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ABELIAN MEREOLOGY

Abstract. In classical extensional mereology, composition is idempotent:
if x is part of y, then the sum of x and y is identical to y. In this paper,
I provide a systematic and coherent formal mereology for which idempotence
fails. I first discuss a number of purported counterexamples to idempotence
that have been put forward in the literature. I then discuss two recent
attempts at sketching non-idempotent formal mereology due to Karen Ben-
nett and Kit Fine. I argue that these attempts are incomplete, however,
and there are many open issues left unresolved. I then construct a class of
models of a non-idempotent mereology using multiset theory, consider their
algebraic structure, and show how these models can shed light on the open
issues left from the previous approaches.

Keywords: universalism; extensionality; supplementation; antisymmetry;
mereology; parthood; composition

Introduction

What is the difference between the words types ‘stared’ and ‘starred’?
They obviously express different concepts: one is what I sometimes do
blankly into space, sitting at my desk; the other is what movie actors
do in films. Orthographically, they are composed of different letters 
well ‘different’ in the sense of token instances, but in another sense the
letter types are the same. A natural thought is that word types are
composed of letter types, where composition is mereological. But ac-
cording to the industry-standard classical extensional mereology (cem),
they couldn’t be.

Mereological composition (or summation) in cem satisfies a principle
that rules out cases like this (and others to be considered later). Let us
call this feature the idempotence of composition.

Idempotence If x is part of y, then the sum of x and y is identical to y.
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I note that this is a slightly different formulation from the more usual
property called ‘idempotence’: the sum of x with itself is just x; that is,
taking the sum of something twice-over gives you no more than taking
the sum of it once-over. Of course, we have this in cem as well: given the
reflexivity of parthood, we have it as an instance of the principle above.
(The more general formulation will be useful throughout.) If words types
are composed of their letter types, then idempotence identifies the words
‘stared’ and ‘starred’. After all ‘r’ is part of ‘stared’, and hence their sum
would just be ‘stared’.

Effingham and Robson [12] discuss a closely related feature of cem,
called the ‘Parts Just Once Principle’ (pjo).

pjo For every composite x, x cannot have y as a part many times over.

Strictly speaking, pjo is not expressible in cem due to the occurrence
of ‘many-times over’. The idempotence property, however, is expressible
and a theorem of cem. Both principles seem plausible.1 But the case of
‘stared’ and ‘starred’ seems to provide a counterexample, and recently
authors have suggested that there may be other cases where it is possi-
ble that an object be part-related to another multiple times.2 Bennett
explains,

Two people are cousins twice over, or ‘double cousins’, as they are
called, just in case they are the children of pairs of siblings. Similarly,

1 For example, Varzi [24, § 6.2] argues that any part-whole structures which fail
to satisfy them are not properly called ‘mereological’, due to the corresponding failures
of Weak Supplementation.

2 It is important, however, to note that we should not misunderstand the ‘many
times over’ in pjo as telling us that a composite x cannot have distinct proper parts
that are identical. That would be trivially true and immune to counterexamples. This
misunderstanding forms the basis of Effingham and Robson’s argument against pjo:

For the Parts Just Once Principle to be false there could exist an x that has n

proper parts, the ys, (where n > 1) such that the ys are not the same proper
part, but are the same object. If there is a whole which has two or more
different proper parts, the whole has those proper parts by being part-related
to two or more different (i.e. distinct) objects. So for each of the ys, that y is
not identical to any of the other ys. Yet it is stipulated that the same object
(call it z) is a part n times over. So z is identical to each of the ys  and so
by the transitivity of identity each of the ys are identical to one another. A
clear contradiction. ([12, 635])

They assume that being part-related many times over is equivalent to being part-
related to two or more distinct objects. But of course that assumption is precisely
the negation of what the ‘parts many times over’ proponents are claiming.
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the being three feet from relation can hold multiple times between the
same two entities: consider two antipodal points on a sphere, such that
the shortest distance between them along the surface is three feet [. . . ]
But [. . . ] parthood? [. . . ] I argue that [. . . ] we can make sense of the
idea of an entity’s having a part twice  or four times  over.

[3, 83–84]

The controversy over idempotence has been the subject of some recent
controversy among mereologists, as it forces us to identify things we
might ordinarily regard as distinct  much like the word types ‘stared’
and ‘starred’.

The aim of this paper is to explore and develop a systematic for-
mal mereology in which idempotence fails. In §1 I present a number of
purported counterexamples to idempotence that have been put forward
in the literature. In §§2–3 I discuss two recent attempts at developing
non-idempotent formal mereology due to Karen Bennett [3] and Kit Fine
[13]. I argue that these attempts are incomplete, however, and there are
many open issues left unresolved. In §4 I construct a class of models of
a non-idempotent mereology utilising multiset theory. I also discuss the
algebraic structure of this class of models; this allows us to compare these
models with the structures of cem. These models can shed light on the
issues left open from the previous approaches, and provides some insight
into the options and limitations of a non-idempotent kind of composition.

1. Parts Just Once?

There are a couple of ways of conceiving of how an object might have
another as a proper part more than once. For concrete objects, Smith
[23] suggests the phenomenon should be understood as x having a proper
part y that is multiply located in many distinct subregions of the location
of x. Endurantists are no strangers to the idea that an individual might
be multiply located at different times. And if an object could be multiply
located in different regions at the same time, perhaps we could generate
violations of idempotence and pjo.

Consider the following example due to Effingham and Robson [12]:3

3 Examples such as these first appeared in print in Effingham and Robson [12]
and Gilmore [16]. See also Eagle’s response [10], and Gilmore’s reply [17]. Likewise,
see Smith’s response [23], and Effingham’s reply [11]. Both discussions are addressing
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Assume you are an endurantist. Imagine you are presented with what
appears to be one hundred bricks, Brick1, Brick2, . . . , Brick100, stacked
together so as to arrange what appears to be a brick wall. The brick-
layer, Marty, asks you whether the wall is a composite object or not.
Presumably you will answer positively. However Marty claims that con-
trary to your intuitions the wall in question is not a composite object,
and that he will demonstrate this. To begin his demonstration, Marty
demolishes the wall. Let the time of the demolishing be t100. He then
takes Brick1 to a nearby time machine, whereupon you both travel back
in time to t1. Here Marty takes you to a shop and purchases a normal
house brick, which he then places in the region that will be occupied by
Brick1 at t100. Obviously Brick1 is the brick purchased from the shop.
Marty then places the future version of Brick1 from t100 next to the
past version of Brick1 so that it is in the region that will be occupied
by Brick2 at t100. Clearly then, Brick2 is numerically identical to Brick1.
You both travel forward a hundred units of time to t101, where Marty
takes Brick2 (which you now know to be Brick1 also), and then you
both return to t2 where Brick2 is placed in the location where Brick3

will be. Travelling forward in time again to t102 Marty takes Brick3

(which you now know to be both Brick1 and Brick2) and travels back
one hundred units of time to t3 where the brick is placed in the location
reserved for Brick4. This process is repeated until an entire wall has
been constructed from the same object during the interval between t1

and t100. [12, 633–4]

The brick wall seems to be composed entirely of a single brick many
times over. So it appears to be direct counterexample to pjo. Moreover,
consider the brick wall just before I add the final brick  call this object,
composed of the brick ninety-nine times over, Wall99. Now, the brick is
already part of Wall99. According to idempotence, completing the wall
by adding the final (copy of the) brick to Wall99 results in Wall99. But
intuitively the result of adding the last brick should be Wall100. And
Wall100 is not identical to Wall99 (since Wall99 is located in a different
region of spacetime, has a different shape, etc.).4 Thus, idempotence
must fail.

issues in the literature on persistence. More relevant discussions that tackle the mere-
ological implications of multi-location head-on are Donnelly [9] and Kleinschmidt [19].

4 Of course, one might try to save idempotence by accepting that things might be
multiply located, and be self-discernible regarding shape and other properties. This
approach will like need to allow that things can be proper parts of themselves. Cotnoir
and Bacon [7] develop a mereology that might be useful to such an attempt.
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Of course, there are a number of replies that defenders of pjo and
idempotence can give in response to such a scenario. One reply springs
to mind: the example is not metaphysically possible as it involves prob-
lematic cases of time-travel which are known to raise metaphysical dif-
ficulties. Gilmore [16] gives the following example, which he takes to be
clearly physically possible, and a fortiori metaphysically possible.

The General Theory of Relativity permits the occurrence of what physi-
cists call ‘closed timelike curves’. A timelike curve is a continuous path
through spacetime corresponding to the possible life-history of a mas-
sive particle. [. . . ] A timelike curve is closed just in case it forms a loop,
thus ‘ending where it began’ so to speak. A particle that traces out an
almost closed timelike curve would, just by lasting long enough and
taking the appropriate trajectory, return to its own past and coexist
with a younger version of itself. Consider [. . . ] the career of a hy-
drogen atom, which we shall call ‘Adam’. Adam is spatially bi-located
throughout its two-billion-year-long career. For any given moment of
external time [. . . ] t in the relevant universe, Adam is present ‘twice
over’. [. . . ] Suppose that, at each moment of Adam’s proper time,
Adam is chemically bonded to itself at a different moment of its proper
time, thus forming a molecule of H2, which we shall call ‘Abel’. Abel
is spatially mono-located through its career (which is only one billion
years long). [. . . ] The distinctness of Adam and Abel can be argued for
in a number of ways. Adam, being a mere hydrogen atom, has certain
chemical properties that Abel lacks. Abel, being a hydrogen molecule,
is more massive than Adam. [16, 185–187]

In this case, Abel is composed of a single multi-located atom, Adam.
This violates idempotence: Adam is part of itself, but the sum of Adam
twice over is not identical with Adam, but Abel. It is beyond our scope
here to determine whether Gilmore’s example is in fact a genuine physical
or metaphysical possibility. However, it seems clearly conceivable on
some notion of parthood or composition, and so we might wish to make
the attempt at formalising such notions.

Perhaps a more straightforward example of multi-location involves
universals. Insofar as universals are thought to be located in spacetime 
i.e. ‘immanent’ universals  they are often said to be “wholly located
wherever they are instantiated”. Additionally, some have thought that
universals can have other universals as parts; the locus classicus being
Armstrong [1].

As water is H2O, the structural universal water has the universal
hydrogen as a component twice over, and the universal oxygen as
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a component once over (and perhaps we’d like to include two copies
of the bonding universal). By contrast, hydrogen peroxide is H2O2.
Hence, the structural universal hydrogen peroxide has the component
hydrogen twice over, and the component oxygen twice over (plus,
perhaps, bonding thrice over).

Summing together water with an extra oxygen (and, if we include
bonding, an extra instance of that too) does not yield water as idem-

potence would predict, but yields hydrogen peroxide. Hence, either
oxygen is not part of water, or idempotence fails. So, if structural uni-
versals were structured by cem, then water and hydrogen peroxide

would be identical. But they aren’t.

From this, Lewis [20] famously concluded pace Armstrong that struc-
tural universals do not exist since they cannot be handled within cem.
And for Lewis, it is either (classical extensional) mereology or ‘magic’.
As Hawley [18] rightly argues, Lewis’s ‘mereology or magic’ is a false
dichotomy. Why not give an account of an alternative mereology which
allows one to give a full metaphysical theory of structural universals?5

2. Parts and Slots

Bennett [3] provides an interesting attempt to rise to the challenge of
providing an alternative mereology that rejects pjo. Bennett’s mereol-
ogy makes creative use of the distinction between a role and an occupant

of that role. Bennett argues that this distinction allows us to have two
types of objects in our domain: parthood slots, and the fillers of those
slots. On this view, wholes come ‘pre-structured’ as it were; they are
structural shells waiting to be filled in. Once it is allowed that objects
have this slot structure, it is a small step toward allowing that a single
object might fill more than one slot in the same whole. It might be
thought that a structural universal like water, for example, has three
(perhaps five) slots, two of which are filled by hydrogen and one of
which is filled by oxygen (and perhaps two slots filled by bonding).6

5 See for example Bigelow and Pargetter [4] for an early attempt. See also Bader
[2], Forrest [15], and Mormann [22] for more recent efforts.

6 But see Fisher[14] for reasons why this application to structural universals
might not ultimately be successful. (Similar considerations could be raised to the
framework below.)
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Bennett’s mereology uses two primitive relations: Psxy means that
x is a parthood slot of y; Fxy means that x fills y. This allows us to
define general parthood thus: P (x, y) := ∃z(Psz, y ∧ Fxz). That is, x is
a part of y just if x fills some parthood slot of y. Bennett then outlines
a number of axioms which make this parthood relation behave in some
expected ways.

A1 Only Slots are Filled: Fxy → ∃zPsyz

A2 Slots Cannot Fill: Fxy → ¬∃zPsxz

A3 Slots Don’t Have Slots: Psxy → ¬∃zPszx

A4 Improper Slots: ∃yPsyx → ∃z(Pszx ∧ Fxz)
A5 Slot Inheritance: (Pswy ∧ Fxw ∧ Pszx) → Pszy

A6 Mutual Occupancy is Identity: (Pswy∧Fxw)∧(Pszx∧Fyz) → x = y

A7 Single Occupancy: Psxy → ∃!zFzx7

A8 Slot Strong Supplementation:
((∃zPszx ∧ ∃zPszy) ∧ ¬(∃zPszx ∧ Fyz)) → ∃z(Pszy ∧ ¬Pszx))

A1 states that an object is a filler only if there’s another object with a
slot being filled by it. A2 says that slots cannot play the role of a filler
while A3 says that slots cannot play the role of an object having a slot
to be filled. A4 states that every object has a slot which it itself fills;
this allows us to prove a kind of reflexivity. A5 states that any slots of
a filler are thereby slots of the filled; this allows us to prove a kind of
transitivity. A6 states that only one object can fill each slot; this allows
us to prove that parthood is antisymmetric and that proper parthood
is extensional. A7 states that every parthood slot has exactly one filler.
A8 is related to a class of mereological supplementation principles: the
antecedent requires that x and y have slots and y not be part of x, and
the consequent stipulates the existence of a slot of y that isn’t a slot of x.8

Bennett’s theory provides a minimal way of thinking about parthood
which is compatible with an object being a part twice over. But the
introduction of slots as distinct from parts complicates the metaphysical
picture. How exactly are we to think of slots? One option is to think of
slots as locations. If we do so, then the various principles involving them
might prove to be objectionable constraints on a theory of locations. For

7 In Bennett’s version, the consequent actually reads ‘∃!zFxz’ which seems to be
a typographical mistake.

8 In fact, A8 might be thought to be too weak in a number of ways: it is in effect
a ‘slot version’ of what Varzi [25] calls Strong Company.
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example, A6 would rule out the possibility of co-located objects. If we
don’t see slots as reducible to locations and the like, then they appear
to be additional ontological commitments. We might do better to avoid
such commitments (if we can).

Unfortunately, Bennett’s mereology runs into further trouble with
mereological sums. She does not propose any kind of mereological sum
or fusion operation on parts. Slots cannot be parts of slots; nor are they
parts of the objects they are slots for. As a result, it is very difficult
to tell when looking at some parts a and b what their sum should be.
We need to know what slot-structure is present in the whole before we
can determine what the relevant sum is. How many slots need to be
filled? There are many possible answers to this question, each of which
determines at least one distinct object, but usually many more. Suppose,
for example, the whole has three slots. Then there are six possible sums
aab, aba, baa, abb, bab, and bba, assuming it matters to the identity of
the object which part fills which slot. Even if we identify objects like
aba and baa, we still fail to have it that mereological sum is unique
(i.e. the extensionality of sums fails). Perhaps this is to be expected;
but it would be nice to have a theory of composition that explained
this. However, given the complexities of composition Bennett does not
develop any theory of it. These are open questions a fully developed
non-idempotent mereology would need to answer.

3. A Plurality of Composition Operators

In Fine’s [13] insightful and radical paper, he characterises the intuitive
concept of parthood as minimally requiring:

Containment Wholes contain their parts, in the sense of the parts
being integral to the whole.

Building Wholes are built from their parts, in the sense of the whole
comprising the parts, the parts composing the whole.

Replacement A whole may change by the replacement of its parts.

Fine is primarily concerned with arguing for two key theses regarding
parts and wholes.

Pluralism There is more than on basic sense of part, and likewise more
than one basic mode of composition.

Operationalism The operation of composition, rather than the rela-
tion of parthood, should be taken as primitive.
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A parthood relation is basic in Fine’s terms when it is not definable in
terms of other ways of being a part, but may be defined from a particular
composition relation. Fine provides a number of arguments for oper-

ationalism, most of which involve expressive power and the adequacy
of various definitions. (It should be noted, though, that some of Fine’s
arguments are only strong assuming a prior commitment to pluralism.)
The important thesis for our purposes is pluralism. Fine accepts the
composition operator of cem as one candidate among many equally le-
gitimate notions of composition. For our purposes, we are looking for a
formal theory of composition which allows for an object to have a part
twice over. To find such a theory, we need to delve into Fine’s attempt
to unify and characterise these different notions of composition under a
single formal framework.

We begin with a primitive variably polyadic composition operator Σ
and apply it to a number of objects x1, x2, . . . .9 Already we can then
define the following:

Component x is a component of y iff y = Σ(. . . , x, . . .).
Parthood x is a part of y iff there is a sequence of objects x1, x2, . . . , xn

for n > 0 for which x = x1, y = xn and xi is a component of xi+1

for 1 ≤ i ≤ n − 1.

In other words, x is a part of y whenever there is a way of ‘building’
y from x (and other things perhaps) by repeated applications of the
composition operator. On this definition, parthood can be shown to be
a pre-order (weak or strict, depending on the composition relation in
question). Antisymmetry (or in some cases asymmetry) can be proved
from the following assumption:

Acyclicity If x = Σ(. . . Σ(. . . , x, . . .) . . .) then x = Σ(. . . , x, . . .).

For suppose x = Σ(. . . Σ(. . . , x, . . .) . . .) but x 6= y = Σ(. . . , x, . . .); then
x is a component of y, and hence a part of it, while y is a component of
x. This is a violation of antisymmetry – or asymmetry.10

9 My preference would be to say that Σ is a plural operator, rather than a variably
polyadic one. However, for Fine, it is crucial that Σ be capable of taking no arguments,
to generate e.g. the empty set.

10 Of course Fine is simply presupposing that Σ is functional  that outputs of
its application are always unique. Notice that acyclicity does not entail antisymmetry
if Σ isn’t a functional in this way  that is, if we don’t assume that composition is
always unique.
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So far, we have supposed almost nothing about composition. But
one can list a number of key principles that may or may not hold for
each individual kind of composition.11

Collapse Σ(x) = x

Leveling Σ(. . . Σ(. . . , x, y, z, . . .) . . . Σ(. . . , u, v, w, . . .) . . .) =
Σ(. . . , x, y, z, . . . , u, v, w, . . .)

Absorption Σ(. . . , x, x, . . . , y, y, . . .) = Σ(. . . , x, . . . , y, . . .)
Permutation Σ(. . . , x, y, z, . . .) = Σ(. . . , y, z, x, . . .) (and similarly for

all other permutations)

This results in a number of different possible composition operators de-
pending on whether or not collapse (C), leveling (L), absorption

(A), and permutation (P) are satisfied.12 We write e.g. CLAP for the
composition relation that satisfies absorption and permutation but
not collapse and leveling. So, for example the sums of cem satisfy
CLAP, while sequences correspond to CLAP . Another example would
be the set-builder CLAP .

Not all these are basic composition relations. There are (at least)
two ways of deriving new parthood and composition relations from basic
ones:

Subsumption A subsumed parthood relation is (the ancestral of) a re-
striction of a basic parthood relation; x’s being a subsumed part of
y holds in virtue of x’s being a basic part of y.

Chaining If K is a family of parthood relations, then x is a K-part of
y if x and y can be linked by relationships of k-part for k in K.

For subsumption, we restrict the range of the relata to some subset
of the domain. So, we might have a unary predicate F , and define x

is an F -part of y iff x is part of y and F (x). The subsumed parthood
relation will be the transitive closure of F -parthood. A parthood re-
lation that is a result of chaining is called hybrid.13 Where K is the

11 Notice that these are all regular identity conditions: a condition s = t such
that the variables appearing in s and the variables appearing in t are the same.

12 Fine [13, fn. 12] states that there are only twelve possible variants. This is
presumably because some of these constraints are jointly inconsistent, although he
does not specify. CLAP and CLAP violate acyclicity, and so Fine thinks they
should be disallowed.

13 It is unclear from the text whether one is permitted ‘chain’ basic relations
together with derived ones. But there clearly are hybrid relations of this sort.
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family of all parthood relations, the result of chaining is called general

parthood.14

In addition, there are derived composition relations which are nei-
ther subsumptions, nor chainings. For example, for any ‘hierarchi-
cal’ composition relation Σ  namely, any composition relation for which
leveling fails  we may define a ‘flat’ correlate

⋃
Σ as follows:

Flattening
⋃

Σ(Σ(x1, x2, . . .), Σ(y1, y2, . . .)) = Σ(x1, x2, . . . , y1, y2, . . .)

In general, this will turn any L composition into an L one. So, for
example, where Σ∈ (namely, CLAP ) is the set-builder operation,

⋃
Σ∈

is the set union operation which corresponds to CLAP . Similarly for
other composition operators.

For our non-idempotent mereology, we are looking for a composition
relation like the ‘mere sums’ of CLAP without absorption. In the
vicinity are multisets (CLAP ), and multiset unions (i.e. flattenings of
multisets) (CLAP ). But what we are really after corresponds to CLAP ,
since in general we want Σ(x) = x without Σ(x, x) = x.15

While Fine’s framework is extremely rich and suggestive, it leaves
something to be desired. The main worry is that Fine’s four principles
C, L, A, and P do not seem to be enough to uniquely specify the relevant

14 Fine is not explicit about about the distinction between antisymmetry of a
weak order over against the asymmetry of a strict order  he calls both the former.
But this matters for general parthood. Remember, we are dealing with sometimes
strict (e.g. the ancestral of membership), sometimes weak (e.g. subset) partial orders.
What guarantees that when we chain them, we have anything like the relevant behav-
ior? Similar worries hold for irreflexivity/reflexivity. Or does Fine think the general
parthood relation need not be either reflexive or irreflexive?

15 We should not conflate the flattenings of multisets with the particular non-
idempotent composition operator we are after. Fine insists that “the only identities
which hold are the ones which can be shown to hold only on the basis of the defining
principles for the operations in question” (p. 580). So for example, Fine thinks that
there is nothing to force the mereological sum of any two sets to be identical to any
set, contra Lewis [21, p. 580].

Lewis’s view, in my opinion, rests upon conflating the derived form of com-
position for sets with the mereological operation of sum, and has no intuitive
support.

The derived form of composition for sets is
⋃

Σ∈

, namely set union, which corresponds

to CLAP . Mereological summation corresponds to CLAP . It is no wonder then that
Lewis had to appeal to a primitive singleton-forming operator to make his reduction
of mereology to set theory work.
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form of composition, nor do they pin down the exact structure of the
models for each intended composition. For example, Quinean sets (from
‘New Foundations’ set theory) allow for sets to be their own singletons.
The Quinean set builder (CLAP ) can be ‘flattened’ to Quinean set-
theoretic unions which will satisfy CLAP  exactly like the sums of cem.
But it is not obvious that Quinean set-union is mereological composition,
or even that they provably have the same models. Furthermore, the prin-
ciples CLAP do not appear to completely characterise cem; one cannot
prove e.g. the weak supplementation principle that stipulates that when-
ever x is a proper part of y, then a non-x-overlapping part of y exists.
Models of cem are not just supplemented, they are complemented in the
sense that every object that is not the ‘universe’ has a unique complement
composed of all and only those things that do not overlap it. I cannot
see a way of proving these complements exist by unrestricted CLAP-
composition alone. It should be noted that Fine [13, fn. 13] states that
he wants the intended models for a given composition operator to be “iso-
morphic to a ‘word algebra’ over the ‘generators’ of given elements.” This
is important, and might suffice to give the models added structure not
provable from CLAP alone; but can it guarantee the existence of com-
plements? This fact is not obvious, and Fine says nothing more about it.

Algebraically speaking, in any complete distributive lattice the least
upper bound operator

⊔
will satisfy collapse (by the idempotence of

⊔
), leveling (by the associativity of

⊔
), absorption (by definition),

and permutation (by the commutativity of
⊔

). To ensure the relevant
fact about being isomorphic to a word algebra over generators, we need to
consider free complete distributive lattices which are not always guaran-
teed to exist. Moreover, there are well-known free complete distributive
lattices (e.g. the real interval [0, 1]) which are obviously not complete
Boolean algebras (as would be required if they were models of cem).
In any case, more needs to be said on this score. Similarly, it is not
obvious that Fine’s framework provides us with a full characterisation
of our target via CLAP .

4. Multiset Models

In this section, I will attempt to provide a precise class of models for
a non-idempotent mereology using multiset theory (see e.g. [5]). Just
as powerset models are models of (atomistic) mereology, powermultisets
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are models for our mereology. By providing models, we show that a
mereology without pjo and idempotence is consistent (relative to ZFC).
The models illuminate key choice points in the formal implementation
of the target mereology. Two particular philosophical upshots are worth
highlighting. First, there are (at least) two viable notions of mereological
sum. Second, mereological complementation in such a theory is decidedly
non-standard.

We begin with a class D of multisets. A multiset (or mset) is like a
set, except that the identity of that mset is sensitive to the number of
times something appears as an element. Elements of msets, then, have
multiplicities: the multiplicity of element x in mset A is just the number
of times x is a member of A. We can think of an mset A in the universe
as being characterized by a map mA : D → N from multisets to natural
numbers, such that mA(x) > 0 iff x ∈ A. We will assume that the
multiplicity of x in A is unique  that mA is a total function.

We can now introduce some basic mereological notions:

Part A ⊑ B iff mA(x) ≤ mB(x), for all x ∈ D

Proper Part A < B iff A ⊑ B and A 6= B

We can show that ⊑ is by definition reflexive, and transitive. Since
A = B iff for all x ∈ D, mA(x) = mB(x), we can easily see that ⊑ is an-

tisymmetric. Notice that this amounts to the assumption that multisets
are extensional in the sense that sets are uniquely defined by giving the
multiplicities of their elements.

Multisets contain more notions of parthood than the standard ones,
however.

Whole Parts A is a whole part of B iff for all x ∈ D, if mA(x) > 0,
then mA(x) = mB(x)

Whole parts contain all the multiplicities of atomic parts of a whole, e.g.
{a, a} is a whole part of {a, a, b}.

Moreover, we can define:

Root The root of an mset A is the set A∗ = {x ∈ D | mA(x) > 0}
Full Part A is a full part of B iff A ⊑ B and A∗ = B∗.

Roots are roughly classical; that is, they contain all elements of A exactly
once, e.g. {a, b} = {a, a, b}∗ We say that two msets are similar iff they
have the same root. Full parts contain every distinct element of the
whole at least once, e.g. {a, b} is a full part of {a, a, b}. So full parts
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are just parts that have the same root. That these distinct notions of
parthood become available is not without philosophical significance. For
example, it would allow us to distinguish that the structural universal
water is a full part, but not a whole part, of the universal hydrogen

peroxide.

Now, we are in position to define our first notion of composition.

Sum A ⊔ B is the mset defined by mA⊔B(x) = max(mA(x), mB(x))
Product A⊓B is the mset defined by mA⊓B(x) = min(mA(x), mB(x))

Sums are our first notion of composition with product its dual. For
example, {a, a, b} ⊔ {b, b} = {a, a, b, b}. Similarly {a, a, b} ⊓ {b, b} = {b}.
This allows us to define a useful notion of mereological overlap: A and
B overlap whenever A ⊓ B 6= ∅.

Our models with have the structure of powermultisets.

Powermset The powermset of an mset X , ℘̃(X), is the multiset of
containing (multiplicities of) all parts of X .

Determining the exact multiplicity of a given part of X in ℘̃(X) is fairly
intuitive. For example, let A = {x, x, y}. Then, ℘̃(A) = {∅, {x}, {x},

{x, x}, {y}, {x, y}, {x, y}, {x, x, y}}. To obtain the powermset, first imag-
ine distinguishing between each individual ‘instance’ of a given element
in X ; second, take the classical powerset; and third, undo all the ‘dis-
tinctions’ you made in step one.

Theorem 1. 〈℘̃(X), ⊔, ⊓, ∅, X〉 is a bounded distributive lattice in which

A ⊑ B iff A ⊔ B = B.16

There are a few things to notice about these models. First, bounded
distributive lattices already have a lot of the structure of models of cem.
In the case of finite models of cem, the only difference is that in the
classical case we are guaranteed the existence of Boolean complements
whereas here we are not.

Second, these models show that multiset union does not correspond
to CLAP , contra Fine. That is because collapse and absorption

both hold for ⊔. In some sense, then, this notion of composition is gen-
uinely mereological and shockingly similar to that in cem, even though
the Parts Just Once principle clearly fails.

16 See [6, pp. 6–8]
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This leads us to our third important point: idempotence of compo-
sition (which holds) can come apart from Parts Just Once (which fails).
This is of some importance philosophically, since it entails that it might
be possible for an object to have a part twice over even if mereological
composition is idempotent as long as it is possible to start with objects
that already violate pjo.

But this way of ‘building in’ failures of pjo from the start might
strike some as somewhat contrived. After all, we are after some theory
of composition which allows us to ‘build up’ failures of pjo from nothing
but ordinary things at the start. And for that we will need a notion
of composition for which idempotence fails. Luckily, there is another
equally good candidate for modeling mereological composition:

Merge A FB is the mset defined by mAFB(x) = mA(x) + mB(x)

Recall that for sums {a, a, b}⊔{b, b} = {a, a, b, b}. By contrast for merges
{a, a, b}⊔{b, b} = {a, a, b, b, b} Notice that AFA 6= A (unless A = ∅). But
F is still associative, commutative, and distributes over ⊔ and ⊓.17 In
fact, where DN is the set of all mappings m from D to N, then 〈DN,F〉
is a free Abelian semigroup. However, we should not generally think
of our models as being closed under the operation of F, since ℘̃(X) is
not always so closed. As a result, while mereological composition by
⊔ is unrestricted, mereological composition by F is not. Why? Recall
Wall100 composed of a single Brick (one-hundred times over): it may well
be that this thought experiment is compatible with mereological univer-
salism before the time travel takes place. If so, then why shouldn’t it be
after? There are no new pluralities of objects that fail to have a sum.
However, we should not think simply because mereological sum (i.e. ⊔)
is unrestricted that this entails that F is unrestricted as well. Allow-
ing for existence of Wall100 does not demand we accept the existence
Wall5000 and Wall1,234,567,890 . No, this would require the existence of
multiplicities of Brick in excess of what the story gives us.

Until now, we have avoided any kind of mereological complemen-
tation (of the sort usually guaranteed by supplementation principles).
Here is a natural approach to relative complements:

Complements If A 6⊑ B then A−B is the mset defined by mA−B(x) =
mA(x) − mA⊓B(x), for all x ∈ D.

17 See Singh, et al. [8, p. 79].
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Clearly, where B ⊑ A, then A − B ⊑ A. Likewise, A − ∅ = A and
A − A = ∅. Where ⊤ is the ‘universe’ (i.e. the full powermset) we write
⊤ − A as A. However, in this mereology we can see some decidedly
non-classical behaviour. The classical ‘law’ A ⊔ A = ⊤ sometimes fails.
Letting ⊤ = {a, a, b, b, b} and A = {a, b, b}, A = {a, b}, note that A⊔A =
{a, b, b} 6= ⊤. Similarly, the classical ‘law’ A ⊓ A = ∅ sometimes fails.
This means that we are modeling a mereology in which objects and their
mereological complements can overlap!

Theorem 2. 〈℘̃(X), ⊔, ⊓, −, ∅, X〉 is not a Boolean algebra, but a De

Morgan algebra.18

This non-classical behavior of the most natural notion of complemen-
tation might come as a bit of a surprise. But we do have that AFA = ⊤
always holds, and so some of the Boolean behavior of complementation
is present relative to F our other notion of composition.

5. Conclusion

The class of multiset models for Abelian mereology set out above gives
us somewhat of a better handle on what a mereology without pjo or
idempotence would look like. Unlike Bennett’s mereology, we have two
formally precise notions of mereological composition without the need
to resort to any role/occupant distinction, nor appeal to any kind of
slot structure. (Of course, one might avail oneself to such philosophical
interpretations, but it is no part of the model theory.) Unlike Fine’s
framework, we have a precise class of models for which this mereology
is defined, along with a full algebraic characterisation of them and their
relation to models of cem.

Of course, there are some limitations of the above proposal. The first
limitation is that these model-theoretic structures validate atomism; the
members of X are atomic in ℘̃(X) in the sense of having no non-empty
proper parts. Avoiding atomism is a task for future work. Toward that
end, it would be worth finding an axiomatization of these structures, so
that we can give the first-order theory of Abelian mereology. A second
limitation of the approach above is that we have only been considering

18 See [6, pp. 6–8] for proof. He uses Rasiowa’s term ‘quasi-Boolean’ algebra,
rather than the ‘De Morgan’.
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binary mereological sums and merges. We have not generalized to allow-
ing for infinitary fusions

⊔
X of the sort allowed in cem. This is certainly

desirable, but would face some obstacles. Multisets with infinite multi-
plicities are not well understood. Moreover, generalising the definition
of sum could easily take us into the transfinite, since for members Ai

of X , it might well be that the multiplicities of mAi
(x) are unbounded,

and so there is no maximum. In any case, these are interesting but not
insurmountable technical challenges.

My aim has been to explore and develop a mereology for which idem-
potence and Parts Just Once can fail. We have shown that such mere-
ologies exist consistently, and that they are genuinely mereological in the
sense that they share remarkably strong structural similarities to cem.
Whether the framework set out here is adequate to the philosophical
task is for future discussion to decide.19
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