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Abstract. The concept of proper multiple-conclusion entailment is intro-
duced. For any sets X, Y of formulas, we say that Y is properly mc-entailed
by X iff Y is mc-entailed by X, but no A ∈ Y is single-conclusion entailed by
X. The concept has a natural interpretation in terms of question evocation.
A sound and complete axiom system for the propositional case of proper
mc-entailment is presented.
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1. Introduction

1.1. Multiple-conclusion entailment

Multiple-conclusion entailment (mc-entailment for short) is a general-
ization of the standard, “single-conclusion” entailment (hereafter: sc-
entailment). Mc-entailment is a semantic relation between sets of well-
formed formulas (wffs) of a formal language. Assume that the language
in question is supplemented with a semantics rich enough to define some
relativized (to a valuation, or a model, etc.) concept of truth for wffs.
By and large, a set of wffs X mc-entails a set of wffs Y iff the truth of
all the wffs in X warrants the existence of at least one true wff in Y . In
other words: if all the wffs in X are true, then at least one wff in Y must
be true.
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1.2. Mc-entailment in CPL

In order to define mc-entailment in exact terms one needs both syntax
and semantics of a language in question. Let us consider the case of
Classical Propositional Logic (hereafter: CPL). As for syntax, the vocab-
ulary of the language of CPL includes denumerably many propositional
variables p, q, r, s, p1, . . ., and the connectives ¬, ∨, ∧, →, ↔. Wffs are de-
fined in the standard way. We use A, B, C, D, with subscripts if needed,
as metalanguage variables for wffs, and X , Y as metalinguistic variables
for sets of wffs. As for semantics, a Boolean valuation is a function v that
assigns a truth value, 1 or 0, to each propositional variable and is ex-
tended to all wffs in the standard manner by using the Boolean functions
corresponding to the connectives. Unless otherwise stated, by a valuation
we will mean a Boolean valuation. v(A) = 1 means “wff A is true under
valuation v”. Mc-entailment in CPL, ‖=, can now be defined as follows:

Definition 1 (Mc-entailment in CPL). X ‖= Y iff there is no valuation
v such that v(A) = 1 for all A ∈ X , and v(B) = 0 for every B ∈ Y .

while CPL sc-entailment, |=, is defined by:

Definition 2 (CPL sc-entailment). X |= B iff there is no valuation v
such that v(A) = 1 for all A ∈ X , and v(B) = 0.

Observe that when Y is a singleton set, mc-entailment and sc-entail-
ment coincide: X ‖= {B} holds iff X |= B is the case. However, for non-
singleton Y ’s it happens that X mc-entails Y without sc-entailing any
wff in Y . For instance, {p∨q} ‖= {p, q} holds, but neither {p∨q} |= p nor
{p∨q} |= q is the case. Thus one cannot define mc-entailment of a set of
wffs as sc-entailment of at least one element of the set. As for CPL, how-
ever, mc-entailment is, in a sense, reducible to sc-entailment. We have:1

Fact 1. If X , Y are finite sets of CPL-wffs, then: X ‖= Y iff
∧

X |=
∨

Y .

Yet, since the syntax of CPL does not allow for infinite disjunctions
and infinite conjunctions, the reduction does not hold for mc-entailment
between infinite sets of wffs. On the other hand, one can show that
mc-entailment in CPL is compact, i.e. X ‖= Y iff X1 ‖= Y1 for some
finite subsets X1 of X and Y1 of Y . Yet, compactness is not an intrinsic
property of mc-entailment in general.

1 We assume that
∧

∅ = ⊤ and
∨

∅ = ⊥. Note that ∅ 6‖= ∅.
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Remark 1. One may wonder if mc-entailment between finite sets always
coincides with sc-entailment of a disjunction of all the elements of the
“conclusion” set from a conjunction of all the elements of the “premise”
set. The answer is “No.” For instance, take First-order Logic (FoL)
and define FoL mc-entailment as follows: X mc-entails Y iff there is
no (FoL)model in which all the wffs in X are true and no wff in Y is
true.2 The wff x = a ∨ x 6= a, where a is an individual constant, is
FoL sc-entailed by the empty set. However, the set {x = a, x 6= a} is
not mc-entailed by the empty set, since there are (FoL)models in which
x = a is only satisfied but not true.

Moreover, the analogues of Fact 1 do not hold for some non-classical
logics. For example, take a three-valued propositional logic in which
disjunction, ∨, is understood according to Table 1.3

∨ 0 i 1

0 0 i 1

i i i i

1 1 1 1

Table 1. McCarthy’s disjunction

In such a case q ∨ p is not sc-entailed by p because q ∨ p can take the
value i when p takes the (designated) value 1. On the other hand, the
set {q, p} is still mc-entailed by the singleton set {p}. Similarly, {p} does
not sc-entail p ∨ q, but mc-entails {p, q} when disjunction is construed
in a way presented in Table 2.4

∨ 0 i 1

0 0 i 1

i i i i

1 1 i 1

Table 2. Bochvar’s disjunction

2 By truth in a model we mean here satisfaction by all valuations from the domain
of the model.

3 We borrow the table from [2]. Unlike [2], we use “1” for truth, “0” for falsity,
and “i” for the third logical value. As the authors of [2] indicate, the table expresses
an idea already present in McCarthy’s [8].

4 This is a table expressing the meaning of disjunction in some of Bochvar’s logics;
see [3].
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1.3. A brief historical note

A syntactic counterpart of mc-entailment is multiple-conclusion conse-

quence (mc-consequence for short). It is sometimes claimed that the lat-
ter notion originates from Gentzen [6] due to his introduction of sequents
of the form A1, . . . , An ⇒ B1, . . . , Bk. The sign ⇒ occurring in a prov-
able sequent can be interpreted as referring to mc-consequence linking
the respective sets {A1, . . . , An}, and {B1, . . . , Bk}, where the semantic
relation between {A1, . . . , An} and {B1, . . . , Bk} is just mc-entailment.
Assuming this, a calculus of sequents operating with sequents which
have more than one wff on the right side of ⇒ is a (single-conclusion)
metacalculus for a multiple-conclusion object-level calculus. However, in
some cases (Classical Logic included) a sequent A1, . . . , An ⇒ B1, . . . , Bk

can also be construed as a notational variant of the corresponding wff
A1 ∧ · · · ∧ An → B1 ∨ · · · ∨ Bk, where → stands for the implication con-
nective. Under this interpretation, Gentzen’s calculi of sequents would
be variants of the corresponding conventional calculi. Shoesmith and
Smiley [10] claim that Gentzen interpreted his calculi of sequents in this
latter way. If they are right, it was Carnap who first introduced the
concept of mc-entailment (cf. [4]; Carnap uses the term “involution”).
Its syntactic counterpart, mc-consequence, was incorporated into the
general theory of logical calculi by Dana Scott [9]. Mc-consequence and
related concepts (multiple-conclusion calculus, multiple-conclusion rules,
etc.) are analysed in detail in the monograph [10].

According to Scott, the following constitute the basic properties of
mc-consequence, ‖− (Scott assumes that X and Y are finite sets of wffs
of a language):

(R) If X ∩ Y 6= ∅, then X‖− Y .
(M) If X1‖− Y1, where X1 ⊆ X and Y1 ⊆ Y , then X‖− Y .
(T) If both X‖− A, Y and X, A ‖− Y , then X‖− Y .

One can easily show that mc-entailment in CPL, ‖=, satisfies the above
conditions for any finite sets of wffs of the language of CPL and any wff
of the language.

In what follows by a mc-consequence we will mean a relation between
finite sets of wffs that satisfies the conditions (R), (M), and (T).

Remark 2. This definition is very general. Of course, truth/validity-pre-
serving relations are consequence relations. However, falsity/non-valid-
ity-preserving relations are consequence relations as well (see e.g. [11, 7]).
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1.4. Some interpretational problems

Allowing sets of wffs to constitute conclusions raises interpretational
problems. Roughly speaking, Y on the right seems to be a kind of
generalized disjunction; let us designate it by

⊔
Y . There are cases,

however, in which this interpretation is problematic.
Following Scott [9, p. 416], we say that a mc-consequence ‖− is consis-

tent iff there is no wff A (of the language in question) such that ∅ ‖− {A}
and {A} ‖− ∅; ‖− is complete iff for each wff A we have either ∅ ‖− {A} or
{A} ‖− ∅. As Scott [9] observes, the following holds:

Fact 2. Every mc-consequence ‖− is the intersection of all consistent

and complete mc-consequences containing ‖−.

A consistent and complete mc-consequence can be viewed as a Scott

valuation. For any relation ‖− of this kind, we define a function θ‖− from
the set of wffs to a two-element set {t, f} as follows:

θ‖−(A) = t iff ‖− {A}. (1)

(Here and below we write ‖−{A} for ∅‖−{A}.) Hence every mc-conse-
quence can also be characterized by the Scott valuations corresponding
to the relevant consistent and complete mc-consequences.

On the other hand, every Scott valuation θ determines a mc-conse-
quence ‖−θ by the following condition:

X‖−θ Y iff θ(B) = t for some B ∈ Y

whenever θ(A) = t for all A ∈ X.

It seems natural to construe
⊔

Y as follows. Let θ be a Scott valua-
tion.

θ(
⊔

Y ) = t iff θ(B) = t for some B ∈ Y. (2)

However, apart from situations where
⊔

Y indeed means “or” (in the
object language or in a metalanguage), there are problematic ones. For
example, for any Boolean valuation v, define a relation ‖−v by:

Definition 3. X‖−v
Y iff v(B) = 0 for some B ∈ Y whenever v(A) = 0

for all A ∈ X .

It is easy to check that ‖−v
is a mc-consequence. Also, since v is a

function, the relation is consistent and complete. Consider the corre-
sponding Scott valuation θ‖−v . We have: θ‖−v (A) = t iff (by (1)) ‖−v{A}
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iff (by Definition 3) v(A) = 0. Hence, by (2), we get:

v(
⊔

Y ) = 0 iff v(B) = 0 for some B ∈ Y .

It seems that
⊔

Y is here a conjunction rather than a disjunction

Remark 3. Scott valuations were introduced in [9, p. 416], as valuations
corresponding to arbitrary consistent and complete consequence rela-
tions. In general, a Scott valuation need not be a truth valuation (that
is, a valuation determined by truth tables in which t means “true”).
Note that in the above example t means “false”.

Scott valuations are called models by Gabbay [5]. In [9] the term
“{t, f}-valuation” is used.

Anyway, it is worth studying not only the general theory of mc-
consequence but also specific types of multiple-conclusion relations hav-
ing natural motivations.

1.5. Proper mc-entailment

As we have mentioned, mc-entailment generalizes sc-entailment. In par-
ticular, we have:

X |= A iff X ‖= {A}

and hence
If X |= A for some A ∈ Y, then X ‖= Y . (3)

However, the converse of (3) does not hold, that is, it happens that
X ‖= Y , but X 6|= A for every A ∈ Y . A simple example has been
presented in Section 1.1. Here is another:

{p ∧ q → r, ¬r} ‖= {¬p, ¬q}

{p ∧ q → r, ¬r} 6|= ¬p

{p ∧ q → r, ¬r} 6|= ¬q

Thus mc-entailment of non-empty sets splits into two sub-types: the
first, in which a set of wffs is mc-entailed and, at the same time, an
element of the set is sc-entailed, and the second, where a set is mc-
entailed, but no element of this set is sc-entailed. We will label the second
type of mc-entailment of non-empty sets as proper mc-entailment, and we
will use ‖� as the sign for proper mc-entailment. More precisely, we put:

Definition 4 (Proper mc-entailment). Let Y 6= ∅. X ‖� Y iff X ‖= Y
and X 6|= A for every A ∈ Y .
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Let us note the following.

Remark 4. {A} 6‖�{A} for any wff A.

Remark 5. X ‖� Y cannot be expressed as
∧

X |=
∨

Y . For example,
we have {p, q} 6‖� {p, q} but {p ∧ q} |= p ∨ q.

Our aim is to present an axiom system for proper mc-entailment. We
remain at the CPL-level. We coin the system PMC.

2. The system PMC

2.1. Terminology and notation

By a sequent we mean an expression of the form X ⊢ Y , where X and
Y stand for finite sets of CPL-wffs, and Y 6= ∅. The antecedent of a
sequent can be empty; in such a case we write ⊢ Y . By a literal we mean
a propositional variable or the negation of a propositional variable. We
say that two literals are complementary iff one of them is the negation
of the other. A clause is a literal or a disjunction of literals. A sequent
X ⊢ Y is in normal form iff every A ∈ X is a clause and every B ∈
Y is a conjunction of clauses. By the rank of the succedent Y of a
sequent in the normal form we mean the number of occurrences of the
conjunction connective, ∧, in Y ; the rank of Y is designated by r(Y ).
We abbreviate “A1 → (A2 → . . . → (An → B) . . .)” as “{A1, . . . , An} →
B”. The inscription “A ∈ CPL” means: “A is a thesis of CPL.” We
characterize finite sets of wffs by listing their elements; curly brackets
are thus omitted. As usual, X, A abbreviates X ∪ {A}.

2.2. Axioms

Axioms of PMC are sequents in the normal form falling under the fol-
lowing schema: ⊢ Y , where Y is of rank 0,

∨
Y ∈ CPL, and B /∈ CPL for

each B ∈ Y .
Here are simple examples of axioms of PMC:

⊢ p, ¬p

⊢ p ∨ ¬q, q ∨ ¬p

It is easily seen that the following hold:

Corollary 1. If a sequent ⊢ Y is an axiom of PMC, then no single

clause of Y involves complementary literals, but Y involves complemen-

tary literals.
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Corollary 2. If a sequent ⊢ Y is an axiom of PMC, then ∅ ‖� Y .

Remark 6. As Remark 4 illustrates, one cannot use A ⊢ A as a schema
of axioms of PMC. Similarly, X ⊢ X is useless. For instance,

{p, ¬p} 6‖� {p, ¬p}.

2.3. Rules

Here are the (primary) rules of PMC.

R1:
X ⊢ Y, A X ⊢ Y, B

X ⊢ Y, A ∧ B

R2:
X ⊢ Y, A

X ⊢ Y, B
where (A ↔ B) ∈ CPL

R3:
X ⊢ A → B1, . . . , A → Bk

X, A ⊢ B1, . . . , Bk

The rule R1 preserves proper mc-entailment (only) from top to bot-
tom, that is, the following holds:

Corollary 3. If X ‖� Y, A and X ‖� Y, B, then X ‖� Y, A ∧ B.

The rules R2 and R3, in turn, preserve proper mc-entailment in both
directions. To be more precise, we have:

Corollary 4.

1. Let (A ↔ B) ∈ CPL. Then X ‖� Y, A iff X ‖� Y, B.

2. X ‖� A → B1, . . . , A → Bk iff X, A ‖� B1, . . . , Bk.

Proof. The case of (1) is obvious.
As for (2), assume that X‖� A → B1, . . . , A → Bk. Hence: (a)

X ||= A → B1, . . . , A → Bk and (b) X 6|= A → Bi for 1 ≤ i ≤ k.
Suppose that X, A |6|= B1, . . . , Bk. Hence X |6|= A → B1, . . . , A → Bk.
A contradiction. Suppose that X, A |= Bi for some 1 ≤ i ≤ k. Therefore
X |= A → Bi. A contradiction again.

The reasoning in the other direction is analogous.

A proof of a sequent X ⊢ Y in PMC is a finite labelled tree regulated
by the rules of PMC where the leaves are labelled with axioms with
axioms and X ⊢ Y labels the root. A sequent X ⊢ Y is provable in PMC

iff X ⊢ Y has at least one proof in PMC.
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Here are examples of proofs:

Example 1. p ∨ ¬p ⊢ p, ¬p

⊢ p, ¬p (Ax)
⊢ p ∨ ¬p → p, ¬p (R2)

⊢ p ∨ ¬p → p, p ∨ ¬p → ¬p (R2)
p ∨ ¬p ⊢ p, ¬p (R3)

Example 2. p ∧ q → r, ¬r ⊢ ¬p, ¬q

⊢ q ∨ r ∨ ¬p, p ∨ r ∨ ¬q (Ax)
⊢ ¬q → r ∨ ¬p, p ∨ r ∨ ¬q (R2)

⊢ ¬p ∨ ¬q ∨ r → r ∨ ¬p, p ∨ r ∨ ¬q (R2)
⊢ (p ∧ q → r) → (¬r → ¬p), p ∨ r ∨ ¬q (R2)

⊢ (p ∧ q → r) → (¬r → ¬p), ¬p → r ∨ ¬q (R2)
⊢ (p ∧ q → r) → (¬r → ¬p), ¬p ∨ ¬q ∨ r → r ∨ ¬q (R2)

⊢ (p ∧ q → r) → (¬r → ¬p), (p ∧ q → r) → (¬r → ¬q) (R2)
p ∧ q → r ⊢ ¬r → ¬p, ¬r → ¬q (R3)

p ∧ q → r, ¬r ⊢ ¬p, ¬q (R3)

Example 3. p ∨ q ⊢ p, q, r

⊢ ¬q ∨ p, ¬p ∨ q, (¬p ∨ r) ∧ (¬q ∨ r) (R1)
⊢ p ∨ q → p, ¬p ∨ q, (¬p ∨ r) ∧ (¬q ∨ r) (R2)

⊢ p ∨ q → p, p ∨ q → q, (¬p ∨ r) ∧ (¬q ∨ r) (R2)
⊢ p ∨ q → p, p ∨ q → q, p ∨ q → r (R2)

p ∨ q ⊢ p, q, r (R3)

⊢ ¬q ∨ p, ¬p ∨ q, ¬q ∨ r (Ax)⊢ ¬q ∨ p, ¬p ∨ q, ¬p ∨ r (Ax)

Remark 7. It is natural to ask if the above approach can be extended
to non-classical logics. The rule R1 is obvious. The rule R2 is a kind of
replacement rule. It is R3 that may be a problem. However, the following
holds for many-valued logics. Let v be a valuation in a matrix with a
set D of designated values. R3 is a rule for the logic determined by such
a matrix if the following condition is satisfied.

v(A → B) 6∈ D iff v(A) ∈ D and v(B) 6∈ D.

For example, the connective ⊃ studied by Avron in [1] satisfies this con-
dition.
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2.4. Soundness and completeness

The following holds:

Theorem 1 (Soundness of PMC). If a sequent X ⊢ Y is provable in

PMC, then X ‖� Y .

Proof. By Corollary 2, Corollary 3, and Corollary 4.

In order to prove completeness we need:

Lemma 1. Let ⊢ Y be a sequent in the normal form. If ∅ ‖� Y , then

⊢ Y is provable in PMC.

Proof. We proceed by induction on r(Y ), i.e. the rank of Y .

(1) r(Y ) = 0. Assume that ∅‖� Y . Then ⊢ Y is an axiom of PMC,
so the sequent is provable in the calculus.

(2) r(Y ) > 0. Assume that ∅ ‖� Y , where Y = {A1, . . . , An}. Then
there is 1 ≤ i ≤ n, say i = 1, such that A1 = C1 ∧ . . . ∧ Cm and m > 1.
At the same time 6|= A1 and thus for some j, where 1 ≤ j ≤ m, it holds
that 6|= Cj . Consider:

Yj = {Cj , A2, . . . , An} (1 ¬ j ¬ m)

Y ′
j = {

∧
{Ck : k 6= j}, A2, . . . , An}

We have r(Yj) < r(Y ) and r(Y ′
j ) < r(Y ), so by the induction hypothesis:

(a) if ∅ ‖� Yj , then ⊢ Yj is provable in PMC;
(b) if ∅ ‖� Y ′

j , then ⊢ Y ′
j is provable in PMC.

But when ∅ ‖� Y holds, we have both ‖= Yj and ‖= Y ′
j . Yet, it also

holds that 6|= Cj . Thus ∅ ‖� Yj and hence, by (a), ⊢ Yj is provable in
PMC.

(Case 1 ) 6|=
∧

{Ck : k 6= j}. Then ∅ ‖� Y ′
j , so, by (b), ⊢ Y ′

j is provable
in PMC. Since we have rules R1 and R2, and ⊢ Yj is provable as well, it
follows that ⊢ Y is provable in the calculus.

(Case 2 ) |=
∧

{Ck : k 6= j}. Then A1 is CPL-equivalent to Cj , so, by
R2, ⊢ Y is provable in PMC.

Lemma 2. Let X ⊢ Y , where X 6= ∅, be a sequent in the normal form.

If X ‖� Y , then X ⊢ Y is provable in PMC.
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Proof. Let Y = {B1, . . . , Bk} and X = {C1, . . . , Cn}. Assume that
X ‖� Y . Then, by Corollary 4, we have:

∅ ‖� X → B1, . . . , X → Bk

Since each X → Bi is CPL-equivalent to a conjunction of clauses, then,
by Lemma 1 and rule R2 the following sequent:

⊢ X → B1, . . . , X → Bk

is provable in PMC. We extend the proof of the above sequent by ap-
plying rule R3 n times.5 As the result we get a proof of the sequent
{C1, . . . , Cn} ⊢ {B1, . . . , Bk}, i.e. of X ⊢ Y .

Theorem 2. Let X , Y be finite sets of CPL-wffs. If X ‖� Y , then the

sequent X ⊢ Y is provable in PMC.

Proof. Immediately by Lemma 1 or Lemma 2 if X ⊢ Y is in the normal
form.

Assume that X ⊢ Y is not in the normal form. Suppose that X ‖� Y .
Let X = {C1, . . . , Cn} and Y = {B1, . . . , Bk}.

By Corollary 4, X ‖� Y holds iff

∅ ‖� X → B1, . . . , X → Bk (4)

is the case.
Each of X → Bi is CPL-equivalent to a conjunction Di of clauses.

Clearly, (4) holds iff the following is the case:

∅ ‖� D1, . . . , Dk

Observe that the corresponding sequent:

⊢ D1, . . . , Dk (5)

is in the normal form. Therefore, by the initial assumption and Lemma 1,
the sequent (5) is provable in PMC. By applying rule R2 k times one can
extend a proof of (5) into a proof of the sequent:

⊢ X → B1, . . . , X → Bk (6)

Then, by applying rule R3 n times one can extend a proof of (6) into a
proof of the sequent X ⊢ Y .

5 Recall that “X → Bi” abbreviates “C1 → (C2 → . . . → (Cn → Bi) . . .)”.



252 Tomasz Skura and Andrzej Wiśniewski

What about proper mc-entailment between infinite sets of CPL-wffs?
The following holds:

Corollary 5. If X ‖� Y , then X1 ‖� Y1 for some finite sets X1, Y1 such

that X1 ⊆ X and Y1 ⊆ Y .

Hence the following is true:

Theorem 3 (Weak completeness of PMC). If X ‖� Y , then there exists

a sequent X1 ⊢ Y1 such that X1 ⊆ X as well as Y1 ⊆ Y , and X1 ⊢ Y1 is

provable in PMC.

3. Proper mc-entailment and question evocation

As we mentioned in Section 1.4, allowing sets of wffs to constitute con-
clusions raises interpretational problems. However, the case in which a
set of wffs is properly mc-entailed seems less problematic. It is quite
natural to think of a properly mc-entailed set of wffs as of the set of
direct answers to a question, where a direct answer is a possible answer
that provides neither less nor more information than is required by the
question. Assuming this, the first clause of the definition of proper mc-
entailment amounts to: if all the wffs in X are true, then the question
whose set of direct answers is Y must be sound, i.e. at least one direct
answer to the question must be true. The second clause, in turn, says the
following: no direct answer to the question is (sc-)entailed by X . Thus
the truth of all the wffs in X warrants the existence of a true direct
answer but does not determine which direct answer is true. In other
words: the question is sound relative to X , but it expresses a problem
which is open with respect to X . A reader familiar with Inferential
Erotetic Logic (IEL for short) immediately notices that X ‖� Y holds iff
X evokes a question whose set of direct answers is Y .6 The concept of
question evocation, however, plays a crucial role in IEL. In particular,
validity of inferences leading from declaratives to questions is defined in
terms of evocation. PMC can thus be interpreted as an axiom system
for question evocation. Let us add: the first known system of this kind.

Funding. This work was supported by funds of the National Science
Centre, Poland (DEC-2012/04/A/HS1/00715 to A.W.).

6 For IEL and question evocation see, e.g., [12].
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