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A META-LOGIC OF INFERENCE RULES: SYNTAX

Abstract. This work was intended to be an attempt to introduce the meta-
language for working with multiple-conclusion inference rules that admit
asserted propositions along with the rejected propositions. The presence
of rejected propositions, and especially the presence of the rule of reverse
substitution, requires certain change the definition of structurality.
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1. Introduction

1.1. Motivation

The idea of a meta-logic as introduced in the present paper was triggered
by the following observations.

Observation (A). If L is a (propositional) logic and r := I'/A is a
structural (inference) rule, we say that r is admissible in the logic L if
any substitution that makes all premises from I' valid in L, makes A valid
too. A logic L is said to be closed under (applications of) rule r if the rule
r allows to derive from L only the formulas from L. It is not hard to see
that a rule r is admissible in L if and only if L is closed under r. If we try
to apply the definition of admissibility to multiple conclusion rules, the
equivalence is not necessarily true. More precisely, a multiple-conclusion
rule r := I'/A may be not admissible in L (there is a substitution that
makes all premises valid and all conclusions not valid in L), and yet L
is closed under r: there are the deductive systems having L as a set
of theorems and containing r is an inference rule. An example is very
simple and somewhat unexpected: a rule AV B/A, B (the disjunction

Received November 26, 2014. Revised February 26, 2015. Published online March 9, 2015
© 2015 by Nicolaus Copernicus University


http://dx.doi.org/10.12775/LLP.2015.007

314 ALEX CITKIN

property) is, certainly, not admissible in the classical propositional logic
(CPL thereafter), and nevertheless, if we add this rule to the rules of
substitution and Modus Ponens, the logic will remain consistent. Hence,
due to CPL being Post complete, the added rule does not change the
logic and, therefore, does not allow us to derive from CPL any formulas
that are not in CPL.

Observation (B). The admissible rules are closely related to the refu-
tation rules (in the sense of Lukasiewicz, see e.g. [49, 50]): if a rule
Ay, ..., A, /B is admissible in a given logic L, the rule 4 B / 4 A4,...,
- A, is a refutation rule for L. So, in order to be able to study both
types of rules at the same time, we need a proper framework, namely, we
need to use the rules containing asserted formulas and rejected formulas.
In turn, this will allow us to extend the notion of admissible rule to this
kind of generalized rules.

Observation (C). The use of multiple-conclusion rules in an inference,
which essentially is a proof by cases, requires a better understanding
under which condition we can eliminate a case/alternative. Indeed, in
a proof by cases —if we want to prove a formula A —we first arrive at
a complete set of possible cases/alternatives Aq,..., A, and then we
consider each case A; separately trying either to derive A from A; or
to show that the case A; is impossible by deriving from A; some kind
of contradiction (semantically or syntactically). So, when we consider
an alternative, we are either trying to derive a target formula, or to
arrive at some kind of contradiction, and the latter lets us eliminate this
alternative. If we deal with a formal proof, we are not able to employ
the semantical means. Thus, in order to demonstrate a contradiction
we are often trying to derive a negation of a formula that was proven
earlier. But in the case when the language does not have a negation (or
a constant for false) it is impossible. The alternative approach is to try
and arrive at a contradiction by syntactically deriving the refutability of
a formula that we already proved. This is another reason why we need
to have the means for proving refutability as a part of our proof system.

If we want to define a logic syntactically we employ a notion of a
deductive system, and we understand this logic as a set of formulas
derivable in a given deductive system. Often, we define inconsistency
of a logic, or, more precisely, inconsistency of a deductive system, as an
ability to derive any formula. Roughly speaking, abolishing the rule that
allows to derive every formula from some form of contradiction allows us
to deal with paraconsistent logics.
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The suggested approach. Let us assign equal rights to asserted and
rejected propositions'. Let us consider a logic as a pair (L*,L™) of sets
of formulas, where L™ is a set of asserted propositions (theorems) and L~
is a set of rejected propositions (anti-theorems). Thus, at least in theory,
we may have the case when a formula A is asserted and rejected as well
as the case when a formula B is neither asserted, nor rejected. The first
case is related to inconsistency/paraconsistency, while the second case is
related to insufficiency of information. And a logic understood as such a
pair represents, perhaps, better the situation with requests to a database
when the responses to a request can be ambivalent.

If we assign equal rights to the asserted and rejected propositions, it
is natural to include both types of proposition into inference and consider
the inference rules containing asserted propositions as well as rejected
propositions. It means that we define the inference rules not on the sets
of formulas, but rather on the sets of statements like ®A — formula A is
asserted and ©A — formula A is rejected. Thus, we derive not a formula,
but a statement about the formula. For instance, Modus Tollens can be
represented in the following way &(A — B),©B/ & A (in the Lukasie-
wicz’s notation it would be - (A — B),- B/ 1 A, but we reserve - for
a different use). Let us note that an ability to derive @A and ©A for
some formula A, represents some kind of inconsistency, while an ability
to derive GA and &—A may not lead to inconsistency, especially if we
do not accept a rule -A/ & A.

In order to make our work with statements easier, we construct a
meta-logic. One of the challenges of using multiple-conclusion rules is
definition of a notion of inference. In [22, 42] the reader can see how
challenging it gets. In the proposed meta-logic, the inference can be
defined as linear: with a rule I'/A in the meta-logic we associate a
statement AI' = vA, where A, =, v are meta-connectives, and we use
this statement in an inference as we normally use a formula (from more
details see Section 5).

The differences between single- and multiple-conclusion rules lead to
necessity to clarify such important notions as structurality, inference,
closure, etc. The meta-logic that we are introducing is the first step in
this direction.

! The idea to consider rejected propositions can be traced back as early as 1940-th
to books by Rudolf Carnap (for more historical details and references see Section 2).
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2. History of the Subject

The idea of including refutation into inference process, as well as the idea
that led to introducing the multiple conclusion rules and logics, came
from the books [4, 5] by Carnap. Then, for quite some time, these two
lines of research were conducted independently by different researchers.
Let us briefly look at the history of the subject and at the motivations
that instigated different researchers.

2.1. Rudolf Carnap

2.1.1. Refutation

The idea to include refutation into inference process can be traced back
at least to Rudolf Carnap®. Carnap was considering the calculi together
with their interpretations:

Although the rules of a calculus do not speak about interpretations,
they are nevertheless practically meant in such a way as to restrict
possible interpretations. [4, § 28]

He also observed that there are non-normal interpretations. And, ac-
cording to Carnap, there are two kinds of non-normal interpretations:
the ones that violate the law of contradiction by admitting a proposition
and its negation, and the ones that violate the law of excluded middle
by admitting neither a proposition, nor its negation. In order to exclude
the first kind of non-normal interpretations Carnap suggested to add
refutations to the calculus:

One new syntactical concept which might be added to those used in
customary calculi is ‘C-false’. It is defined on the basis of ‘directly
C-false’, which is defined by rules of refutation. By adding a rule of
this kind to PC, the non-normal interpretations of the first kind can be
excluded. [5, § 20]

And he has extended the notion of a calculus in the following way:

A syntactical system or calculus K is a system of formal rules. It
consists of a classification of signs, the rules of formation (defining
‘sentence in K’), and the rules of deduction. The rules of deduction
usually consist of primitive sentences and rules of inference (defining
‘directly derivable in K’). Sometimes K also contains rules of refutation

2 Some ideas of including refutation into syllogistic were introduced by Aristotle.
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(defining ‘directly refutable in K’). If K contains definitions, they may
be regarded as additional rules of deduction. [4, § 24]

Carnap has also made the following important observation:

And in nearly all or perhaps all of the few calculi where rules of refu-
tation are given, ‘directly C-false’ (‘directly refutable’) applies only to
sentences or sentential classes from which every sentence is derivable.

(4, § 28]

That is, prior to Carnap, a formula would be considered refutable if
adding this formula to axioms leads to inconsistency. As we shall see later
in the Section 5, in many cases a formula is considered to be refutable,
if its negation is provable.

Carnap rejected such an approach to refutation (when a proposition
is refuted if its negation is provable) on the grounds that this would
not exclude the non-normal interpretations: think about single-element
matrix, for instance (cf. [6]). His approach is different: a proposition
is C-false (refutable) if an anti-axiom (i.e. a proposition accepted as
directly refutable) can be derived from it [4, D28.3]. And he adds a
single anti-axiom V (a constant ‘False’) to a calculus .

2.1.2. Junctives

In [5] Carnap introduced the notions that later became known as mul-
tiple-conclusion logics (see, for instance, [42]). If adding the rules of
refutation to a calculi solved a problem with non-normal interpretations
of the first kind, adding the junctives solves the problem with non-normal
interpretations of the second kind (see [5, Section D]). A conjunctive is an
ordered pair P", where P is a finite set of propositions and P” is asserted
if every proposition from P, is asserted. A disjunctive is an ordered pair
PV, where P is a finite set of propositions and PV is asserted if at least one
member of P is asserted. Note, that the junctive ()" represents constant
‘true’, while the junctive () represents constant ‘false’.

A regular (structural) inference rule Ay,..., A, /B can be regarded
as a rule that allows to derive a disjunctive {B}" from a conjunctive
{A1,..., A,}". And Carnap suggests to also consider the rules of form
A/QY with disjunctive as a consequence. He used such kind of rule and
in [5, Section E.26] where he constructs the calculus PC* for the classical
propositional logic and which, besides regular axioms and rules, contains
the rule

pVa/ip,q}". (1)
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He also included a rule for refutation. So, if we consider, for instance,
the Boolean algebras as the models for CPL in the Carnap’s version, the
single-element algebra is not a model due to - p does not hold in it, and
all Boolean algebras with more then two elements are not the models
due to (1) does not hold in them.

Remark 2.1. The Gentzen’s sequents can be viewed as a multiple-con-
clusion constructions. The following quotation from [42] explains why
Carnap, and not Gentzen, perhaps, should be regarded as the one who
introduced multiple-conclusion rules: “Its germ can be found in Gerhard
Gentzen’s celebrated Untersuchungen tiber das logische Schliessen (1934)
if one is prepared to interpret his calculus of ‘sequents’ as a metatheory
for a multiple-conclusion logic, but this is contrary to Gentzen’s own
interpretation, and it was Rudolf Carnap who first consciously broached
the subject in his book Formalization of logic (1943)” (cf. also the his-
torical note in [42, Section 2.1]).

2.2. Jan Yukasiewicz

In the first edition of his book [27] in 1951 Jan Lukasiewicz (who, as it
appears, was not familiar with Carnap’s research) also included refuta-
tion into calculus for CPL. More precisely, he added to a regular classical
propositional calculus with rules Modus Ponens (MP) and Substitution

(Sb) an anti-axiom - p, where p is a (propositional) variable, and two
rules: Modus Tollens (MT) and Reverse Substitution (RS)

4 0(A)/ 4 A, for every substitution o and formula A. (RS)

The Lukasiewicz’s motivation was totally different from the Carnap’s.
In his book [27, Preface] Lukasiewicz writes:

The most important new results in this part I consider to be the proof
of decision, given by my pupil J. Stupecki, and the idea of rejection
introduced by Aristotle and applied by myself to theory of deduction.

And he added

Modern formal logic, as far as I know, does not use ‘rejection’ as an
operator opposed to Frege’s ‘assertion’. The rules of rejection are not
yet known. [27, § 20]

tukasiewicz had also observed that for the formal system represent-
ing Aristotle syllogistic it is not enough to use only the rules of reverse
substitution and Modus Tollens for refutation. He wrote:
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A new rule of rejection must be added to the system to complete the
insufficient characterization of the Aristotelian logic given by the four
axioms. This rule was found by J. Stupecki.? [27, p. T5]

In [28] Lukasiewicz suggested that adding < p , RS, MT, 4 A,4 B /
4 (A V B) to the regular axioms and rules of intuitionistic propositional
calculus (IPC for short) would give the complete refutation system for
intuitionistic propositional logic (IPL for short. He also did not identify
rejection with negation. Specifically in [28], he wrote that

In my recently published work on Aristotle’s Syllogistic I gave reasons
for introducing ‘rejection’ into classical theory of deduction as a com-
plement of assertion.

Thus, the Lukasiewicz’s motivations were (a) to be able to contract
a formal system for syllogistic, (b) to have a counterpart for the asserted
proposition, (c) to achieve decidability as a result of axiomatization.

2.3. Dana Scott

It turned out that the axiomatization suggested by Lukasiewicz for IPL is
not complete. This gap was filled by Dana Scott. In [37] he considered —
, T, L-fragment of IPC. A refutation part of his calculus contains an anti-
axiom - L, the rules MT and RS, and some additional (rather complex)
rules. The complete axiomatization for IPL that includes refutation was
constructed much later by Tomasz Skura [43].

The goal of [37] (besides fixing the shortcomings of Lukasiewicz’s
conjecture) was

by use of refutation rules to enumerate the unprovable formulae in much
the same way in which we enumerate the theorems, every formula being
either provable or refutable. The sets of valid and invalid formulae
are closed under the rules. Hence, no formula is both provable and
refutable, the calculus is decidable, and a formula is provable if and
only if it is valid.

Thus, the motivation here is to construct a calculus that gives decidabil-
ity and semantical completeness.

Later, in early 1970-th, Scott introduced the multiple-conclusion con-
sequence relations (see e.g. [38, 41]). Nevertheless, he did not include in
these relations the rejected propositions.

3 For more about Stupecki rules see [48, 26].
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2.4. Refutation: Further development

The axiomatic systems that include refutation can be roughly divided in
three types: dual, complementary and mixed.

2.4.1. Dual Systems

A dual system is a system that allows to derive rejected propositions from
rejected like we derive asserted propositions from asserted. Similarly to
regular logical systems, these systems can be constructed in a form of a
closure operator (e.g. [58]). This kind of system have found applications
in the computer science and artificial intelligence (e.g. [56]).

2.4.2. Complementary (Symmetric) Systems

The complementary systems contain, essentially, two subsystems: one
for deriving the asserted propositions, and another —for deriving the
rejected propositions. For instance, in [49, 50, 59] the authors consider
two closure operators: the regular one Cn that gives the theorems, and
the complementary one Cn~, that gives anti-theorems (see also [45, Sec-
tion 5.2]).

2.4.3. Mixed Systems

In these systems the asserted propositions are derived from the asserted
propositions, while the rejected propositions are derived from the re-
jected and, asserted propositions (think about Modus Tollens, for in-
stance). The system suggested by Lukasiewicz for CPL is, of course, of
this type. It is the most common type of the refutation systems. The
complete (mixed) systems were constructed for various of logics (see, for
instance [9, 3, 57, 11, 1, 44, 52, 2]).

2.4.4. Direct and Indirect Refutation

Carnap and FLukasiewicz viewed the derivation of a rejection in different
ways.

Carnap suggested that we can use the regular notion of derivation
(that allows to derive a formula (proposition) from a set of formulas
(propositions), and that we reject a formula A if we can derive from A a
formula that we know is rejected, is an anti-axiom. Roughly speaking, if
AF B and B is rejected, we reject A. We call this approach indirect and
we call the refutation systems based on this approach C-system®. For

4 In [54] indirect derivations are called i-derivations.
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C-derivation L-derivation
1] —p premiss -p anti-axiom
2| =~(p—p) from 1 by Sb F—(p — p) — p | derivable in CPC
3 | =(p — p) — p | derivable in CPC 4=(p—p) from 1, 2 by MT
4 | p by MP from 2, 3 -+ —=p from 3 by RS
5 | —p is refuted anti-axiom is derived
from —p

Table 1. Example of C- and L-derivation

instance, if we add to CPC (with rules Modus Ponens and Substitution)
an anti-axiom - p (where p is a propositional variable), then, in this
extended calculus, we are able to reject every classically invalid formula,
for p is derivable in CPC from every class classically invalid formula.

Fukasiewicz, on the other hand, suggested that the rejected formulas
should be derived from the asserted and rejected formulas by means of
regular inference rules (Modus Ponens and Substitution), and by means
of additional inference rules that allow to derive the rejected formulas,
such rules as Modus Tollens and Reverse Substitution. We call this
type of refutation systems direct or £-systems. For instance, in order to
obtain an b-system for the classical logic, L.ukasiewicz adds to CPC the
same anti-axiom = p, but he endows CPC with two new inference rules:
Modus Tollens abd Reverse Substitution.

If we consider only rules Modus Ponens, Substitution, Modus Tollens
and Reverse Substitution, not every C-derivation can be converted into
t-derivation, and not every C-system can be converted into L-system.
In [54] Staszek establishes the conditions under which a C-system can
be converted into f.-system. Generally speaking, if a propositional lan-
guage contains implication — and a formula p — (¢ — p) is derivable,
then any C-system can be converted into f-system. For instance, for all
intermediate or normal modal logics every C-system can be converted
into E-system. If we consider the multiple-conclusion rules with rejected
propositions, all C-system become ‘convertible’ into L-systems, and this
is an additional reason to use such type rules.

The following example shows the difference between C- and k-deriva-
tions of refutability of —p in CPC with rules Modus Ponens (MP) and
Substitution (Sb) endowed with an anti-axiom - p and rules Modus
Tollens (MT) and Reverse Substitution (RS).
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2.5. Multiple-conclusion rules: Further development

As we mentioned above in the Section 2.1.2, the concept of multiple-
conclusion rule was introduced by Carnap in [5], where Carnap studied
a notion of junctives and rules dealing with junctives. This concept has
been developed further by W. Kneale [22] (some corrections are in [23])
where multiple-conclusion proof was defined. This definition was refined
in the 1970-th in the papers by D.J. Shoesmith and T.J. Smiley and
summarized in their book [42]. At the about the same time multiple-
conclusion relations were studied by Scott [38, 39, 40, 41]. Let us note
that even though Scott considers the relation I' - A where I', A are
finite sets of formulas, he does not regard an expression I' = A for given
finite sets of formulas I'; A as an instance of an inference rule: Scott
views such an expression as a “conditional statement” and investigates
the means that allow to derive a conditional statement from the set of
conditional statements (for more details we refer the reader to [41].)

In 1999 M. Kracht in his review [24] suggested to study the admis-
sibility of multiple-conclusion rules, and such a study was carried out,
for instance, in [18, 19]. Let us also remark that in [25] Kracht arrives
to a notion of a consequence relation in some respects similar the one
introduced in this paper.

2.6. What This Paper is About

In his paper [51] Smiley outlined an approach to combining multiple-
conclusion rules with refutability. We are taking a similar approach.
We will discuss the similarities and differences later in Section 6. The
discussion of philosophical aspects of Smiley’s paper can be found in
[20, 30, 16].

In this paper we introduce a metalanguage that gives us the formal
syntactic means for working with inference rules (rules thereafter) ad-
mitting simultaneously asserted and rejected formulas. In Section 3 we
extend the notion of consequence relation to sets of asserted and rejected
propositions (formulas). Then, in the Section 4, we define a logics as an
ordered pair of a set of asserted and a set of rejected propositions and
we introduce the consequence relations and logics that admit rejected
propositions independently from asserted propositions, meaning that not
asserted proposition does not have to be rejected and vice versa. Then,
in the same section, we construct the meta-language and we define in-
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ference (derivation). In Section 5 we will see how a logic understood as
a pair can be defined by a deductive system. In the present paper we
will not discuss the semantic of such systems.

Let us note that the presence of rejected formulas requires some clar-
ification of how an inference rule is understood. The difference becomes
apparent if we compare Modus Ponens in form A, A — B/B and Modus
Tollens 4 B, A — B/ - A: we cannot write out Modus Tollens without
using turnstile and reverse turnstile: if we include the refuted propo-
sitions (formulas) into rules, for every premise or conclusion we must
indicate whether this proposition is assumed to be asserted or rejected.
Let us recall that in [41] Scott considers the following possible forms of
Modus Ponens

Four forms of Modus Ponens

AJA— BFB FA—B FA A
AFB FA— B A+ B
FB FB

(i (i) (ii) (iv)

And he argues that the rule (iii) deserves the name ‘Modus Ponens’, for
“this is methatheoretic statement that the validities of the system are
closed under the rule allowing for the detachment of the conclusion of
the implication (provided it and its antecedent are valid).” And Scott
continues: (i) is a conditional tautology that suggests the rule (iii). Also,
he is pointing out that in the FLukasiewicz many-valued logic (i) fails,
while (ii),(iii) and (iv) hold. Thus, the rules (i) and (iii) are different.

It is important to keep in mind that throughout the paper the rules
are understood in form (iii).

The following peculiarity of the derivation systems that admit deriva-
tions of asserted propositions from rejected ones is worth mentioning. In
the regular deductive systems we can eliminate the rule of Substitution
by using axiom schemata instead of axioms. This elimination is possible,
because, for example, a derivation like

A+ (A— B),F B,\o(B),
where A, B are formulas and o is a substitution, can be reduced to

Fo(A),F (c(A) = o(B)),F o(B)
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and 0(A) and 0(A) — o(B) are derivable. The situation changes if we
admit the rules containing the rejected propositions as premises and the
asserted propositions as conclusions. For example, if we admit the rule

4A,-AVB/F B, (2)

the following derivation cannot be reduced like a previous one, even
though the rule (2) is structural:

4 A, AV B,F B,F o(B),

because - o(A) may be not derivable. So, we can use the schemata, for
instance, in order to define the set of axioms, but we cannot eliminated
the rule of Substitution from the deductive system (likewise, we cannot
eliminate the rule of Reverse Substitution).

2.7. What This Paper is Not About

There are several very important topics of logic and philosophy of logic
that are closely related to the proposed approach. Yet, we will not discuss
them, because each of these topics deserves a separate consideration. We
will be focusing on studying the meta-logic for rules, and we will not be
touching the following topics (that we mention here only in order to
underscore their relations to the introduced meta-logic). So, we will not
discuss in this paper:

e The relations between rejection and negation (see, e.g. [51, 33, 34,
10, 32, 35]). In particular, between —A and cases when 4 o(A) is
valid for every substitution o (the reader can consider the formula
Op A —=Op, each substitution instance of which is rejected in S4.)
The role and meaning of logical constants (see, e.g. [31, 34, 8, 7]).
The applications to paraconsistent logics (see, e.g. [55]). We just note
that there is a big difference between situation when -+ A and F = A
are permissible (paraconsistency) and the situation when F A and
-4 A are permissible (we call this incoherency or ambivalence).

e The philosophical aspects of multiple-conclusion inference (see, e.g.
[32, 35]).

The hypersequent proof systems for rules ( see, e.g. [15, 14]) .

The tableaux methods (see, e.g. [17, 12]).

The refutation systems for particular logics (see e.g. [11, 44, 53, 46,
47)).
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3. Consequence Relations

In this section we introduce the consequence relations that include si-
multaneously rejected and asserted propositions. But first and foremost
we need to introduce some notions and notation.

3.1. Language

Let Fm be a set of propositional formulas built in a regular way from a
countable set of (propositional) variables P and the finite set of (finitely-
ary) connectives f1, ..., f, (not containing signs A, v, =, = T, L, @&, ©
that we reserve for use in the meta-language). For propositional variables
we will use letters p, ¢, r, s may be with indexes. To denote the propo-
sitional formulas we will use the capital Roman letters (sometimes with
indexes) from the beginning of alphabet, while the capital Roman letters
(sometimes with indexes) from the end of the alphabet will be used as
meta-variables that can be substituted with propositional formulas. For
instance, X — Y A Z is a schemata, while A — B A C, where A := p,
B:=q Vq, C:= —r,is a formula.

With each propositional variable p € P, we associate a formula vari-
able X, ranging over Fm. For instance, A(p1,...,py) is a formula on
n variables, while A(X,,,..., X, ) is a schemata. We will use tilde for
denoting schemata, i.e. A is a schemata obtained from a formula A by
replacing the propositional variables with corresponding formula vari-
ables. Roughly speaking, a schemata is a formula to which we allow to
apply substitution.

A formula A(B, . .., B,), obtained from a schemata A := A(Xpy, -,
Xp,,) (or from a formula A for this matter), by substituting formulas for
formula variables, is a substitution instance of A (instance, for short).

As usual, a substitution is a mapping o: P — Fm and by o(A) we
denote a result of simultaneous substitution in A of o(p) for p for every
variable occurring in A. If I is a set of formulas and o is a substitution
by o(I') we denote {o(A) | A € I'}. The set of all substitutions will be
denoted by 3.

Given a set of formulas I' and a substitution o, we say that the set
I is closed under substitutions, if o(I') C I", and we say that I' is closed
under reverse substitutions, if ' C o(I"). It is not hard to see that I is
closed under substitutions if and only if its complement Fm\ I" is closed
under reverse substitutions.
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3.2. Meta-Language: Atomic Statements

In order to include the rejected propositions into logic, we need to be
able, given a formula A, to distinguish whether A is asserted or rejected.
To achieve this, we use meta-language in which we can express assertion
and rejection. In this section we introduce the metalanguage.

We start with a notions of statement and schema-statement.

DEFINITION 3.1. If A € Fm is a formula then the expressions ®A and
©A we call atomic statements. ®A is a positive atomic statement and
O©A is a negative atomic statement. A is called a propositional part of
PA or ©A. By ®A we denote an atomic statement with propositional
part A, that is ©A can be A or ©6A. And by ©®A we denote an atomic
statement of the “opposite sign”, that is ©A is @A, if ©A is ©A, and
©Ais OA, if ©A is DA.

By S, w denote the set of all atomic statements. S and S, are re-

spectively the sets of all positive and negative atomic statements. Thus,
Se=87US8; and SFnS; =0.
Remark 3.1 (about denotation). Fukasiewicz is using for this purpose
F A and - A, but we reserve the sign - for consequence relations. In [51]
Smiley is using the sign * to denote that a proposition is rejected, that
is, *A denotes ‘A is rejected’. In [13] L. Humberstone is using [+]A and
[—]A and calls ‘a signed formula’ what we call ‘an atomic statement’.

3.3. Consequence Relation

In this section, we extend the notion of consequence relation (e.g. [40])
from sets of formulas to sets of atomic statements. We will use the
customary conventions: if 'y A C S,, then I'; A denotes I' U A and, if
a € S,, then I', o denotes T' U {ar}.

DEFINITION 3.2. A consequence relation is a binary relation on the class
F(S,) of all finite sets of statements that satisfies the following condi-
tions:

(R) if TNA #0, then T' - A,
(M) if ' A, then F,Fl F A, Al,
(T) if I,0AF Aand I'F ©A, A, then ' F A,

where I', I'1, A, A; are finite sets of atomic statements, ®A is an atomic
statement.
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Next, we want to define a notion of structural consequence relation,
but the regular definition cannot be used for the following reason: the
substitutions into negative statements can lead to unwanted results: if
F ©p and we allow to substitute any formula for p, we will reject every
formula.

DEFINITION 3.3. A consequence relation F is called structural iff for
every o € X:

I A entails o(T) - o(A), for every I', A C S,
o(I') F o(A) entails I' - A, for every ', AC S, .

It is not hard to see that a meet of structural consequence relations
is a structural consequence relation. Hence, for any given set of pairs
S:={T;/A;|i €I}, where I';, A; C S,, there is a smallest consequence
relation g such that I'; Fs A; for all ¢ € I. We will say that the relation
ks is defined by S.

From this point forward we consider only structural consequence re-
lations. The class of all structural consequence relations is denoted by
Fm". It is easy to see that an arbitrary meet of consequence relations is
a consequence relation. Hence, Fm"™ forms a complete lattice relative
to set meet and closed joins, and  defines on Fm a closure opera-
tor (cf. [40, Proposition 1.1.]). Thus, every set K := {I';/A;}, where
I, A; € F(S,),i € I, defines a consequence relation Fi —the smallest
consequence relation such that I'; = A, for all i € 1.

4. Logics

In this section we introduce the notion of logic that admits the rejected
formulas.

DEFINITION 4.1. Logic is an ordered pair of sets of formulas . =
(LT,L™), where LT is closed under substitutions and L™ is closed under
reverse substitutions. LT is a positive or an asserted part of £, or a set
of the theorems of £. L™ is a negative or a rejected part of £, or a set
of anti-theorem of £ .

Given a logic .Z, by T and £~ we respectively denote a positive
and a negative parts of .Z.
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Every consequence relation - defines a logic ‘4 := (L™, L™), where
LT ={A|AcFmF@A}and L™ ={A| A€ Fm,I-0A}.

DEFINITION 4.2. We use the following terminology: a logic .Z is

coherent : LTNL =0

full D LTUY T =Fm
standard : full and coherent
trivial D LT =% =Fm

degenerate : LT =L"=1

ProproSITION 4.1. Every logic L can be defined by a consequence rela-
tion.

PROOF. Indeed, given a logic £ = (L™, L™), one can consider the follow-
ing consequence relation: for every finite I') A C Fm

'+ A ifand only if AN(TU{@A | AcLTIu{cA|AcL™})#0, (3)

that is, we take a trivial consequence relation ' - A = T'N A # () and
add as axioms atomic statements obtained from the formulas of .. Tt
is not hard to see that A € L™ (or A € L7) if and only if - @A (or,
respectively, - S A). O

Any given consequence relation uniquely defines a logic, while the
converse is not necessarily true: a given logic .2 may be defined by
distinct consequence relations (see Section 6 for examples). So, we can
consider a class

by :={FeFm" |2 =4}

It is clear that ¢ is closed under set meet. Hence, & has a smallest
(relative to set inclusion) element, namely the relation defined by (3).
An example of a logic .% such that I is not closed under closed joins.”

In presence of multiple-conclusion rules to define how a formula can
be derived from a set of formulas may be somewhat complex (see e.g.
[42]). In order to simplify it, in the following section we will extend the
meta-language endowing it with meta-connectives.

5 As an example one can consider two calculi defining a logic of 7-element single-
generated Heyting algebra: one containing the rule (=—p — p) — (pV—-p)/(—-—pV-p),
and another — containing the rule p V ¢/p, q.
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4.1. Meta-Language: Statements

In this section, we enrich the meta-language by introducing statements
that play a central role in our research.

First, we introduce the meta-connectives A, v, =, = T, L and we
define a notion of statement.

DEFINITION 4.3. Atomic statement is statement. T, L are statements.
If a, 8 are statements then a A 3, a Vv 5, a = 3, = « are statements. The
set of all statements we denote by S.

We will also use tilde to denote schemata statements: & denotes the
schemata statement obtained from a given statement « by replacing all
formulas with schemata. A substitution instance (instance, for short)
of a given schemata statement & is a statement obtained from & by
simultaneous substitution of formula variables with formulas.

Let us observe that statements of type @A A---ADA,, and DA v---v
@A,, are Carnap’s junctives (cf. [5, Section D, $21]), the former being
a conjunctive and the latter being a dlsJunctlve Also, the schemata
statements of form @A, A --- A BA, = BBy v ---v BB, represent the
multiple-conclusion rules (comp. [42, Section 2.3]).

Next, we introduce the notions of positive and negative statements.

DEFINITION 4.4. A statement that has no occurrences of L and negative
atomic statements is positive. A statement that has no occurrences of T
and positive atomic statements is negative. If I" is a set of statements,
by I'" and I'™ we denote the subsets (may be empty) of all positive or,
respectively, negative members of T'.

For instance, @A = @B is a positive statement; ©B is a negative
statement; a statement (©A — ®B) A ©B is neither positive, nor nega-
tive.

If 0 € ¥ is a substitution, we extend the scope of o from propositional
formulas to statements by induction in the following way:

o(T):= o(l):=1

0(®A) = @U(A) for every A € Fm
olaof):=c(a)oo(f) oe{av,—~}andforala,fesS
o(+a):=+0(a) forallao € S

In other words, given a statement «, o(«) is obtained from « by replacing
every occurrence of statement ®A with ®o(A).
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5. Deductive System and Inference

In this section, we extend the notions of deductive system and inference
that accommodate the rejected propositions.

DEFINITION 5.1. A deductive system is an ordered pair (A4x;R), where
Ax C S is a set of axiom statements (axioms for short) and R is a set of
statement schemata that we call rules. The deductive system Sy := (0; ()
we call a zero-system.

We consider the following three meta-inference rules

for every a, f € S, from o« 5 8 and « infer 5 (MMP)
for every o € St and 0 € X, from « infer o(a) (Sb)
for every o € S~ and ¢ € ¥, from o(«) infer @ (RS)

If I' is a set of statements and o is a substitution, we let o(I") :=
{o(a) | @ € T'}. That is, o(I") is a set of o-substitutions in each member
of I'. Given a set of statements I', we say that I" is closed under substi-
tutions (under Sb, for short), if o(I') C T' for every o € ¥. And we say
that I' is closed under reverse substitutions, if I' C o(I") for every o € 3.

The statements, obtained from the axioms of the classical proposi-
tional calculus (CPC) (e.g. the axioms of [21, Group Al]) by substituting
the propositional variables with statements, are called meta-azioms. If
« is a statement, then the statements

(TS a) > a (AXT)
1l >a (Axl)

are meta-axioms.
Now, we can use a regular definition of a (Hilbert style) inference.

DEFINITION 5.2. Let S := (4x,R) be a deductive system, I' be a set of
statements and « be a statement. A sequence of statements oy, ..., a,
is an inference (a derivation) of a from I" over S, if o, is a and for every
1 <% < n one of the following hold:

(a) «; is a meta-axiom

(b) «; is an axiom of S

(¢) «; is an instance a rule of S

(d) «; obtained by (Sb) or (RS) from some «;, where j < i

(e) «; obtained by (MMP) from some «;, o, where j, k < i.
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If there exists an inference of a from I' over S, we write I' Fs o and
we say that « is derivable from T' over S. If S is a zero-system, we will
omit the reference to S and we say that « is derivable from T'. It is easy
to see that I' F « if there is a sequence of statements aq, ..., «a, such
that & = «, and each «; is either meta-axiom, or obtained from the
preceding statements by (Sb),(RS) or (MMP).

Obviously, every deductive system S defines a consequence relation
I' b5 a on the finite sets of statements and statements. In its own turn,
the consequence relation g induces a consequence relation on finite sets
of atomic statements: for all A, ..., A,, By, ..., B, € Fm

Al,...,Ani_sBl,...,Bn iff l_sAl/.\.../.\An—‘>B1\'/...\'/Bn
and defines a logic %:
Lt = {@A|Fs DA, A € Fm} and £ = {0A |Fs ©A4, A € Fm}.

It is not hard to see that the converse is also true: any logic can be
defined by some deductive system (which is not necessarily unique).

DEFINITION 5.3. We say that a deductive system is full, coherent, stan-
dard or trivial if the logic, defined by this system, is respectively full,
coherent, standard or trivial.

Let us consider an example.

Ezample 1. The Lukasiewicz’s refutation system for the classical logic (in
the signature {—,—}) can be defined by the deductive system (4x, R),
consisting of the following four axioms and two rules:

®((p—q)— ((¢g—7r)— (p—r))) axiom (axiom of CPC)

®((—p — p) = p) axiom (axiom of CPC)

®(p — (-p—q)) axiom (axiom of CPC)

op axiom (Lukasiwicz’s anti-axiom)
(X Ad(X =Y)) > Y rule (Modus Ponens)

BYaAd(X =Y)) 50X rule (Modus Tollens)

Let us note, that we did not include the rules of substitution and
reverse substitution used by fukasiewicz into our deductive system |,
because they are already included into the definition of inference.
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Remark 5.1. As the anonymous referee has pointed out, the fukasie-
wicz’s refutation system for the classical logic can be treated as a non-
axiomatic system (admitting iterated rejections) with the following rules:

®O(a— ) S(a — f) Do O-a
da ©f DSa O da
S

The sentential expression « is a tautology (thesis), when a full decom-
position of the expression ©a leads to contradiction.

Let us observe, that (MMP) with the meta-axiom x = (y = (x Ay))
allows to apply the inner rules, that is, the inference rules specific for

a given logics, like Modus Ponens, for instance. Indeed, suppose we
derived the statements G A and &(A — B). Then,

1. A was derived

2. ®(A— B) was derived

3. A= (@(A — B) - (@A A @(A — B))) a substitution instance of
= (y = (2 Ay))

4. DA A @(A — B) from 1,2, 3 by (MMP)
5. (PAA®(A— B)) > @B an instance of MP
6. ®B from 4 and 5 by (MMP)

As usual, two statements « and [ are equivalent if H o = £ and
FB-=a.

PROPOSITION 5.1. Every statement « is equivalent to a meta-conjuction
of the statements of form ©A; A...AOA, = OB v...vOB,,.

PROOF. In the classical logic, every formula is equivalent to a formula
in conjunctive normal form. Hence, every statement « is equivalent to a
meta-conjunction of statements, each of which has the following form

~OAIV .. V-0A, VOB V...VOB,,. (4)
It is clear that(4) is equivalent to

(A1 A...ACA,) VOB V...VvOB, (5)
and (5) is equivalent to

(A1 A...ABA,) > OBV ...vOB,. O

From the Proposition 5.1, it follows that « is equivalent to a meta-
conjunction of rules for any given deductive system S as long as for every
o€ X, ks o(a).
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6. Concluding Remarks

As mentioned at the beginning of the paper, in [51] Smiley has introduced
a calculus for CPC contains rules for rejection of proposition. Among
these rules he uses the following®

OAF @-A (rl)

Let us observe that the above rules yield that F ©A entails that for
every substitution o € X, S0(A), i.e., substitutions preserve validity
of rejection. Indeed, from - ©A and the rule (rl) we infer - ®—A. Since
@-A is an assertion, for every substitution o € ¥ we have - ®©—o(A)
and, using rule (r2), we get - ©0(A). Thus, the Lukasiewicz’s axiom
for rejection ©p, where p is a propositional variable, is not valid in the
Smiley’s logic: F ©p yields ©A for every formula A, while Smiley’s logic
is not trivial. In other words, the Smiley’s logic does not admit the rule
of reverse substitution. So, in the Smiley’s logic the formula p is neither
asserted, nor rejected.

Let us remark that the above considerations can be applied to every
logic in which rejection of a formula is equal to assertion of negation of
this formula.

Let us also note that the use of multiple-conclusion rules gives us
an ability to construct distinct consequence relations defining standard
classical propositional logic. Indeed, one can add the rule p V ¢/p,q
to the Lukasiewicz’s calculus and the obtained calculus will still define
the classical logic. In fact, there is infinite set of distinct consequence
relations defining the classical logic: for every k > 1 we can add to the
Fukasiewicz’s calculus the rule

Ry :=T/{(pi <> pj),i#j,1<i,j <2k}

It is not hard to see that the rule Ry is valid in a Boolean algebra with
2% elements, but is not valid in any Boolean algebra with more than 2%
elements. Thus, the calculi obtained from the fukasiewicz’s calculus by
adding the rules Ry are distinct and non-trivial.

In conclusion, we note that the presence of the rule of reverse substi-
tution makes semantic of such logics much more complex and calls for
the use of matrices similar to Q-matrices introduced by G. Malinowski

6 We are using the notation from the present paper.
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(see, e.g. [29]). We will discuss the semantic for the logic with rejection
in a separate paper.
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