6}$ Concerning these theorems see footnote 1 in [11, pp. 333-334].

For any Boolean algebra $\langle A,+, *,-, 0,1\rangle$ and for the relation \leq, which is defined by $(\mathrm{df} \leq), \mathrm{p} .495$, the structure $\langle A, \leq, 0,1\rangle$ is a Boolean lattice. Thus Theorem 2.1 also holds for any non-trivial complete Boolean algebra with \leq.

THEOREM 2.2 (cf. e.g. [11, 7]). Let $\langle M, \sqsubseteq\rangle$ be any mereological structure and 0 be an arbitrary object such that $0 \notin M$. We put $M^{0}:=M \cup\{0\}$ and $\sqsubseteq^{0}:=\sqsubseteq \cup\left(\{0\} \times M^{0}\right)$, i.e., for any $x, y \in M^{0}: x \sqsubseteq^{0} y \Longleftrightarrow$ $x \sqsubseteq y \vee x=0$. Then $\left\langle M^{0}, \sqsubseteq^{0}, 0,1\right\rangle$ (where 1 is the unity of $\langle M, \sqsubseteq\rangle$) is a non-trivial complete Boolean lattice such that:

$$
\forall_{S \in 2^{M} \backslash\{\emptyset\}} \sup _{\sqsubseteq^{0}} S=\sup _{\sqsubseteq} S=\bigsqcup S
$$

Moreover, for any $x, y \in M^{0}$ we have:

$$
\begin{gathered}
x+y= \begin{cases}x \sqcup y & \text { if } x, y \in M \\
x & \text { if } y=0 \\
y & \text { if } x=0\end{cases} \\
\qquad \backsim x= \begin{cases}-x & \text { if } x \in M \backslash\{1\} \\
0 & \text { if } x=1 \\
1 & \text { if } x=0\end{cases}
\end{gathered}
$$

where the operations,$+ \cdot$ and \backsim are defined by $(\mathrm{df}+)$, $(\mathrm{df} \cdot)$, and ($\mathrm{df} \sim$), respectively (pp. 495-496). So $\left\langle M^{0},+, \cdot, \backsim, 0,1\right\rangle$ is a complete Boolean algebra such that the relation \leq, introduced by ($\mathrm{df} \leq$), is equal to \sqsubseteq^{0}.

In the light of theorems 2.1 and 2.2 we obtain the following theorem. ThEOREM 2.3 (cf. e.g. [9]). For any non-empty set M and for any binary relation \sqsubseteq in M the following conditions are equivalent.
(i) $\langle M, \sqsubseteq\rangle$ belongs to MS.
(ii) For some (equivalently: any) $0 \notin M$, for $M^{0}:=M \cup\{0\}$ and for $\sqsubseteq^{0}:=\sqsubseteq \cup\left(\{0\} \times M^{0}\right)$ the structure $\left\langle M^{0}, \sqsubseteq^{0}, 0,1\right\rangle$ (where 1 is the unity of $\langle M, \sqsubseteq\rangle$) is a non-trivial complete Boolean lattice.
(iii) For some non-trivial complete Boolean lattice $\langle B, \leq, 0,1\rangle$ we have $M=B \backslash\{\mathrm{o}\}, \sqsubseteq=\leq\left.\right|_{M}$, and $1=1$.
(iv) For some non-trivial complete Boolean algebra $\langle A,+, *,-, 0,1\rangle$ we have $M=A \backslash\{0\}, 1=1$, and $\sqsubseteq=\leq\left.\right|_{M}$, where \leq is defined by ($\mathrm{df} \leq$).

Proof. "(i) \Rightarrow (ii)" By Theorem 2.2.
"(ii) $\Rightarrow($ iii $)$ " We put $B:=M^{0}, \leq:=\sqsubseteq^{0}, 0:=0$, and $1:=1$. Then $M=B \backslash\{0\}$ and $\sqsubseteq=\leq\left.\right|_{M}$.
"(ii) $\Rightarrow($ iv $)$ " In a non-trivial complete Boolean lattice $\left\langle M^{0}, \sqsubseteq^{0}, 0,1\right\rangle$ by means of ($\mathrm{df}+$), ($\mathrm{df} \cdot$) and ($\mathrm{df} \backsim$) we define the operations + , \cdot and \backsim, respectively. So $\left\langle M^{0},+, \cdot, \backsim, 0,1\right\rangle$ is a complete Boolean algebra and by Theorem 2.2 - the relation \leq, introduced by ($\mathrm{df} \leq$), is equal to \sqsubseteq^{0}. So $\sqsubseteq=\leq\left.\right|_{M}$.
"(iii) \Rightarrow (i)" By Theorem 2.1.
"(iv) $\Rightarrow(\mathrm{i})$ " By the relationship between complete Boolean algebras and complete Boolean lattices, and Theorem 2.1 (see p. 490).

3. The main result

For mereological structures we use the first-order language $\mathrm{L}_{\underline{\unrhd}}$ with equality which has only one binary predicate ' \sqsubseteq '. Of course, all mereological structures are $\mathrm{L}_{\underline{E}}$-structures.

First, we introduce the following $\mathrm{L}_{巨}$-structures: $\mathfrak{P}_{\omega}:=\left\langle 2^{\omega} \backslash\{\emptyset\}, \subseteq\right\rangle$ and $\mathfrak{F e}_{\omega}:=\langle\mathrm{FC}(\omega) \backslash\{\emptyset\}, \subseteq\rangle$, where $\mathrm{FC}(\omega)$ is the set of all finite and all co-finite subsets of ω. In [7] we noticed:

- By Theorem 2.1, \mathfrak{P}_{ω} is a mereological structure, since the Boolean lattice $\mathfrak{B}_{1}:=\left\langle 2^{\omega}, \subseteq, \emptyset, \omega\right\rangle$ is complete (see p. 497).
- By Theorem 2.2, $\mathfrak{F C}_{\omega}$ is not a mereological structure, because the Boolean lattice $\mathfrak{B}_{2}:=\langle\mathrm{FC}(\omega), \subseteq, \emptyset, \omega\rangle$ is not complete (see p. 497). Second, in [7] we proved:

FACT 3.1. The $\mathrm{L}_{\underline{\unrhd}}$-structures \mathfrak{P}_{ω} and \mathfrak{F}_{ω} are elementarily equivalent, i.e., $\operatorname{Th}\left(\mathfrak{P}_{\omega}\right)=\operatorname{Th}\left(\mathfrak{F}_{\omega}\right)$.

The proof from [7]. We use Corollary B. 4 and the following fact:
Claim. We assign to an arbitrary L_{\sqsubseteq}-structure $\mathfrak{A}=\langle A, \sqsubseteq\rangle$ an arbitrary $0 \notin A$ along with the structure $\mathfrak{A}^{\overline{0}}=\left\langle A^{0}, \sqsubseteq^{0}\right\rangle$ defined as in Theorem 2.2. We connect this structure with the first-order language L_{\leq}^{0} with identity and two specific constants: the binary predicate ' \leq ' and the individual constant ' o ', which are interpreted with the help of \sqsubseteq^{0} and 0 , respectively.

Let σ be an arbitrary L_{\sqsubseteq}-sentence. We turn σ into a L_{\leq}^{0}-sentence σ^{*} with the help of the following transformation: in place of the predicate ' \sqsubseteq ' we substitute the predicate ' \leq '; we exchange an arbitrary quantifier
binding x_{i} with a quantifier limited by the condition: $\neg x_{i}=0 .{ }^{7}$ Then: $\mathfrak{A} \vDash \sigma$ iff $\mathfrak{A}^{0} \vDash \sigma^{*}$.

So for any L_{\sqsubseteq}-sentence σ we have:

$$
\begin{aligned}
\sigma \in \operatorname{Th}\left(\mathfrak{P}_{\omega}\right) \text { (by Claim) } & \text { iff } \sigma^{*} \in \operatorname{Th}\left(\mathfrak{B}_{1}\right) \text { (by Corollary B.4) } \\
& \text { iff } \sigma^{*} \in \operatorname{Th}\left(\mathfrak{B}_{2}\right) \text { (by Claim) } \\
& \text { iff } \sigma \in \operatorname{Th}\left(\mathfrak{F C}_{\omega}\right) .
\end{aligned}
$$

Another proof based on some Result of [12]. In [12] Tsai proved that \mathfrak{P}_{ω} and $\mathfrak{F C}_{\omega}$ are models of some complete first-order $L_{巨}$-theory. So these models are elementarily equivalent.

Finally, considering the structures \mathfrak{P}_{ω} and \mathfrak{F}_{ω}, by Fact 3.1 and Fact A. 1 from Appendix A, we obtain:

ThEOREM 3.2 ([7]). The class MS of all mereological structures is not elementarily axiomatizable.

4. A comment on some result of [13]

In [13] Tsai considers a certain first-order L_{\sqsubseteq}-theory $\mathbf{C E M}+(G)$ with equality (${ }^{~} P$ ' is used instead of ' \sqsubseteq '). This theory has the following specific axioms: $\left(\mathrm{r}_{\sqsubseteq}\right),\left(\operatorname{antis}_{\sqsubseteq}\right),\left(\mathrm{t}_{\sqsubseteq}\right)$ and $\left(\operatorname{sep}_{\sqsubseteq}\right)^{8}$, and the axioms of "finite sum", "finite product" and "the greatest member":

$$
\begin{align*}
& \forall_{x} \forall_{y}\left(\exists_{u}(x \sqsubseteq u \wedge y \sqsubseteq u)\right.\left.\Longrightarrow \exists_{z} \forall_{w}(w \circ z \Leftrightarrow(w \circ x \vee w \circ y))\right) \tag{FS}\\
& \forall_{x} \forall_{y}\left(x \circ y \Longrightarrow \exists_{z} \forall_{w}(w \sqsubseteq z \Leftrightarrow(w \sqsubseteq z \wedge w \sqsubseteq y))\right) \tag{FP}\\
& \exists_{x} \forall_{y} y \sqsubseteq x . \tag{G}
\end{align*}
$$

We put $A x T:=\left\{\left(\mathrm{r}_{\sqsubseteq}\right),\left(\right.\right.$ antis $\left.\left._{\sqsubseteq}\right),\left(\mathrm{t}_{\sqsubseteq}\right),\left(\operatorname{sep}_{\sqsubseteq}\right),(\mathrm{FS}),(\mathrm{FP}),(\mathrm{G})\right\}$.
All models of the theory CEM $+(\mathrm{G})$ (i.e., all $\mathrm{L}_{巨}$-structures from $\operatorname{Mod}(A x T))$ Tsai calls "mereological structures". Moreover, Tsai says that a structure $\langle M, \sqsubseteq\rangle$ from $\operatorname{Mod}(\mathrm{AxT})$ is "complete" iff for any nonempty subset S of M, there is $x \in M$ such that x fu S, where fu is the binary relation defined by (dffu). That is, a given structure from $\operatorname{Mod}(\mathrm{AxT})$ is "complete" iff it satisfies the condition ($\exists \mathrm{fu})$. We denoted

[^3]the class of＂complete＂structures from $\operatorname{Mod}(\mathrm{AxT})$ by $\mathrm{cMod}(\mathrm{AxT})$ ．We have：$c \operatorname{Mod}(A x T) \subsetneq \operatorname{Mod}(A x T)$ ．

By Theorem 1.1 we see that the class of all L_{\sqsubseteq}－structures which sat－ isfy the conditions $\left(\mathrm{t}_{\sqsubseteq}\right)$ ，$\left(\right.$ antis $\left._{\sqsubseteq}\right)$ ，$\left(\operatorname{sep}_{\sqsubseteq}\right)$ ，（ $\exists \mathrm{fu}$ ）is equal to MS．Moreover， in the light of Section 1，all structures from MS satisfy the conditions （FS），（FP），（G）．Thus，we have： $\mathrm{cMod}(\mathrm{AxT})=\mathbf{M S}$ ．

In［13，the proof of Claim 1］the following meta－sentence：
（C）＇Being a complete mereological structure＇is first－order definable
means that＂there is such a sentence α in the mereological language［i．e． L_{\sqsubseteq} ］which defines the completeness of a mereological structure［in au－ thor＇s sense］，that is，for any mereological structure M, M is complete if and only if $M \vDash \alpha$＂．Thus－in our terminology－the meta－sentence（C） has the following meaning：
－for some sentence α in $\mathrm{L}_{巨}$ ，for any $\mathrm{L}_{巨}$－structure \mathfrak{A} from $\operatorname{Mod}(\operatorname{AxT})$ ： $\mathfrak{A} \in \operatorname{cMod}(\mathrm{AxT})$ iff $\mathfrak{A} \vDash \alpha$ ．
In other words，
－for some sentence α in $\mathrm{L}_{\underline{\underline{D}}}$ ，for any $\mathrm{L}_{\underline{\underline{E}}}$－structure $\mathfrak{A}: \mathfrak{A} \in \operatorname{cMod}(\operatorname{AxT})$ iff $\mathfrak{A} \in \operatorname{Mod}(\operatorname{AxT} \cup\{\alpha\})$ ．
So（C）says that
$\left(\mathrm{C}^{\prime}\right)$ for some sentence α in $\mathrm{L}_{巨}, \operatorname{Mod}(\mathrm{AxT} \cup\{\alpha\})=\mathrm{cMod}(\mathrm{AxT})=\mathbf{M S}$ ．
Thus，（C）says that the class MS is finitely elementarily axiomatizable ${ }^{9}$ ， since instead of any finite set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of sentences we can use $\left\ulcorner\sigma_{1} \wedge\right.$ $\left.\cdots \wedge \sigma_{n}\right\urcorner$ ．Tsai proves that（C）is not true（see［13，Claim 1］）．So－in our terminology－he proves that the class MS is not finitely elementarily axiomatizable．Our Theorem 3.2 gives the stronger result：MS is not elementarily axiomatizable．

A．Appendix：Elementarily axiomatizable classes of structures

L－structures．Models．Let L be any first－order language（with or with－ out equality）．An L－structure is an ordered pair of the form $\langle U, \Im\rangle$ ，where U is a non－empty set（the universe of structure）and \Im is a set－theoretical interpretation of non－logical symbols of L ．

[^4]If an L-formula φ is true in an L-structure \mathfrak{A}, then we write $\mathfrak{A} \vDash \varphi$. All L-formulas without free variables are called L-sentences. For any L-sentence φ and any L-structure $\mathfrak{A}: \varphi$ is true in \mathfrak{A} iff \mathfrak{A} satisfies φ.

For any set Φ of L-formulas, a model of Φ is any L-structure \mathfrak{A} such that for any $\varphi \in \Phi$ we have $\mathfrak{A} \vDash \varphi$, i.e., all formulas of Φ are true in \mathfrak{A} (we write: $\mathfrak{A} \vDash \Phi)$. Let $\operatorname{Mod}(\Phi)$ be the class of all models of Φ. Of course, for any sets of L-formulas Φ and Ψ : if $\Phi \subseteq \Psi$ then $\operatorname{Mod}(\Psi) \subseteq \operatorname{Mod}(\Phi)$.

Elementarily equivalent structures. A theory of an L-structure \mathfrak{A} is the set of all L-sentences which are true in \mathfrak{A}, that is, the following set:

$$
\operatorname{Th}(\mathfrak{A}):=\{\varphi: \varphi \text { is an } L \text {-sentence and } \mathfrak{A} \vDash \varphi\} .
$$

L-structures \mathfrak{A} and \mathfrak{B} are elementarily equivalent $\operatorname{iff} \operatorname{Th}(\mathfrak{A})=\operatorname{Th}(\mathfrak{B})$, i.e., \mathfrak{A} and \mathfrak{B} satisfy the same L-sentences.

Elementarily axiomatizable class of structures. Let \boldsymbol{K} be any class of L structures. We say that \boldsymbol{K} is elementarily axiomatizable (or elementary in the wider sense) iff there is a set Σ of L-sentences such that $\boldsymbol{K}=$ $\operatorname{Mod}(\Sigma)$. If additionally the set Σ is finite, then we say that \boldsymbol{K} is finitely elementarily axiomatizable (or elementary in the narrow sense).

Directly from definitions we obtain:
FACT A.1. Every elementarily axiomatizable class of L-structures is closed under elementary equivalence. In other words, for any class K of L-structures and any L-structures \mathfrak{A} and \mathfrak{B} : if \boldsymbol{K} is an elementarily axiomatizable, $\mathfrak{A} \in \boldsymbol{K}$ and $\operatorname{Th}(\mathfrak{A})=\operatorname{Th}(\mathfrak{B})$, then $\mathfrak{B} \in \boldsymbol{K}$.

B. Appendix: Some facts about binary relations, Boolean algebras, and Boolean lattices

Some types of binary relations. Let U be any non-empty set. All subsets of $U \times U$ are called binary relations on U. A binary relation R is called, respectively, reflexive, irreflexive, symmetric, asymmetric, antisymmetric, transitive, separative iff R fulfills respective condition from the following set:

$$
\begin{gather*}
\forall_{x \in U} x R x \\
\forall_{x \in U} \neg x R x \\
\forall_{x, y \in U}(x R y \Rightarrow y R x), \tag{R}\\
\forall_{x, y \in U} \neg(x R y \wedge y R x),
\end{gather*}
$$

$$
\begin{array}{cr}
\forall_{x, y \in U}(x R y \wedge y R x \Longrightarrow x=y), & \left(\operatorname{antis}_{R}\right) \\
\forall_{x, y, z \in U}(x R y \wedge y R z \Longrightarrow x R z), & \left(\mathrm{t}_{R}\right) \\
\forall_{x, y \in U}\left(\neg x R y \Longrightarrow \exists_{z \in U}\left(z R x \wedge \neg \exists_{u \in U}(u R y \wedge u R z)\right)\right) . & \left(\operatorname{sep}_{R}\right)
\end{array}
$$

Partially ordered sets. A pair $\langle U, R\rangle$ is a partially ordered set iff U is non-empty set and R satisfies $\left(\mathrm{r}_{R}\right)$, $\left(\right.$ antis $\left._{R}\right),\left(\mathrm{t}_{R}\right)$. Besides, $\langle U, R\rangle$ is separative iff it satisfies $\left(\operatorname{sep}_{R}\right)$.

In any partially ordered set $\langle U, R\rangle$ we introduce two binary relations $\sup _{R}$ of being of the least upper bound of and $\inf _{R}$ of being of the greatest lower bound of which are included in $U \times 2^{U}$:

$$
\left.\begin{array}{rl}
x \sup _{R} S & \Longleftrightarrow \forall_{z \in S} z R x \wedge \forall_{y \in M}\left(\forall_{z \in S} z R y \Rightarrow y R x\right), \\
x \inf _{R} S & \left(\operatorname{df}_{\sup }^{R}\right.
\end{array}\right)
$$

By (antis $_{R}$), $\sup _{R}$ and $\inf _{R}$ are (partial) functions of the second argument:

$$
\begin{aligned}
\forall_{S \in 2^{U}} \forall_{x, y \in U}\left(x \sup _{R} S \wedge y \sup _{R} S \Longrightarrow x=y\right), & \left(\text { fun-sup }{ }_{R}\right) \\
\forall_{S \in 2^{M}} \forall_{x, y \in U}\left(x \inf _{R} S \wedge y \inf _{R} S \Longrightarrow x=y\right) . & \left(\text { fun }-\inf _{R}\right)
\end{aligned}
$$

So if $x \sup _{R} S\left(\right.$ resp. $x \inf _{R} S$), then we also write $x=\sup _{R} S$ (resp. $x=\inf _{R} S$).

A partially ordered set $\langle U, R\rangle$ is called complete iff it fulfils the following condition: $\forall_{S \in 2^{U}} \exists_{x \in U} x \sup _{R} S$ (equivalently, $\forall_{S \in 2^{U}} \exists_{x \in U} x \inf _{R} S$).

Boolean algebras. An algebraic structure $\langle A,+, *,-, 0,1\rangle$ is a Boolean algebra iff it satisfies certain well-known equalities (cf. e.g. [1]). A Boolean algebra is non-trivial iff $|A|>1$ iff $0 \neq 1$. The binary relation \leq in A defined by

$$
x \leq y \Longleftrightarrow y=x+y \Longleftrightarrow x=x * y
$$

is a separative partial order.
Lattices. A partially ordered set $\langle L, \leq\rangle$ is a lattice iff for any $x, y \in L$ there are the least upper bound and the greatest lower bound of $\{x, y\}$. So we have the following two binary operations on L :

$$
\begin{align*}
x+y & :=\sup _{\leq}\{x, y\}, \tag{df+}\\
x \cdot y & :=\inf _{\leq}\{x, y\} . \tag{df.}
\end{align*}
$$

Of course, + and \cdot are idempotent and commutative, and we obtain:

$$
x \leq y \Longleftrightarrow y=x+y \Longleftrightarrow x=x \cdot y
$$

A lattice $\langle L, \leq\rangle$ is bounded iff it has a least element o and a greatest element 1, i.e., we have: $\forall_{x \in L} 0 \leq x$ and $\forall_{x \in L} x \leq 1$. Then we write $\langle L, \leq, \mathrm{o}, 1\rangle$. A bounded lattice is non-trivial iff $\mathrm{o} \neq 1$. Moreover, a bounded lattice $\langle L, \leq, 0,1\rangle$ is complemented iff each element of L has a complement, i.e., we have $\forall_{x \in L} \exists_{y \in L}(x+y=1 \wedge x \cdot y=0)$.

Boolean lattices. A bounded lattice $\langle B, \leq, 0,1\rangle$ is a Boolean lattice iff it is distributive, i.e., for the operations + and \cdot the following condition holds: $\forall_{x, y, z \in B}[x \cdot(y+z)=((x \cdot y)+(x \cdot z))]$, and complemented (see e.g. [1]). Under these conditions for any $x \in B$ there is the unique complement of x; so we can put

$$
\sim x:=(\iota z)(x+z=1 \wedge x \cdot z=0) .
$$

We have: $\langle B,+, \cdot, \backsim, 0,1\rangle$ is a Boolean algebra and $\leq=\leq$, where \leq is defined by ($\mathrm{df} \leq$).

For a Boolean lattice $\mathfrak{B}=\langle B, \leq, 0,1\rangle$, an element a of B is an atom of \mathfrak{B} iff $a \neq 0$ and for any $x \in A$: if $\mathrm{o} \neq x \neq a$, then $x \not \leq a . \mathfrak{B}$ is atomic iff for each $x \in B \backslash\{0\}$ there is an atom a such that $a \leq x$.

For any (complete) Boolean algebra $\mathfrak{A}=\langle A,+, *,-, 0,1\rangle$, the structure $\mathfrak{B}_{\mathfrak{A}}:=\langle A, \leq, 0,1\rangle$ is a (complete) Boolean lattice and the operations + , $*$, and - coincide, respectively, with,$+ \cdot$, and \backsim. Of course, atoms of \mathfrak{A} are exactly atoms of $\mathfrak{B}_{\mathfrak{A}}$. Moreover, \mathfrak{A} is atomic iff $\mathfrak{B}_{\mathfrak{A}}$ is atomic.

For all Boolean lattices we can use the first-order language $L_{\leq}^{0,1}$ with equality, which has one binary predicate ' \leq ' and two individual constans ' 0 ' and ' 1 '. Of course, all Boolean lattices are $\mathrm{L}_{\leq}^{0,1}$-structures.

Elementary invariants. Let ω be the set of all natural numbers. As in [2, pp. 289-290], to any Boolean lattice \mathfrak{B} we can assign exactly one special triple $\operatorname{inv}(\mathfrak{B})=\left\langle\operatorname{inv}_{1}(\mathfrak{B}), \operatorname{inv}_{2}(\mathfrak{B}), \operatorname{inv}_{3}(\mathfrak{B})\right\rangle$ of elementary invariants of \mathfrak{B}, where $\operatorname{inv}_{1}(\mathfrak{B}) \in\{-1\} \cup \omega, \operatorname{inv}_{2}(\mathfrak{B}) \in\{0,1\}$, and $\operatorname{inv}_{3}(\mathfrak{B}) \in \omega \cup\{\omega\}$.

Elementary invariants fully characterize Boolean lattices (algebras) with regard to their elementary equivalence (see Appendix A, p. 494). Namely, we have the following theorem:

Theorem B. 1 (cf. e.g. [2]). Any two Boolean lattices have the same elementary invariants iff they are elementarily equivalent.

Moreover, notice that the following facts hold:
Lemma B. 2 (cf. e.g. [7]). For any Boolean lattice \mathfrak{B} :

1. \mathfrak{B} is atomic iff $\operatorname{inv}_{1}(\mathfrak{B})=0=\operatorname{inv}_{2}(\mathfrak{B})$.
2. If \mathfrak{B} is atomic and has infinitely many atoms, then $\operatorname{inv}_{3}(\mathfrak{B})=\omega$.

Applications. We put $\mathfrak{B}_{1}:=\left\langle 2^{\omega}, \subseteq, \emptyset, \omega\right\rangle$ and $\mathfrak{B}_{2}:=\langle\mathrm{FC}(\omega), \subseteq\rangle$, where $\mathrm{FC}(\omega)$ is the set of all finite and all co-finite subsets of ω. It is well known that \mathfrak{B}_{1} and \mathfrak{B}_{2} are atomic non-trivial Boolean lattices, which have infinitely many atoms. Moreover, \mathfrak{B}_{1} is complete, but \mathfrak{B}_{2} is not complete. So, in the light Lemma B.2, we obtain:
$\operatorname{Corollary}$ B. $3 . \operatorname{inv}\left(\mathfrak{B}_{1}\right)=\langle 0,0, \omega\rangle=\operatorname{inv}\left(\mathfrak{B}_{2}\right)$.
Thus, from the above lemma and Theorem B.1, we have:
Corollary B.4. The Boolean lattices \mathfrak{B}_{1} and \mathfrak{B}_{2} are elementarily equivalent, i.e., $\operatorname{Th}\left(\mathfrak{B}_{1}\right)=\operatorname{Th}\left(\mathfrak{B}_{2}\right)$.

Finally, by the above corollary and Fact A.1, we get:
Theorem B.5. The class of all complete Boolean lattices (resp. algebras) is not elementarily axiomatizable.

References

[1] Koppelberg, S., "Elementary arithmetic", Chapter 1 in Handbook of Boolean Algebras. Vol. 1, J. D. Monk (ed.), North-Holland: Amsterdam, New York, Oxford, Tokyo, 1989.
[2] Koppelberg, S., "Metamathematics", Chapter 7 in Handbook of Boolean Algebras. Vol. 1, J. D. Monk (ed.), North-Holland: Amsterdam, New York, Oxford, Tokyo, 1989.
[3] Leonard, H.S., and N. Goodman, "The calculus of individuals and its uses", Journal of Symbolic Logic, 5 (1940): 45-55. DOI: 10.2307/2266169
[4] Leśniewski, S., "O podstawach matematyki. Rozdział IV", Przeglad Filozoficzny, XXXI (1928): 261-291. English version: "On the foundations of mathematics. Chapter IV", pages 226-263 in Collected Works, S. J. Surma et al. (eds.), PWN and Kluwer Academic Publishers: Dordrecht, 1991.
[5] Leśniewski, S., "O podstawach matematyki. Rozdziały VI-IX", Przeglad Filozoficzny, XXXIII (1930): 77-105. English version: "On the fundations of mathematics. Chapters VI-IX", pages 313-349 in Collected Works, S. J. Surma et al. (eds.), PWN and Kluwer Academic Publishers: Dordrecht, 1991.
[6] Pietruszczak A., 2000, "Kawałki mereologii" ("Pieces of mereology"; in Polish), pages 357-374 in Logika Ef Filozofia Logiczna. FLFL 1996-1998, J. Perzanowski and A. Pietruszczak (eds.), Nicolaus Copernicus University Press: Toruń, 2000.
[7] Pietruszczak A., Metamereologia (Metamereology; in Polish), Nicolaus Copernicus University Press: Toruń, 2000.
[8] Pietruszczak A., "Pieces of mereology", Logic and Logical Philosophy, 14 (2005): 211-234. DOI: 10.12775/LLP.2005.014
[9] Pietruszczak A., Podstawy teorii części (Foundations of the theory of parts; in Polish), Nicolaus Copernicus University Scientific Publishing Hause: Toruń, 2013.
[10] Tarski, A., "Les fondemements de la géometrie des corps", pages 2930 in Ksiega Pamiatkowa Pierwszego Zjazdu Matematycznego, Kraków, 1929. Eng. trans.: "Foundations of the geometry of solids", pages 24-29 in Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford University Press: Oxford, 1956.
[11] Tarski, A., "Zur Grundlegund der Booleschen Algebra. I", Fundamenta Mathematicae, 24: 177-198. Eng. trans.: "On the foundations of Boolean Algebra", pages 320-341 in Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford University Press: Oxford, 1956.
[12] Tsai, H., "Decidability of General Extensional Mereology", Studia Logica 101, 3 (2013): 619-636. DOI: 10.1007/s11225-012-9400-4
[13] Tsai, H., "Notes on models of first-order mereological theories", Logic and Logical Philosophy (published online: April 28, 2015).
DOI: 10.12775/LLP.2005.009

Andrzej Pietruszczak
Department of Logic
Faculty of Humanities
Nicolaus Copernicus University in Toruń, Poland
pietrusz@umk.pl

[^0]: ${ }^{1}$ I.e., the relation \sqsubseteq in M satisfies the condition $\left(\mathrm{t}_{\sqsubseteq}\right)$ being a special case of $\left(\mathrm{t}_{R}\right)$ given in Appendix B, where $R:=\sqsubseteq$ and $U:=M$ (p. 495).
 ${ }^{2}$ A formula of the form $\left\ulcorner\exists_{x \in X}^{1} \varphi(x)\right\urcorner$ says that in a set X there exists exactly one object x such that $\varphi(x)$. This formula is an abbreviation of $\left\ulcorner\exists_{x \in X} \varphi(x) \wedge\right.$ $\left.\forall_{x, y \in X}(\varphi(x) \wedge \varphi(x / y) \Rightarrow x=y)\right\urcorner$.

[^1]: ${ }^{3}$ See the conditions $\left(\mathrm{r}_{R}\right),\left(\operatorname{antis}_{R}\right)$, and $\left(\operatorname{sep}_{R}\right)$ from Appendix B for $R:=\sqsubseteq$ and $U:=M$ (pp. 494-495).
 ${ }^{4}$ The Greek letter ' ι ' stands for the standard description operator. The expression $\ulcorner(\iota x) \varphi(x)\urcorner$ is read "the only object x which satisfies the condition $\varphi(x)$ ". Before using it, first we have to prove that there exists exactly one object x such that $\varphi(x)$, i.e., $\exists_{x}^{1} \varphi(x)$.

[^2]: ${ }^{5}$ Again, see the conditions $\left(\operatorname{irr}_{R}\right),\left(\mathrm{as}_{R}\right),\left(\mathrm{t}_{R}\right),\left(\mathrm{r}_{R}\right)$, and $\left(\mathrm{s}_{R}\right)$ from Appendix B for $U:=M$ and $R:=\sqsubset, \circ$, , , respectively (pp. 494-495).

[^3]: ${ }^{7}$ Formally: after exchanging the predicate ' \sqsubseteq ', instead of $\left\ulcorner\forall_{x_{i}} \varphi\right\urcorner$ and $\left\ulcorner\exists_{x_{i}} \varphi\right\urcorner$ we take $\left\ulcorner\forall_{x_{i}}\left(\neg x_{i}=0 \rightarrow \varphi\right)\right\urcorner$ and $\left\ulcorner\exists_{x_{i}}\left(\neg x_{i}=0 \wedge \varphi\right)\right\urcorner$, respectively.
 ${ }^{8}$ In [13] these are the formulas: (P1)-(P3), and (SSP), respectively

[^4]: ${ }^{9}$ See Appendix A，p． 494

