

Logic and Logical Philosophy Volume 24 (2015), 485–498 DOI: 10.12775/LLP.2015.017

## Andrzej Pietruszczak

## CLASSICAL MEREOLOGY IS NOT ELEMENTARILY AXIOMATIZABLE

**Abstract.** By the classical mereology I mean a theory of mereological structures in the sense of [10]. In [7] I proved that the class of these structures is not elementarily axiomatizable. In this paper a new version of this result is presented, which according to my knowledge is the first such presentation in English. A relation of this result to a certain Hsing-chien Tsai's theorem from [13] is emphasized.

**Keywords**: classical mereology; mereological structures; the absence of elementary definability of classical mereology

## 1. Mereological structures

By a mereological structure (in Tarski sense [10]) we mean any relational structure of the form  $\langle M, \sqsubseteq \rangle$ , with a non-empty set M and a transitive relation  $\sqsubseteq$  in M, <sup>1</sup> satisfying the following condition:<sup>2</sup>

$$\forall_{S \in 2^M \backslash \{\emptyset\}} \exists_{x \in M}^1 \; x \; \mathsf{sum} \; S \,, \tag{\exists^1 \mathsf{sum}}$$

where sum is the following binary relation in  $M \times 2^M$ :

$$x \operatorname{sum} S \iff \forall_{y \in S} \ y \sqsubseteq x \ \land \\ \forall_{z \in M} \big( z \sqsubseteq x \ \Rightarrow \ \exists_{y \in S} \exists_{u \in M} \big( u \sqsubseteq y \ \land \ u \sqsubseteq z \big) \big).$$

<sup>&</sup>lt;sup>1</sup> I.e., the relation  $\sqsubseteq$  in M satisfies the condition  $(\mathbf{t}_{\sqsubseteq})$  being a special case of  $(\mathbf{t}_{\mathbb{R}})$  given in Appendix B, where  $R := \sqsubseteq$  and U := M (p. 495).

<sup>&</sup>lt;sup>2</sup> A formula of the form  $\ulcorner \exists_{x \in X}^1 \varphi(x) \urcorner$  says that in a set X there exists exactly one object x such that  $\varphi(x)$ . This formula is an abbreviation of  $\ulcorner \exists_{x \in X} \varphi(x) \land \forall_{x,y \in X} (\varphi(x) \land \varphi(x/y) \Rightarrow x = y) \urcorner$ .



The class of all mereological structures will be denoted by 'MS'. Following Leśniewski [4], we call  $\sqsubseteq$  an ingrediens relation and in the case of  $x \sqsubseteq y$  we say that x is ingrediens of y (i.e., x is (proper) part of y or x = y; see ( $\star$ )). Moreover, in the case of x sum S we say that an object x is a mereological sum (or a collective class) of all members of a (distributive) set S. The axioms ( $t_{\sqsubseteq}$ ) and ( $\exists^1$ sum) say, respectively, that the relation  $\sqsubseteq$  is transitive in M and that for every non-empty subset S of M there exists exactly one mereological sum of all members of S.

For any structure  $\langle M, \sqsubseteq \rangle$  from the class **MS** we obtain that  $\sqsubseteq$  is a separative partial order, i.e.,  $\sqsubseteq$  is also reflexive, antisymmetrical and separative, i.e.,  $\sqsubseteq$  satisfies the conditions  $(r_{\sqsubseteq})$ ,  $(antis_{\sqsubseteq})$ , and  $(sep_{\sqsubseteq})$  (see [6, 7, 8, 10]).<sup>3</sup>

From  $(r_{-})$  we obtain that sum is included in  $M \times 2^{M} \setminus \{\emptyset\}$ , that is:

$$\forall_{S \in 2^M} (\exists_{x \in M} \ x \text{ sum } S \Longrightarrow S \neq \emptyset),$$

so, in the light of  $(\exists^1 sum)$ , we have:

$$\forall_{S \in 2^M \setminus \{\emptyset\}} \exists_{x \in M} \ x \text{ sum } S, \tag{\exists sum}$$

$$\forall_{S \in 2^M} \forall_{x,y \in M} (x \text{ sum } S \ \land \ y \text{ sum } S \Longrightarrow x = y), \tag{fun-sum}$$

i.e., the relation sum is a (partial) function of the second argument.

By  $(\exists^1 sum)$ , there exists the unity 1 of this structure, since  $M \neq \emptyset$ :<sup>4</sup>

$$\begin{split} \mathbf{1} &:= (\iota\,z)\,z\,\mathop{\mathrm{sum}}\nolimits\,M\,,\\ \mathbf{1} &= (\iota\,z)\,\forall_{u\in M}\;y\sqsubseteq z\,. \end{split} \tag{df 1}$$

Moreover, we can introduce a unary (partial) operation on  $2^M \setminus \{\emptyset\}$  of being of the mereological sum of all members of a given non-empty set:

$$S \neq \emptyset \implies \bigsqcup S := (\iota z) z \operatorname{sum} S. \tag{df}$$

Thus,  $1 = \bigsqcup M$  and we can introduce the following binary operation in M:

$$x \sqcup y := \coprod \{x, y\}.$$
 (df  $\sqcup$ )

<sup>&</sup>lt;sup>3</sup> See the conditions  $(\mathbf{r}_R)$ ,  $(\operatorname{antis}_R)$ , and  $(\operatorname{sep}_R)$  from Appendix B for  $R := \sqsubseteq$  and U := M (pp. 494–495).

<sup>&</sup>lt;sup>4</sup> The Greek letter ' $\iota$ ' stands for the standard description operator. The expression  $\lceil(\iota x)\,\varphi(x)\rceil$  is read "the only object x which satisfies the condition  $\varphi(x)$ ". Before using it, first we have to prove that there exists exactly one object x such that  $\varphi(x)$ , i.e.,  $\exists_x^1 \varphi(x)$ .



Of course,  $\sqcup$  is idempotent and commutative, and we obtain:

$$x \sqcup y = \bigsqcup \{u \in M : u \sqsubseteq x \lor u \sqsubseteq y\}.$$
$$x \sqsubseteq y \iff y = x \sqcup y.$$

For any mereological structure  $\langle M, \sqsubseteq \rangle$  we introduce three auxiliary binary relations in M: of being (proper) part, of overlapping and of being exterior to:

$$x \sqsubset y \iff x \sqsubseteq y \land x \neq y,$$
 (df  $\sqsubset$ )

$$x \circ y \iff \exists_{z \in M} (z \sqsubseteq x \land z \sqsubseteq y),$$
 (df  $\circ$ )

$$x \wr y \iff \neg x \circ y.$$
 (df?)

If  $x \sqsubseteq y$  (resp.  $x \circ y$ ;  $x \wr y$ ), then we say that: x is (proper) part of y (resp. x overlaps y; x is exterior to y). Of course,  $\circ$  and  $\wr$  are symmetric. By  $(r_{\sqsubseteq})$ ,  $\circ$  is reflexive,  $\wr$  is irreflexive,  $\sqsubseteq$  is included in  $\circ$  (so  $\wr$  is disjoint from  $\sqsubseteq$  and  $\sqsubseteq$ ). The relation  $\sqsubseteq$  is irreflexive, asymmetric, and transitive. Thus, we have the following conditions:  $(irr_{\sqsubseteq})$ ,  $(as_{\trianglerighteq})$ ,  $(t_{\trianglerighteq})$ ,  $(r_{\circ})$ ,  $(s_{\circ})$ ,  $(irr_{\wr})$ , and  $(s_{\wr})$ . Moreover, all mereological structures satisfy the so-called Weak Supplementation Principle:

$$\forall_{x,y \in M} (x \sqsubset y \implies \exists_{z \in M} (z \sqsubset y \land z \wr x)). \tag{WSP}$$

The aforementioned formula ( $\sup_{\sqsubseteq}$ ) is called *Strong Supplementation Principle*.

By  $(r_{\sqsubset})$  and  $(antis_{\sqsubset})$ , we also obtain:

$$\forall_{x,y \in M} (x \sqsubseteq y \iff x \sqsubseteq y \lor x = y),$$

$$\forall_{x,y \in M} (x \sqsubseteq y \iff x \sqsubseteq y \land y \not\sqsubseteq x),$$

$$(\star)$$

We say that a mereological structure  $\langle M, \sqsubseteq \rangle$  is non-trivial iff M has at least two members. It is equivalent to the fact that M has at least two members which are exterior to each other and to the fact that in M there is no smallest element, that is:

$$|M| > 1 \iff \exists_{x,y \in M} \ x \ y \iff \neg \exists_{x \in M} \forall_{y \in M} \ x \sqsubseteq y, \qquad (\#)$$

where |M| is the cardinality of M.

By  $(\mathbf{r}_{\sqsubseteq})$ , we have  $\{\langle x,y\rangle \in M \times M : x \circ y\} \neq \emptyset$ . So, by  $(\exists^{\mathsf{1}}\mathsf{sum})$ , we can introduce the following partial binary operation  $\sqcap \colon \{\langle x,y\rangle \in M \times M : x \circ y\} \to M$ :

$$x \circ y \implies x \sqcap y := \bigsqcup \{u \in M : u \sqsubseteq x \ \land \ u \sqsubseteq y\}. \tag{df} \ \sqcap)$$

<sup>&</sup>lt;sup>5</sup> Again, see the conditions  $(irr_R)$ ,  $(as_R)$ ,  $(t_R)$ ,  $(r_R)$ , and  $(s_R)$  from Appendix B for U := M and  $R := \square, \bigcirc, \langle$ , respectively (pp. 494–495).



The object  $x \sqcap y$  is called the (*mereological*) product of two overlapping objects x and y. For the operations  $\sqcup$  and  $\sqcap$  we obtain:

$$x \circ y \implies (x = x \sqcap y \Leftrightarrow y = x \sqcup y),$$
  
$$x \circ y \implies \forall_{u \in M} (u \sqsubseteq x \sqcap y \Leftrightarrow u \sqsubseteq x \land u \sqsubseteq y).$$

Notice that we can prove the following equivalence (see e.g. [6, 7, 8]):

$$\forall_{S \in 2^M} \forall_{x \in M} (x \text{ sum } S \iff \forall_{z \in M} (z \circ x \iff \exists_{y \in S} \ y \circ z)). \tag{\%}$$

All members of M overlap 1, so in the light of (WSP) we have:

$$\forall_{x \in M} (x \neq 1 \iff \exists_{y \in M} \ y \ (x).$$

Hence, for any  $x \neq 1$  we have  $\{u \in M : u \mid x\} \neq \emptyset$  and by (%) we obtain  $\bigcup \{u \in M : u \mid x\} \neq 1$ . Thus, in non-trivial mereological structures we can introduce the following unary operation  $-: M \setminus \{1\} \rightarrow M \setminus \{1\}$ :

$$x \neq 1 \implies -x := \bigsqcup \{ u \in M : u \wr x \}. \tag{df-}$$

The object -x will be called the (mereological) complement of x. The following hold in all mereological structures (cf. e.g. [6, 7, 8]):

$$\forall_{x \in M \setminus \{1\}} \ x = --x,$$

$$\forall_{x \in M \setminus \{1\}} \ x \not (-x,$$

$$\forall_{x \in M \setminus \{1\}} \ x \sqcup -x = 1,$$

$$\forall_{x,y \in M \setminus \{1\}} (-x = -y \iff x = y),$$

$$\forall_{x,y \in M \setminus \{1\}} (x \sqsubseteq y \iff -y \sqsubseteq -x),$$

$$\forall_{x,y \in M \setminus \{1\}} (x \sqsubseteq y \iff -y \sqsubseteq -x),$$

$$\forall_{x,y \in M \setminus \{1\}} (x \sqsubseteq y \iff y \neq 1 \land x \sqsubseteq -y),$$

$$\forall_{x,y \in M} (x \not \subseteq y \iff y \neq 1 \land x \bigcirc -y).$$

For every structure  $\langle M, \sqsubseteq \rangle$  from **MS** we obtain:

$$\forall_{S \in 2^M} \forall_{x \in M} (x \text{ sum } S \iff S \neq \emptyset \land x \text{ sup}_{\sqsubseteq} S).$$
$$\forall_{S \in 2^M \setminus \{\emptyset\}} (\bigsqcup S = \sup_{\sqsubseteq} S)$$

Thus, by (#):  $\langle M, \sqsubseteq \rangle$  is non-trivial iff there is no z such that  $z \sup_{\sqsubseteq} \emptyset$  iff sum and  $\sup_{\sqsubseteq}$  are equal:

$$|M|>1\iff \forall_{S\in 2^M}\forall_{z\in M}(z\;\mathrm{sum}\;S\;\Leftrightarrow\;z\;\mathrm{sup}_{\sqsubset}\;S).$$



Of course:  $x \sqcup y = \sup_{\square} \{x, y\}$ . Moreover, we have:

$$x \circ y \implies x \cap y = \inf_{\square} \{x, y\}.$$

In the light of (%), and after Leśniewski [5, Chapter X], we can choose a different explication of the concept of a *collective set*. In [3] Leonard and Goodman expressed this concept in the language of set theory, as the relation of *being a fusion of* all elements of a given distributive set. This relation is designated by 'fu' and for all  $x \in M$  and  $S \subseteq M$  we put:

$$x \text{ fu } S \iff \forall_{z \in M} (z \circ x \iff \exists_{y \in S} \ y \circ z).$$
 (df fu)

Thus, by (%), in all mereological structures fu = sum.

We have the following equivalent axiomatizations of the class MS:

THEOREM 1.1 ([6, 7, 8]). For any non-empty set M and any binary relation  $\sqsubseteq$  in M the following conditions are equivalent (relations  $\sqsubseteq$ ,  $\bigcirc$ , sum, and fu are defined as above):

- 1.  $\langle M, \sqsubseteq \rangle$  is a member of **MS**.
- 2.  $\langle M, \sqsubseteq \rangle$  satisfies  $(t_{\sqsubset})$ , (fun-sum) and  $(\exists \text{sum})$ .
- 3.  $\langle M, \sqsubseteq \rangle$  satisfies  $(t_{\sqsubseteq})$ ,  $(antis_{\sqsubseteq})$ ,  $(sep_{\vdash})$  and  $(\exists sum)$ .
- 4.  $\langle M, \sqsubseteq \rangle$  satisfies  $(t_{\sqsubseteq})$ , (WSP), and  $(\exists sum)$ .
- 5.  $\langle M, \sqsubseteq \rangle$  satisfies  $(t_{\sqsubseteq})$ ,  $(antis_{\sqsubseteq})$ ,  $(sep_{\vdash})$ , and

$$\forall_{S \in 2^M \setminus \{\emptyset\}} \exists_{x \in M} \ x \text{ fu } S. \tag{\exists fu}$$

6.  $\langle M, \sqsubseteq \rangle$  satisfies  $(t_{\sqsubseteq})$ ,  $(antis_{\sqsubseteq})$ ,  $(\exists sum)$ , and

$$\forall_{S \in 2^M} \forall_{x,y \in M} (x \text{ fu } S \ \land \ y \text{ fu } S \Longrightarrow x = y). \tag{fun-fu}$$

## 2. The connection between mereological structures and complete Boolean lattices (complete Boolean algebras)

The following theorems<sup>6</sup> reveal some essential dependencies between mereological structures and complete Boolean lattices (resp. algebras).

THEOREM 2.1 (cf. e.g. [11, 7]). Let  $\langle B, \leq, 0, 1 \rangle$  be a non-trivial complete Boolean lattice. We put  $M := B \setminus \{0\}$  and  $\sqsubseteq := \leq |_M := \leq \cap (M \times M)$ . Then  $\langle M, \sqsubseteq \rangle$  is a mereological structure, 1 is the unity of  $\langle M, \sqsubseteq \rangle$ , and:

$$\forall_{S \in 2^M \setminus \{\emptyset\}} \sup_{\le} S = \sup_{\sqsubseteq} S = \bigsqcup S$$
.

 $<sup>^6\,</sup>$  Concerning these theorems see footnote 1 in [11, pp. 333–334].



For any Boolean algebra  $\langle A, +, *, \neg, 0, 1 \rangle$  and for the relation  $\leq$ , which is defined by (df  $\leq$ ), p. 495, the structure  $\langle A, \leq, 0, 1 \rangle$  is a Boolean lattice. Thus Theorem 2.1 also holds for any non-trivial complete Boolean algebra with  $\leq$ .

THEOREM 2.2 (cf. e.g. [11, 7]). Let  $\langle M, \sqsubseteq \rangle$  be any mereological structure and  $\theta$  be an arbitrary object such that  $\theta \notin M$ . We put  $M^{\theta} := M \cup \{\theta\}$  and  $\sqsubseteq^{\theta} := \sqsubseteq \cup (\{\theta\} \times M^{\theta})$ , i.e., for any  $x, y \in M^{\theta} : x \sqsubseteq^{\theta} y \iff x \sqsubseteq y \lor x = \theta$ . Then  $\langle M^{\theta}, \sqsubseteq^{\theta}, \theta, 1 \rangle$  (where 1 is the unity of  $\langle M, \sqsubseteq \rangle$ ) is a non-trivial complete Boolean lattice such that:

$$\forall_{S \in 2^M \setminus \{\emptyset\}} \sup_{\square^{\theta}} S = \sup_{\square} S = \bigsqcup S. \tag{\dagger}$$

Moreover, for any  $x, y \in M^0$  we have:

$$x + y = \begin{cases} x \sqcup y & \text{if } x, y \in M \\ x & \text{if } y = 0 \\ y & \text{if } x = 0 \end{cases} \qquad x \cdot y = \begin{cases} x \sqcap y & \text{if } x \circ y \\ 0 & \text{otherwise} \end{cases}$$

$$\sim x = \begin{cases}
-x & \text{if } x \in M \setminus \{1\} \\
0 & \text{if } x = 1 \\
1 & \text{if } x = 0
\end{cases}$$

where the operations +,  $\cdot$  and  $\backsim$  are defined by (df+),  $(df \cdot)$ , and  $(df \backsim)$ , respectively (pp. 495–496). So  $\langle M^0, +, \cdot, \backsim, 0, 1 \rangle$  is a complete Boolean algebra such that the relation  $\leq$ , introduced by  $(df \leq)$ , is equal to  $\sqsubseteq^0$ .

In the light of theorems 2.1 and 2.2 we obtain the following theorem.

THEOREM 2.3 (cf. e.g. [9]). For any non-empty set M and for any binary relation  $\square$  in M the following conditions are equivalent.

- (i)  $\langle M, \sqsubseteq \rangle$  belongs to **MS**.
- (ii) For some (equivalently: any)  $0 \notin M$ , for  $M^0 := M \cup \{0\}$  and for  $\sqsubseteq^0 := \sqsubseteq \cup (\{0\} \times M^0)$  the structure  $\langle M^0, \sqsubseteq^0, 0, 1 \rangle$  (where 1 is the unity of  $\langle M, \sqsubseteq \rangle$ ) is a non-trivial complete Boolean lattice.
- (iii) For some non-trivial complete Boolean lattice  $\langle B, \leq, 0, 1 \rangle$  we have  $M = B \setminus \{0\}, \sqsubseteq 1 \leq M$ , and 1 = 1.
- (iv) For some non-trivial complete Boolean algebra  $\langle A, +, *, \neg, 0, 1 \rangle$  we have  $M = A \setminus \{0\}$ , 1 = 1, and  $\sqsubseteq = \leq |_M$ , where  $\leq$  is defined by  $(\operatorname{df} \leq)$ .



PROOF. " $(i) \Rightarrow (ii)$ " By Theorem 2.2.

"(ii) $\Rightarrow$ (iii)" We put  $B:=M^0, \leq := \sqsubseteq^0, o:=0, \text{ and } 1:=1.$  Then  $M=B\setminus\{o\}$  and  $\sqsubseteq=\leq|_M.$ 

"(ii) $\Rightarrow$ (iv)" In a non-trivial complete Boolean lattice  $\langle M^{\theta}, \sqsubseteq^{\theta}, \theta, 1 \rangle$  by means of  $(\mathbf{df}+)$ ,  $(\mathbf{df}\cdot)$  and  $(\mathbf{df} \backsim)$  we define the operations +,  $\cdot$  and  $\backsim$ , respectively. So  $\langle M^{\theta}, +, \cdot, \backsim, \theta, 1 \rangle$  is a complete Boolean algebra and — by Theorem 2.2—the relation  $\leq$ , introduced by  $(\mathbf{df} \leq)$ , is equal to  $\sqsubseteq^{\theta}$ . So  $\sqsubseteq = \leq |_{M}$ .

"(iii) $\Rightarrow$ (i)" By Theorem 2.1.

"(iv) $\Rightarrow$ (i)" By the relationship between complete Boolean algebras and complete Boolean lattices, and Theorem 2.1 (see p. 490).

#### 3. The main result

For mereological structures we use the first-order language  $L_{\sqsubseteq}$  with equality which has only one binary predicate ' $\sqsubseteq$ '. Of course, all mereological structures are  $L_{\sqsubset}$ -structures.

First, we introduce the following  $L_{\sqsubseteq}$ -structures:  $\mathfrak{P}_{\omega} := \langle 2^{\omega} \setminus \{\emptyset\}, \subseteq \rangle$  and  $\mathfrak{FC}_{\omega} := \langle FC(\omega) \setminus \{\emptyset\}, \subseteq \rangle$ , where  $FC(\omega)$  is the set of all finite and all co-finite subsets of  $\omega$ . In [7] we noticed:

- By Theorem 2.1,  $\mathfrak{P}_{\omega}$  is a mereological structure, since the Boolean lattice  $\mathfrak{B}_1 := \langle 2^{\omega}, \subseteq, \emptyset, \omega \rangle$  is complete (see p. 497).
- By Theorem 2.2,  $\mathfrak{FC}_{\omega}$  is not a mereological structure, because the Boolean lattice  $\mathfrak{B}_2 := \langle FC(\omega), \subseteq, \emptyset, \omega \rangle$  is not complete (see p. 497). Second, in [7] we proved:

FACT 3.1. The  $L_{\sqsubseteq}$ -structures  $\mathfrak{P}_{\omega}$  and  $\mathfrak{FC}_{\omega}$  are elementarily equivalent, i.e.,  $\operatorname{Th}(\mathfrak{P}_{\omega}) = \operatorname{Th}(\mathfrak{FC}_{\omega})$ .

The proof from [7]. We use Corollary B.4 and the following fact:

CLAIM. We assign to an arbitrary  $L_{\sqsubseteq}$ -structure  $\mathfrak{A} = \langle A, \sqsubseteq \rangle$  an arbitrary  $0 \notin A$  along with the structure  $\mathfrak{A}^0 = \langle A^0, \sqsubseteq^0 \rangle$  defined as in Theorem 2.2. We connect this structure with the first-order language  $L_{\leq}^{\circ}$  with identity and two specific constants: the binary predicate ' $\leq$ ' and the individual constant 'o', which are interpreted with the help of  $\sqsubseteq^0$  and 0, respectively.

Let  $\sigma$  be an arbitrary  $L_{\sqsubseteq}$ -sentence. We turn  $\sigma$  into a  $L_{\leq}^{\circ}$ -sentence  $\sigma^*$  with the help of the following transformation: in place of the predicate ' $\sqsubseteq$ ' we substitute the predicate ' $\leq$ '; we exchange an arbitrary quantifier



binding  $x_i$  with a quantifier limited by the condition:  $\neg x_i = 0.7$  Then:  $\mathfrak{A} \models \sigma$  iff  $\mathfrak{A}^0 \models \sigma^*$ .

So for any  $L_{\square}$ -sentence  $\sigma$  we have:

$$\sigma \in \operatorname{Th}(\mathfrak{P}_{\omega})$$
 (by Claim) iff  $\sigma^* \in \operatorname{Th}(\mathfrak{B}_1)$  (by Corollary B.4) iff  $\sigma^* \in \operatorname{Th}(\mathfrak{B}_2)$  (by Claim) iff  $\sigma \in \operatorname{Th}(\mathfrak{F}\mathfrak{C}_{\omega})$ .

Another proof based on some result of [12]. In [12] Tsai proved that  $\mathfrak{P}_{\omega}$  and  $\mathfrak{F}\mathfrak{C}_{\omega}$  are models of some complete first-order  $L_{\sqsubseteq}$ -theory. So these models are elementarily equivalent.

Finally, considering the structures  $\mathfrak{P}_{\omega}$  and  $\mathfrak{FC}_{\omega}$ , by Fact 3.1 and Fact A.1 from Appendix A, we obtain:

THEOREM 3.2 ([7]). The class **MS** of all mereological structures is not elementarily axiomatizable.

### 4. A comment on some result of [13]

In [13] Tsai considers a certain first-order  $L_{\sqsubseteq}$ -theory  $\mathbf{CEM} + (G)$  with equality ('P' is used instead of ' $\sqsubseteq$ '). This theory has the following specific axioms:  $(r_{\sqsubseteq})$ ,  $(antis_{\sqsubseteq})$ ,  $(t_{\sqsubseteq})$  and  $(sep_{\sqsubseteq})^8$ , and the axioms of "finite sum", "finite product" and "the greatest member":

$$\forall_{x}\forall_{y}(\exists_{u}(x\sqsubseteq u \land y\sqsubseteq u) \implies \exists_{z}\forall_{w}(w \circ z \Leftrightarrow (w \circ x \lor w \circ y))) \quad \text{(FS)}$$

$$\forall_{x}\forall_{y}(x \circ y \implies \exists_{z}\forall_{w}(w\sqsubseteq z \Leftrightarrow (w\sqsubseteq z \land w\sqsubseteq y))) \quad \text{(FP)}$$

$$\exists_{x}\forall_{y} y\sqsubseteq x \,. \quad \text{(G)}$$

We put  $AxT := \{(r_{\sqsubset}), (antis_{\sqsubset}), (t_{\sqsubset}), (sep_{\sqsubset}), (FS), (FP), (G)\}.$ 

All models of the theory  $\mathbf{CEM} + (G)$  (i.e., all  $L_{\sqsubseteq}$ -structures from  $\mathrm{Mod}(\mathrm{AxT})$ ) Tsai calls "mereological structures". Moreover, Tsai says that a structure  $\langle M, \sqsubseteq \rangle$  from  $\mathrm{Mod}(\mathrm{AxT})$  is "complete" iff for any nonempty subset S of M, there is  $x \in M$  such that x fu S, where fu is the binary relation defined by (dffu). That is, a given structure from  $\mathrm{Mod}(\mathrm{AxT})$  is "complete" iff it satisfies the condition ( $\exists \mathsf{fu}$ ). We denoted

<sup>&</sup>lt;sup>7</sup> Formally: after exchanging the predicate ' $\sqsubseteq$ ', instead of  $\ulcorner \forall_{x_i} \varphi \urcorner$  and  $\ulcorner \exists_{x_i} \varphi \urcorner$  we take  $\ulcorner \forall_{x_i} (\lnot x_i = 0 \rightarrow \varphi) \urcorner$  and  $\ulcorner \exists_{x_i} (\lnot x_i = 0 \land \varphi) \urcorner$ , respectively.

 $<sup>^{8}</sup>$  In [13] these are the formulas: (P1)–(P3), and (SSP), respectively



the class of "complete" structures from Mod(AxT) by cMod(AxT). We have:  $cMod(AxT) \subseteq Mod(AxT)$ .

By Theorem 1.1 we see that the class of all  $L_{\sqsubseteq}$ -structures which satisfy the conditions  $(t_{\sqsubseteq})$ ,  $(antis_{\sqsubseteq})$ ,  $(sep_{\sqsubseteq})$ ,  $(\exists fu)$  is equal to MS. Moreover, in the light of Section 1, all structures from MS satisfy the conditions (FS), (FP), (G). Thus, we have: cMod(AxT) = MS.

In [13, the proof of Claim 1] the following meta-sentence:

(C) 'Being a complete mereological structure' is first-order definable

means that "there is such a sentence  $\alpha$  in the mereological language [i.e.  $L_{\sqsubseteq}$ ] which defines the completeness of a mereological structure [in author's sense], that is, for any mereological structure M, M is complete if and only if  $M \vDash \alpha$ ". Thus—in our terminology—the meta-sentence (C) has the following meaning:

• for some sentence  $\alpha$  in  $L_{\sqsubseteq}$ , for any  $L_{\sqsubseteq}$ -structure  $\mathfrak A$  from Mod(AxT):  $\mathfrak A \in \operatorname{cMod}(\operatorname{AxT})$  iff  $\mathfrak A \models \alpha$ .

In other words,

• for some sentence  $\alpha$  in  $L_{\sqsubseteq}$ , for any  $L_{\sqsubseteq}$ -structure  $\mathfrak{A}$ :  $\mathfrak{A} \in \operatorname{cMod}(\operatorname{AxT})$  iff  $\mathfrak{A} \in \operatorname{Mod}(\operatorname{AxT} \cup \{\alpha\})$ .

So (C) says that

(C') for some sentence  $\alpha$  in  $L_{\sqsubseteq}$ ,  $\operatorname{Mod}(\operatorname{AxT} \cup \{\alpha\}) = \operatorname{cMod}(\operatorname{AxT}) = MS$ .

Thus, (C) says that the class **MS** is finitely elementarily axiomatizable<sup>9</sup>, since instead of any finite set  $\{\sigma_1, \ldots, \sigma_n\}$  of sentences we can use  $\lceil \sigma_1 \land \cdots \land \sigma_n \rceil$ . Tsai proves that (C) is not true (see [13, Claim 1]). So—in our terminology—he proves that the class **MS** is not finitely elementarily axiomatizable. Our Theorem 3.2 gives the stronger result: **MS** is not elementarily axiomatizable.

## A. Appendix: Elementarily axiomatizable classes of structures

**L-structures.** Models. Let L be any first-order language (with or without equality). An L-structure is an ordered pair of the form  $\langle U, \Im \rangle$ , where U is a non-empty set (the universe of structure) and  $\Im$  is a set-theoretical interpretation of non-logical symbols of L.

<sup>&</sup>lt;sup>9</sup> See Appendix A, p. 494



If an L-formula  $\varphi$  is true in an L-structure  $\mathfrak{A}$ , then we write  $\mathfrak{A} \models \varphi$ . All L-formulas without free variables are called L-sentences. For any L-sentence  $\varphi$  and any L-structure  $\mathfrak{A}$ :  $\varphi$  is true in  $\mathfrak{A}$  iff  $\mathfrak{A}$  satisfies  $\varphi$ .

For any set  $\Phi$  of L-formulas, a model of  $\Phi$  is any L-structure  $\mathfrak{A}$  such that for any  $\varphi \in \Phi$  we have  $\mathfrak{A} \models \varphi$ , i.e., all formulas of  $\Phi$  are true in  $\mathfrak{A}$  (we write:  $\mathfrak{A} \models \Phi$ ). Let  $\operatorname{Mod}(\Phi)$  be the class of all models of  $\Phi$ . Of course, for any sets of L-formulas  $\Phi$  and  $\Psi$ : if  $\Phi \subseteq \Psi$  then  $\operatorname{Mod}(\Psi) \subseteq \operatorname{Mod}(\Phi)$ .

**Elementarily equivalent structures.** A theory of an L-structure  $\mathfrak{A}$  is the set of all L-sentences which are true in  $\mathfrak{A}$ , that is, the following set:

$$Th(\mathfrak{A}) := \{ \varphi : \varphi \text{ is an } L\text{-sentence and } \mathfrak{A} \models \varphi \}.$$

L-structures  $\mathfrak{A}$  and  $\mathfrak{B}$  are elementarily equivalent iff  $\mathrm{Th}(\mathfrak{A})=\mathrm{Th}(\mathfrak{B}),$  i.e.,  $\mathfrak{A}$  and  $\mathfrak{B}$  satisfy the same L-sentences.

Elementarily axiomatizable class of structures. Let K be any class of L-structures. We say that K is elementarily axiomatizable (or elementary in the wider sense) iff there is a set  $\Sigma$  of L-sentences such that  $K = \operatorname{Mod}(\Sigma)$ . If additionally the set  $\Sigma$  is finite, then we say that K is finitely elementarily axiomatizable (or elementary in the narrow sense).

Directly from definitions we obtain:

FACT A.1. Every elementarily axiomatizable class of L-structures is closed under elementary equivalence. In other words, for any class K of L-structures and any L-structures  $\mathfrak A$  and  $\mathfrak B$ : if K is an elementarily axiomatizable,  $\mathfrak A \in K$  and  $\mathrm{Th}(\mathfrak A) = \mathrm{Th}(\mathfrak B)$ , then  $\mathfrak B \in K$ .

# B. Appendix: Some facts about binary relations, Boolean algebras, and Boolean lattices

Some types of binary relations. Let U be any non-empty set. All subsets of  $U \times U$  are called binary relations on U. A binary relation R is called, respectively, reflexive, irreflexive, symmetric, asymmetric, antisymmetric, transitive, separative iff R fulfills respective condition from the following set:

$$\forall_{x \in U} \ x R x, \qquad (\mathbf{r}_R)$$

$$\forall_{x \in U} \neg x R x$$
, (irr<sub>R</sub>)

$$\forall_{x,y \in U} (x R y \Rightarrow y R x), \tag{s_R}$$

$$\forall_{x,y \in U} \ \neg (x R y \land y R x), \tag{as}_R)$$



$$\forall_{x,y\in U}(x\,R\,y\,\wedge\,y\,R\,x\Longrightarrow x=y),\tag{antis}_R)$$

$$\forall_{x,y,z\in U}(x\,R\,y\,\wedge\,y\,R\,z\implies x\,R\,z),\tag{t_R}$$

$$\forall_{x,y\in U} (\neg x R y \Longrightarrow \exists_{z\in U} (z R x \land \neg \exists_{u\in U} (u R y \land u R z))). \quad (sep_R)$$

**Partially ordered sets.** A pair  $\langle U, R \rangle$  is a partially ordered set iff U is non-empty set and R satisfies  $(\mathbf{r}_R)$ ,  $(\mathbf{antis}_R)$ ,  $(\mathbf{t}_R)$ . Besides,  $\langle U, R \rangle$  is separative iff it satisfies  $(\mathbf{sep}_R)$ .

In any partially ordered set  $\langle U, R \rangle$  we introduce two binary relations  $\sup_R$  of being of the least upper bound of and  $\inf_R$  of being of the greatest lower bound of which are included in  $U \times 2^U$ :

$$x \sup_{R} S \iff \forall_{z \in S} z R x \land \forall_{y \in M} (\forall_{z \in S} z R y \Rightarrow y R x), \quad (\operatorname{df} \sup_{R})$$
  
 $x \inf_{R} S \iff \forall_{z \in S} x R z \land \forall_{y \in M} (\forall_{z \in S} y R z \Rightarrow x R y). \quad (\operatorname{df} \inf_{R})$ 

By  $(antis_R)$ ,  $sup_R$  and  $inf_R$  are (partial) functions of the second argument:

$$\forall_{S \in 2^U} \forall_{x,y \in U} (x \sup_R S \land y \sup_R S \Longrightarrow x = y), \qquad \text{(fun-sup}_R)$$

$$\forall_{S \in 2^M} \forall_{x,y \in U} (x \inf_R S \land y \inf_R S \Longrightarrow x = y). \qquad \text{(fun-inf}_R)$$

So if  $x \sup_R S$  (resp.  $x \inf_R S$ ), then we also write  $x = \sup_R S$  (resp.  $x = \inf_R S$ ).

A partially ordered set  $\langle U, R \rangle$  is called *complete* iff it fulfils the following condition:  $\forall_{S \in 2^U} \exists_{x \in U} \ x \sup_R S$  (equivalently,  $\forall_{S \in 2^U} \exists_{x \in U} \ x \inf_R S$ ).

**Boolean algebras.** An algebraic structure  $\langle A, +, *, \neg, 0, 1 \rangle$  is a *Boolean algebra* iff it satisfies certain well-known equalities (cf. e.g. [1]). A Boolean algebra is *non-trivial* iff |A| > 1 iff  $0 \neq 1$ . The binary relation  $\leq$  in A defined by

$$x \le y \iff y = x + y \iff x = x * y$$
 (df  $\le$ )

is a separative partial order.

**Lattices.** A partially ordered set  $\langle L, \leq \rangle$  is a *lattice* iff for any  $x, y \in L$  there are the least upper bound and the greatest lower bound of  $\{x, y\}$ . So we have the following two binary operations on L:

$$x + y := \sup_{\langle x, y \rangle,$$
 (df+)

$$x \cdot y := \inf_{\le} \{x, y\} \,. \tag{df.}$$

Of course, + and  $\cdot$  are idempotent and commutative, and we obtain:

$$x \leq y \iff y = x + y \iff x = x \cdot y \,.$$



A lattice  $\langle L, \leq \rangle$  is bounded iff it has a least element o and a greatest element 1, i.e., we have:  $\forall_{x \in L} \ o \leq x$  and  $\forall_{x \in L} \ x \leq 1$ . Then we write  $\langle L, \leq, 0, 1 \rangle$ . A bounded lattice is non-trivial iff  $0 \neq 1$ . Moreover, a bounded lattice  $\langle L, \leq, 0, 1 \rangle$  is complemented iff each element of L has a complement, i.e., we have  $\forall_{x \in L} \exists_{y \in L} (x + y = 1 \land x \cdot y = 0)$ .

**Boolean lattices.** A bounded lattice  $\langle B, \leq, 0, 1 \rangle$  is a *Boolean lattice* iff it is distributive, i.e., for the operations + and  $\cdot$  the following condition holds:  $\forall_{x,y,z\in B}[x\cdot (y+z)=((x\cdot y)+(x\cdot z))]$ , and complemented (see e.g. [1]). Under these conditions for any  $x\in B$  there is the unique complement of x; so we can put

$$\backsim x := (\iota z)(x + z = 1 \land x \cdot z = 0). \tag{df} \backsim$$

We have:  $\langle B, +, \cdot, \backsim, 0, 1 \rangle$  is a Boolean algebra and  $\leq = \leq$ , where  $\leq$  is defined by  $(\mathbf{df} \leq)$ .

For a Boolean lattice  $\mathfrak{B} = \langle B, \leq, 0, 1 \rangle$ , an element a of B is an atom of  $\mathfrak{B}$  iff  $a \neq 0$  and for any  $x \in A$ : if  $0 \neq x \neq a$ , then  $x \nleq a$ .  $\mathfrak{B}$  is atomic iff for each  $x \in B \setminus \{0\}$  there is an atom a such that  $a \leq x$ .

For any (complete) Boolean algebra  $\mathfrak{A} = \langle A, +, *, \neg, 0, 1 \rangle$ , the structure  $\mathfrak{B}_{\mathfrak{A}} := \langle A, \leq, 0, 1 \rangle$  is a (complete) Boolean lattice and the operations +, \*, and  $\neg$  coincide, respectively, with +,  $\cdot$ , and  $\backsim$ . Of course, atoms of  $\mathfrak{A}$  are exactly atoms of  $\mathfrak{B}_{\mathfrak{A}}$ . Moreover,  $\mathfrak{A}$  is *atomic* iff  $\mathfrak{B}_{\mathfrak{A}}$  is atomic.

For all Boolean lattices we can use the first-order language  $L^{0,1}_{\leq}$  with equality, which has one binary predicate ' $\leq$ ' and two individual constans 'o' and '1'. Of course, all Boolean lattices are  $L^{0,1}_{\leq}$ -structures.

**Elementary invariants.** Let  $\omega$  be the set of all natural numbers. As in [2, pp. 289–290], to any Boolean lattice  $\mathfrak{B}$  we can assign exactly one special triple  $\operatorname{inv}(\mathfrak{B}) = \langle \operatorname{inv}_1(\mathfrak{B}), \operatorname{inv}_2(\mathfrak{B}), \operatorname{inv}_3(\mathfrak{B}) \rangle$  of elementary invariants of  $\mathfrak{B}$ , where  $\operatorname{inv}_1(\mathfrak{B}) \in \{-1\} \cup \omega$ ,  $\operatorname{inv}_2(\mathfrak{B}) \in \{0,1\}$ , and  $\operatorname{inv}_3(\mathfrak{B}) \in \omega \cup \{\omega\}$ .

Elementary invariants fully characterize Boolean lattices (algebras) with regard to their elementary equivalence (see Appendix A, p. 494). Namely, we have the following theorem:

THEOREM B.1 (cf. e.g. [2]). Any two Boolean lattices have the same elementary invariants iff they are elementarily equivalent.



Moreover, notice that the following facts hold:

Lemma B.2 (cf. e.g. [7]). For any Boolean lattice  $\mathfrak{B}$ :

- 1.  $\mathfrak{B}$  is atomic iff  $\operatorname{inv}_1(\mathfrak{B}) = 0 = \operatorname{inv}_2(\mathfrak{B})$ .
- 2. If  $\mathfrak{B}$  is atomic and has infinitely many atoms, then  $\operatorname{inv}_3(\mathfrak{B}) = \omega$ .

**Applications.** We put  $\mathfrak{B}_1 := \langle 2^{\omega}, \subseteq, \emptyset, \omega \rangle$  and  $\mathfrak{B}_2 := \langle FC(\omega), \subseteq \rangle$ , where  $FC(\omega)$  is the set of all finite and all co-finite subsets of  $\omega$ . It is well known that  $\mathfrak{B}_1$  and  $\mathfrak{B}_2$  are atomic non-trivial Boolean lattices, which have infinitely many atoms. Moreover,  $\mathfrak{B}_1$  is complete, but  $\mathfrak{B}_2$  is not complete. So, in the light Lemma B.2, we obtain:

COROLLARY B.3. 
$$\operatorname{inv}(\mathfrak{B}_1) = \langle 0, 0, \omega \rangle = \operatorname{inv}(\mathfrak{B}_2)$$
.

Thus, from the above lemma and Theorem B.1, we have:

COROLLARY B.4. The Boolean lattices  $\mathfrak{B}_1$  and  $\mathfrak{B}_2$  are elementarily equivalent, i.e.,  $\text{Th}(\mathfrak{B}_1) = \text{Th}(\mathfrak{B}_2)$ .

Finally, by the above corollary and Fact A.1, we get:

THEOREM B.5. The class of all complete Boolean lattices (resp. algebras) is not elementarily axiomatizable.

#### References

- [1] Koppelberg, S., "Elementary arithmetic", Chapter 1 in *Handbook of Boolean Algebras. Vol. 1*, J. D. Monk (ed.), North-Holland: Amsterdam, New York, Oxford, Tokyo, 1989.
- [2] Koppelberg, S., "Metamathematics", Chapter 7 in Handbook of Boolean Algebras. Vol. 1, J. D. Monk (ed.), North-Holland: Amsterdam, New York, Oxford, Tokyo, 1989.
- [3] Leonard, H.S., and N. Goodman, "The calculus of individuals and its uses", Journal of Symbolic Logic, 5 (1940): 45–55. DOI: 10.2307/2266169
- [4] Leśniewski, S., "O podstawach matematyki. Rozdział IV", Przegląd Filozoficzny, XXXI (1928): 261–291. English version: "On the foundations of mathematics. Chapter IV", pages 226–263 in Collected Works, S. J. Surma et al. (eds.), PWN and Kluwer Academic Publishers: Dordrecht, 1991.
- [5] Leśniewski, S., "O podstawach matematyki. Rozdziały VI–IX", Przegląd Filozoficzny, XXXIII (1930): 77–105. English version: "On the fundations of mathematics. Chapters VI–IX", pages 313–349 in Collected Works, S. J. Surma et al. (eds.), PWN and Kluwer Academic Publishers: Dordrecht, 1991.



- [6] Pietruszczak A., 2000, "Kawałki mereologii" ("Pieces of mereology"; in Polish), pages 357–374 in Logika & Filozofia Logiczna. FLFL 1996–1998, J. Perzanowski and A. Pietruszczak (eds.), Nicolaus Copernicus University Press: Toruń, 2000.
- [7] Pietruszczak A., *Metamereologia* (*Metamereology*; in Polish), Nicolaus Copernicus University Press: Toruń, 2000.
- [8] Pietruszczak A., "Pieces of mereology", Logic and Logical Philosophy, 14 (2005): 211–234. DOI: 10.12775/LLP.2005.014
- [9] Pietruszczak A., Podstawy teorii części (Foundations of the theory of parts; in Polish), Nicolaus Copernicus University Scientific Publishing Hause: Toruń, 2013.
- [10] Tarski, A., "Les fondemements de la géometrie des corps", pages 29–30 in Księga Pamiątkowa Pierwszego Zjazdu Matematycznego, Kraków, 1929. Eng. trans.: "Foundations of the geometry of solids", pages 24–29 in Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford University Press: Oxford, 1956.
- [11] Tarski, A., "Zur Grundlegund der Booleschen Algebra. I", Fundamenta Mathematicae, 24: 177–198. Eng. trans.: "On the foundations of Boolean Algebra", pages 320–341 in Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford University Press: Oxford, 1956.
- [12] Tsai, H., "Decidability of General Extensional Mereology", *Studia Logica* 101, 3 (2013): 619–636. DOI: 10.1007/s11225-012-9400-4
- [13] Tsai, H., "Notes on models of first-order mereological theories", Logic and Logical Philosophy (published online: April 28, 2015). DOI: 10.12775/LLP.2005.009

Andrzej Pietruszczak Department of Logic Faculty of Humanities Nicolaus Copernicus University in Toruń, Poland pietrusz@umk.pl