
Logic and Logical Philosophy
Volume 22 (2013), 213–251

DOI: 10.12775/LLP.2013.012

Ivo Düntsch∗†

Sanjiang Li†

ON THE HOMOGENEOUS COUNTABLE

BOOLEAN CONTACT ALGEBRA

Abstract. In a recent paper, we have shown that the class of Boolean
contact algebras (BCAs) has the hereditary property, the joint embedding
property and the amalgamation property. By Fraïssé’s theorem, this shows
that there is a unique countable homogeneous BCA. This paper investigates
this algebra and the relation algebra generated by its contact relation. We
first show that the algebra can be partitioned into four sets {0}, {1}, K,
and L, which are the only orbits of the group of base automorphisms of
the algebra, and then show that the contact relation algebra of this algebra
is finite, which is the first non-trivial extensional BCA we know which has
this property.
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1. Introduction

The study of connection structures started from Whitehead’s ‘exten-
sional connectedness’ relation [30], which itself was based on earlier work
of de Laguna [4] and Nicod [25]. Since then, various axiomatizations of
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Whitehead’s connectedness relation have been proposed (see e.g. Grze-
gorczyk [13], Clarke [3], Gerla [12], and Randell et al. [26]) in the context
of ‘pointless geometry’. Here, as in Tarski’s work [28] on the geometry of
solids, the basic entities are some form of spatial regions, and the usual
points of geometry are obtained by second order constructions.

The present paper focuses on Boolean contact algebras proposed in
Düntsch and Winter [9] as well as Dimov and Vakarelov [5], which are
Boolean algebras with a binary predicate of “being in contact”. A con-
tact relation on a Boolean algebra B is, loosely speaking, a symmetric
and reflexive relation C on the nonzero elements of B with additional
compatibility properties. A BCA is called connected if each element
c ∈ B \{0, 1} is in contact with its complement, and is called extensional
if the mereological “part of” relation P  which is the Boolean order in a
BCA  can be defined by C. Models of the Region Connection Calculus
(RCC) (called RCC algebras or Boolean connection algebras [27]) are
special BCAs which are connected and extensional.

Using P and C, many other relations (including the well-known RCC-
8 relations) can be defined in a BCA B. We call the binary relation
algebra (BRA) generated on B by C and P the contact relation algebra
(CRA) of B. It is then natural to ask “How many relations are there
in the CRA of B?” If B is the atomless countable Boolean algebra, and
C is the overlap relation, it is easy to see that the CRA of B contains
only seven atoms. The situation is quite complicated if the BCA is
connected, especially when it is an RCC algebra. Düntsch et al. [7] show
that the CRA of any RCC algebra contains at least 25 relations, which
are jointly exhaustive and pairwise disjoint (JEPD), and Mormann [24]
then shows that some of these relations can be further split. Li et al.
[21] show that the CRA of the standard RCC model defined on the n-
dimensional Euclidean space contains infinitely many relations for any
n ≥ 1. However, it remains open if there is an RCC algebra with a finite
CRA.

In this paper we will shed some light on the above question by consid-
ering the countable homogeneous BCA. Let K and Kc be, respectively,
the class of finite BCAs and the class of finite connected BCAs. In a
recent work, we have shown that K has the amalgamation property, but
Kc does not [6]. By Fraïssé’s theorem, this implies that there is a unique
countable homogeneous BCA, but no countable homogeneous connected
BCA, where a BCA B is homogeneous if every isomorphism between
finite substructures of B can be extended to an automorphism of B.
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In this paper we investigate this homogeneous BCA and the relation
algebra generated by its contact relation.

The remainder of this paper is structured as follows. We introduce
basic definitions and notation that will be used in this paper in Section 2,
and recall Boolean contact algebras in Section 3. Then in Section 4 we
analyze the homogeneous countable BCA, and, in particular, we show
that the algebra can be partitioned into four sets {0}, {1}, K, and L,
which are the only orbits of the group of base automorphisms of the al-
gebra. We investigate the contact relation algebra A of the homogeneous
BCA in Section 5, where we prove that the Galois closure of A has 112
atoms and show that these atoms split the RCC-25 relations introduced
in [7]. An outlook to further work concludes the paper.

2. Definitions and notation

For a set U we denote its group of permutations by Sym(U). If R ⊆ U ×
U ′ is a binary relation, we let ran(R) := {y ∈ U ′ : xRy for some x ∈ U}
be the range of R, and dom(R) := {x ∈ U : xRy for some y ∈ U ′} be
the domain of R.

Suppose that 〈P,≤P 〉 and 〈Q,≤Q〉 are partially ordered sets. A pair
〈f, g〉 of mappings f : P → Q, g : Q → P is called a Galois connection
between P and Q [2] if for all x, x′ ∈ P, y, y′ ∈ Q,

1. x ≤P x′ implies f(x′) ≤Q f(x).
2. y ≤Q y′ implies g(y′) ≤P g(y).
3. x ≤P g(f(x)), y ≤Q f(g(y)).

The operations on a Boolean algebra B are usually denoted by +
(join), · (meet) and − (complement). Its constants are 0 (minimum)
and 1 (maximum). B+ is the set of all nonzero elements of B, and
Ult(B) its set of ultrafilters.

Suppose that L is a countable first order language. If A,B are L-
structures and A is a substructure of B, we write A ≤ B. Suppose
that A and B are L-structures and f : A → B is a homomorphism. If
ϕ(x0, . . . , xn) is an L-formula with free variables among {x0, . . . , xn},
then f preserves ϕ, if A |= ϕ(a0, . . . , an) implies that B |= ϕ(f(a0), . . . ,
f(an)) for all a0, . . . , an ∈ A. We will only need the following instance
of this concept:
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Lemma 2.1 ([14, Theorem 2.4.3]). If f is an automorphism of the L-
structure A, then f preserves all L-formulas.

An L-structure A is called homogeneous, if any isomorphism between
two finitely generated substructures of A can be extended over all of A.
The countable atomless Boolean algebra is atomless, and so are the ra-
tional numbers with the natural ordering. For a survey on homogeneous
structure we invite the reader to consult [22]. We say that a class K of
L-structures has the

1. Hereditary property (HP) if K is closed under substructures.
2. Joint embedding property (JEP) if for any A,B ∈ K, there is some
C ∈ K such that A and B are embeddable into C.

3. Amalgamation property (AP) if for all A,B,C ∈ K such that C is
(isomorphic to) a common substructure of A and B, say, with em-
beddings hB : C →֒ B and hA : C →֒ A, there are some D ∈ K and
embeddings eA : A →֒ D and eB : B →֒ D such that eA;hA = eB;hB.
D is called an amalgamated product of B and C over A.

A

C D

B

hA

hB

eA

eB

Figure 1. Amalgamation property

The amalgamation property is a prominent tool in algebraic logic
and model theory. While in the former it is an algebraic counterpart
of interpolation properties of a logic [23], it is used in model theory to
construct countable structures with very strong properties by amalga-
mating (isomorphs of) its finite substructures. More formally, if D is an
L-structure, we define the age of D, written as Age(D) as the class of
all finitely generated L-structures which can be embedded into D. The
following results, due to Fraïssé, describe the situation:

Theorem 2.2 ([14, Theorem 7.1.2.]). If K is a nonempty countable
set of finitely generated L-structures which has HP, JEP, and AP, then
the isomorphism class of K is the age of some countable homogeneous
L-structure D which is unique up to isomorphism.
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Such D is often called the Fraïssé limit of K.

Theorem 2.3 ([14, Theorem 7.1.7.]). If D is a countable homogenous
L-structure, then Age(D) has HP, JEP, and AP.

A theory of L is called κ-categorical, if all its models of cardinality
κ are isomorphic. By Morley’s celebrated result a theory which is κ-
categorical in some uncountable cardinal κ is categorical in all uncount-
able cardinals. A single L-structure D is called κ-categorical if its first
order theory is κ-categorical.

A class K of L-structures is called uniformly locally finite if there
is a function f : ω → ω such that every n-generated structure in K

has cardinality at most f(n). The class of finite Boolean algebras is
uniformly locally finite, witnessed by the function n 7→ 22n

.
A connection between Fraïssé limits and ω-categorical structures is

given by the following:

Theorem 2.4 ([14, Theorem 7.4.1.]). Let D be the Fraïssé limit of a
countable uniformly locally finite class K of finite L-structures which
has HP, JEP and AP. Then, D is ω-categorical.

2.1. Binary relations and their algebras

For any nonempty set U , the full algebra of binary relations on U is
the Boolean powerset algebra of U × U with additional distinguished
operations of composition ;1 and relational converse ˘. These operations
are called the RA operations. Distinguished constants are the empty
relation ∅, the universal relation V , and the identity relation 1′. With
some abuse of notation we will identify the full algebra of binary relations
on U with its universe Rel(U).

An algebra of binary relations (BRA) is a subalgebra of Rel(U) for
some nonempty U . We will denote BRAs by A, B, . . . with respective
universes A, B, . . . .

If R ⊆ Rel(U) we denote the set of all elements of the smallest BRA
over U containing all relations in R by 〈R〉. We say that S ∈ Rel(U) is
RA-definable from R if it is an element of 〈R〉. The following result is
decisive for relation algebras and relates RA-definability to a fragment
of first order logic:

1 We follow the work of Jónsson and Tarski [16] in writing ; instead of the often
used ◦. The symbol ; arises by adding a “,” below the absolute multiplication symbol
“·”. Analogously, Jónsson and Tarski denote relative addition by +, .
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Theorem 2.5 ([29]). If R ⊆ Rel(U), then 〈R〉 is the set of all binary
relations on U which are definable in the (language of the) relational
structure 〈U,R〉 by first order formulas using at most three (possibly
reused) variables, two of which are free.

If R ∈ Rel(U), x, y ∈ U , and f ∈ Sym(U), we let Rf := {〈f(x), f(y)〉 :
xRy}. If R = Rf , we say that R is invariant under f . If A is a BRA on
U , the set {f ∈ Sym(U) : Rf = R for all R ∈ A} is called the group of
base automorphisms of A, denoted by Aρ.

If A is generated by, say, 〈R0, . . . , Rn〉, then the base automorphisms
of A are exactly the automorphisms of the first order structure 〈A,R0,

. . . , Rn〉, since the RA operations are first order definable. The reason
for using the term base automorphism is to distinguish these from the
automorphism of the relation algebra.

If H is a group of permutations of U , and x, y ∈ U , we let

(2.1) Hx,y := {〈f(x), f(y)〉 : f ∈ H}.

The sets Hx,y are the orbits of the action of H on U × U . Let Hσ be
the BRA on U generated by the relations {Hx,y : x, y ∈ U}. It is well
known that Hσ is a complete and atomic Boolean algebra with the atoms
Hx,y [15]. The pair 〈ρ, σ〉

ρ : Subalgebras of Rel(U) → Subgroups of Sym(U),
σ : Subgroups of Sym(U) → Subalgebras of Rel(U)

is a Galois connection, and A ≤ Rel(U) is called Galois closed if A = Aρσ

[15]. As far as definability and Aρ is concerned, we mention

Lemma 2.6 ([1]). Let A be a finite subalgebra of Rel(U), and M ⊆ U

be not empty. Then, M is (first order) definable in 〈U,A〉 if and only if
M is a union of orbits of Aρ.

Lemma 2.7. Suppose that A is a finite subalgebra of Rel(U). Then, each
first order definable binary relation over the elements of A is a union of
atoms of its Galois closure Aρσ.

Proof. The atoms of the Galois closure Aρσ are the orbits of the action
of Aρ on U ×U . Suppose that R is the truth set of a first order formula
ϕ(x, y), i.e. R = {〈a, b〉 : A |= ϕ(a, b)}. Let 〈a, b〉 ∈ R. If f is a base
automorphism of A, then A |= ϕ(f(a), f(b)), i.e. 〈f(a), f(b))〉 ∈ R. Thus,
R completely contains the orbit of Aρ generated by 〈a, b〉.
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If R, S ∈ Rel(U), then the right residual of R with respect to S,
denoted by R�rrS, is the largest binary relation T on U with R ; T ⊆ S.
It can be shown that R�rrS is relationally definable by R�rrS = −(R˘ ;
−S); here −T is the complement of T in U × U . Furthermore,

(2.2) x(R�rr S)y ⇐⇒ R˘(x) ⊆ S˘(y),

R is called a functional element if R˘ ; R ⊆ 1′. The following will
be helpful in the sequel:

Theorem 2.8 ([17]). Suppose that A is an atomic BRA, and P is an
atom of A. Then we have:

1. P ˘ is an atom of A.
2. If Q is a functional element of A and ran(P ) ∩ dom(Q) 6= ∅, then
P ; Q is an atom of A.

3. Boolean contact algebras

A Boolean contact algebra B (BCA) is a Boolean algebra 〈B,+, ·,−, 0, 1〉
 usually denoted by just B  together with a binary relation C on B so
that the following hold for all x, y, z ∈ B:

C0. 0(− C)x
C1. x 6= 0 implies x C x (domain reflexivity)
C2. x C y implies y C x (symmetry)
C3. x C y and y ≤ z implies x C z. (monotonicity)
C4. x C (y + z) implies (x C y or x C z) (distributivity)

If a C b, we say that a is in contact to b or a is connected to b.
Additional properties appearing in the literature include

C5. C(x) = C(y) implies x = y (extensionality)
C6. If (∀z)(x C z or y C −z) then x C y (interpolation)
C7. x 6= 0 and x 6= 1 implies x C −x. (connection)

The smallest contact relation is given by x Cmin y ⇐⇒ x · y 6= 0.
Usually, Cmin is called the overlap relation, denoted by O; clearly, O
satisfies C5. The largest contact relation is Cmax= B+ ×B+; it satisfies
C7. Given a BCA 〈B, C〉 and R ∈ Rel(B) we say that R is RA definable
if R is in the BRA generated by C.
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P := ≤ ∩ (B \ {0} ×B \ {0}) part of(3.1)

PP := P ∩ −1′ proper part of(3.2)

O := P ˘ ; P overlap(3.3)

T := P ; P ˘ underlap(3.4)

PO := O ∩ −(P ∪ P ˘) partial overlap(3.5)

EC := C ∩ −O external contact(3.6)

TPP := PP ∩ (EC ; EC ) tangential proper part(3.7)

NTPP := PP ∩ −TPP non-tangential proper part(3.8)

DC := −C disconnected(3.9)

DD := −(O ∪ T ∪ 1′) complementation(3.10)

ECD := C ∩ DD externally connected and x+ y = 1(3.11)

ECN := EC ∩ −ECD xECy and x+ y 6= 1.(3.12)

HL := ECN ∩ (ECN �rr O) hole relation(3.13)

Table 1. Relations defined from C and ≤

Let B := B \ {0, 1}. It was shown in [8] that {〈0, 1〉} and {〈1, 0〉} are
RA definable in any BCA, and thus, so is B × B. Table 1 shows some
relations RA definable from C and ≤.

We say that x has a hole if x ∈ ran(HL); otherwise, we call x solid
[24].

If B is a finite Boolean algebra, and R is a reflexive and symmetric
relation on At(B), then R determines a contact relation C on B by a C b
if and only if there are atoms u, v such that u ≤ a, v ≤ b and uRv, and
each contact relation on B arises in this way [10, 11].

Example 1 ([20]). Let B0 be the Boolean algebra generated by its set of
atoms At(B0) = {a, b, c, d, e}. Suppose that R is the relation on At(B0)

{〈a, b〉, 〈b, e〉, 〈c, e〉, 〈d, e〉}.

Let x C0 y if and only if there are atoms s, t such that s ≤ x, t ≤ y,
and 〈s, t〉 ∈ R ∪R˘ ∪ 1′. Then, B0 := 〈B0, C0〉 is a BCA which satisfies
C7, none of the relations in Table 1 is empty, and aHLb, i.e. a is a
hole of b. Furthermore, each BCA which satisfies C5 and C7 contains
a substructure isomorphic to B0. A sketch of B0 is shown in Figure 2,
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Figure 2. The example from Li and Ying [20]

where a, b, c, d, e are nonempty regular closed sets in the real plane R2,
which is also the largest element 1 of B0. 2

The following results will be useful in the sequel:

Lemma 3.1 ([8]). Suppose that 〈B, C〉 is a BCA. The following are equiv-
alent:

1. C satisfies C5.
2. For all x ∈ B, x 6= 1, there is some y ∈ B, y 6= 0, such that x(− C)y.
3. The Boolean order ≤ is the residual C �rr C.

Lemma 3.2 ([18]). Suppose that 〈B, C〉 is a BCA, and set A := {x ∈ B :
x(− C) −x}. Then, A is a Boolean subalgebra of B, and the restriction
of C to A is the overlap relation.

The following facts are well known for BCAs satisfying C5 and C7;
here, we generalize them to arbitrary BCAs:

Lemma 3.3. Let 〈B, C〉 be a BCA.

1. If a � b and b(− C) − b, then aNTPPb. Furthermore, b is solid.
2. If b C − b, then aECN b ⇐⇒ aTPP − b.
3. If a � b, then aNTPPb ⇐⇒ aDC − b.
4. aHLb ⇐⇒ aECNb and aNTPP(a+ b).

Proof. 1. Assume that aTPPb; then, there exists some s ∈ B such
that aECsECb. Now, sECb implies sCb and s · b = 0, i.e. s ≤ − b. By
C3 we have − b C b, contradicting the hypothesis. If sHLb for some s,
then, in particular, sECN b which contradicts − b(− C)b.

2. “⇒”: Since aECN b and bEC − b by the hypothesis, we obtain
a � − b and aECbEC − b, which implies aTPP − b.
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“⇐”: Suppose that aTPP − b. Then, a 6= − b, a · b = 0, and
aECsEC − b for some s ∈ B. Now, s ≤ b and aECs together with
C3 imply a C b. Since a � − b, we have a+ b 6= 1 and a · b = 0.

3. “⇒”: Let aNTPPb. If a = 0, then aDC − b by C0. Suppose that
a 6= 0. If bDC − b, then a ≤ b and C3 imply aDC − b. If b C − b, assume
that a C − b. Then, a 6= 0 and a ≤ b imply aEC − b. Thus, aEC − bECb,
and it follows that aTPPb, contradicting our assumption.

“⇐”: Let a ≤ b and aTPPb. Then, there is some s ∈ B such that
aECsECb. It follows from aECs that aCs, and sECb implies s ≤ − b.
Thus, C3 implies that a C − b.

4. By definition of the residual, xHLy ⇐⇒ xECNy and EC (x) ⊆
O(y).

“⇒”: Let aHLb, and assume that aTPP (a+ b); then, there is some
s ∈ B such that aECsEC (a + b). It follows from sEC (a + b) that
s · b = 0, and, together with aECs we obtain s ∈ EC (a) and s 6∈ O(b),
contradicting that aHLb.

“⇐”: Suppose that aECN b, aNTPP(a+ b), and assume that aECs
and s · b = 0 for some s ∈ B. Then, sEC (a + b) by aECs and C3, and
thus, aECsEC (a + b). It follows that aTPP (a + b), contradicting the
hypothesis. Hence, EC (a) ⊆ O(b), and therefore, aHLb.

4. The countable homogeneous BCA

In [6] we have shown

Theorem 4.1. The class K
0 of Boolean contact algebras has HP, JEP,

and AP.

Proof. We just indicate the construction for AP, details can be found
in [6]. Suppose that A = 〈A, CA〉 and B = 〈B, CB〉 are two BCAs and
C = 〈C, CC〉 is isomorphic to a common substructure of A and B. Let D
be the Boolean amalgamated free product of A and B over C (see [19]).
Suppose w.l.o.g. that A,B ≤ D; then, A ∩ B = C. Define a binary
relation R on Ult(D) as follows:

〈H,H ′〉 ∈ R ⇐⇒ (H ∩A) × (H ′ ∩A) ⊆ CA and

(H ∩B) × (H ′ ∩B) ⊆ CB.



On the homogeneous countable . . . 223

For x, y ∈ D let x CD y if and only if there are H,H ′ ∈ Ult(D) such
that x ∈ H, y ∈ H ′, and 〈H,H ′〉 ∈ R. Then, CD is a contact relation
on D which extends both CA and CB.

Since the axioms of BCAs are universal, K
0 has the HP, and since

the two element BCA is embeddable into each BCA, the class K
0 also

has the JEP.
Consider the class K of all finite BCAs. Since each n-generated BCA

has cardinality at most 22n

, K is uniformly locally finite. Furthermore,
there are infinitely many finite isomorphism types of BCAs. Therefore,
by Fraïssé’s Theorem 2.2 and Theorem 2.4 we obtain

Theorem 4.2. There is a countable homogeneous and ω-categorical
BCA B = 〈B, C〉 such that each at most countable BCA is isomorphic
to a substructure of B.

In the sequel we let B be this algebra, and H its group of automor-
phisms. Furthermore, set

V := B ×B, K := {x ∈ B : x C −x},

L := {x : x 6= 0, 1 and x(− C) −x}.

Below we suppose that the finite BCAs we consider are substructures of
B. We start by exhibiting the orbits of H:

Lemma 4.3. The orbits of H are {0}, {1}, K, L, and both K and L are
infinite.

Proof. Since 0 and 1 are constants, {0} and {1} are orbits of H; fur-
thermore, {{0}, {1}, K, L} is a partition of B. Let x, y ∈ K, B0 be the
substructure of B with universe {0, 1, x,−x} and B1 be the substructure
of B with universe {0, 1, y,− y}. Since x C −x and y C − y, the mapping
induced by x 7→ y is an isomorphism between B0 and B1. Since B is
homogeneous, there is some f ∈ H such that f(x) = y. A similar
argument can be used when x, y ∈ L, and, clearly, no automorphism can
map an element of K to an element of L.

L is infinite since K contains each finite Boolean algebra with the
overlap relation Cmin in which no element is connected to its complement.
K is infinite, since K contains each finite Boolean algebra with contact
relation Cmax in which each element x 6∈ {0, 1} is in contact with its
complement.
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Observe that BL := L∪{0, 1} is the universe of a Boolean subalgebra
of B by Lemma 3.2, and that the restriction of C to BL is the overlap
relation. Denote this substructure of B by BL. K is, of course, not a
Boolean algebra. Instead, we have the following result:

Theorem 4.4. K generates B as a Boolean algebra.

Proof. Let B0 be the Boolean algebra with atoms a, b, c and let C0 be
induced by a C0 b. Then, a+ c, b+ c ∈ K, and (a+ c) · (b+ c) = c ∈ L.
If ϕ(x) says that x(− C) −x and there are y, z such that both y and
z are in contact with their respective complements and y · z = x, then
B0 |= ϕ(c), and thus, B |= ϕ(u) for each u ∈ L. Hence, each element of
L is the product of two elements of K.

Recall that a subset M of a Boolean algebra is called dense, if for
every a ∈ B, a 6= 0, there is some m ∈ M,m 6= 0, such that m ≤ a.

Lemma 4.5. Both K and L are dense in B.

Proof. If a ∈ K, consider the following formula ϕ(x):

(∃y)[¬(y = 0) ∧ (y < x) ∧ ¬(y C − y)].

Clearly, ϕ(x) says that there is a nonzero element of L strictly below
x which is not in contact to its complement. Let B0 be a subalgebra of
B with atoms {r, s, t, u}, and C0 be the contact relation on B0 defined
by

x C0 y ⇐⇒ x = y or (r ≤ x and s ≤ y) or (s ≤ x and r ≤ y).

Then, (r + t) C0 − (r + t), 0 � t � r + t, and t(− C0) − t. Thus,
B |= ϕ(r+ t) and since K is an orbit of G, we also have B |= ϕ(a). For
a ∈ L use the formula ψ(x)

(∃y)[¬(y = 0) ∧ (y < x) ∧ (y C − y)].

Then, B |= ψ(r + s), and thus, again by homogeneity, B |= ψ(a).

Next, we will show that C satisfies C5. This will follow at once from
the following observation:

Lemma 4.6. If x ∈ K, there is some y ∈ K such that x(− C)y.
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Proof. Let B0 be the BCA of Example 1 considered w.l.o.g. as a sub-
structure of B. Here, c is in contact to − c and b is connected to its
complement, but not connected to c. Therefore, if ϕ(x) is the formula

x C −x ∧ (∃y)[y 6= 0 ∧ y 6= 1 ∧ y C − y ∧ ¬(x C y)],

then B0 |= ϕ(b), and therefore, B |= ϕ(b) since ϕ(x) is existential. By
homogeneity and the fact that K is an orbit of G, each u ∈ K satisfies
ϕ(u).

Theorem 4.7. C satisfies C5.

Proof. We will use Lemma 3.1(2). If a ∈ L, then a is not in contact
with its complement, and if a ∈ K there is some b with a(− C)b by the
preceding lemma.

Observe that C does not satisfy C7, since L 6= ∅. Furthermore, the
Boolean order is RA-definable by Lemma 3.1.

Recall that an element of B is called solid, if it is not in the range of
the relation HL defined in (3.13).

Theorem 4.8. Each element of L is solid and each element of K has a
hole.

Proof. If a is not solid, then it must be connected to its complement;
hence, each element of L is solid. Suppose that ϕ(x) says that x has
a hole, i.e. x ∈ ran(HL); then, ϕ(x) can be chosen to be existential.
Looking again at the BCA B0 of Example 1, we see that B0 |= ϕ(b),
and therefore, B |= ϕ(b). Homogeneity implies that B |= ϕ(u) for all
u ∈ K.

Call an element b ∈ B disconnected if there are a0, a1 ∈ B such that
a0 + a1 = b and a0DCa1.

Theorem 4.9. Each element of B is disconnected.

Proof. Clearly, 0 is disconnected, and, since L 6= ∅, so is 1. Consider
ϕ(x): (∃y, z)[y + z = x ∧ yDCz]. If B0 is the BCA with three atoms
a, b, c and the overlap relation, then B0 |= ϕ(a+b), and thus B0 |= ϕ(u)
for all elements of L. If C0 is the contact relation on B0 induced by
a C0 b, then B0 |= ϕ(b+ c), and b+ c ∈ K. Thus, each element of K is
also disconnected.
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5. The relation algebra generated by C

Let A = 〈A,∩,∪,−,∅, B×B, ; , ˘, 1′, 〈C〉〉 be the BRA generated on B
by C; in other words, the Boolean operations on A are the set operations,
its smallest element is ∅, and its largest element is B×B. We first show
that the group of base automorphisms of A is just the automorphism
group H of B:

Theorem 5.1. A
ρ = H.

Proof. Let f ∈ Aρ. Then, f preserves C, and we need to show that f
is a Boolean homomorphism. Since C satisfies C5 by Theorem 4.7, the
Boolean order ≤ is RA definable from C by Lemma 3.1. Hence, f is
an order isomorphism, and therefore it preserves all Boolean operations.
Conversely, each automorphism f of B is in particular a homomorphism
with respect to C. This means that P and C, hence all relations in A,
are invariant under f . Therefore, f ∈ Aρ.

Theorem 5.2. A is finite.

Proof. Since B is ω-categorical, its group H of automorphisms has
only finitely many orbits in its action on each Bn by the Engeler, Ryll-
Nardzewski, Svenonius Theorem (see e.g. [14, Theorem 7.3.1]). In par-
ticular, the action of H on B×B has only finitely many orbits, and thus,
Hσ is finite. The claim now follows from Theorem 5.1 and the fact that
A ≤ A

ρσ = Hσ.

In view of the fact that each countable BCA can be embedded into
B, and there are such algebras in which the relation algebra generated by
the contact relation is infinite [21], the fact that A is finite is somewhat
surprising. Such a situation, however, is not uncommon: For example,
the relation algebra generated by the natural order ≤ on Q is finite,
while the restriction of ≤ to Z generates an infinite relation algebra.

The aim of this section is to give a closer examination of the atoms of
Aρσ. By Aρ = H (Theorem 5.1) we know each atom of Aρσ has the form
Hx,y with x, y ∈ B. Take a ∈ K and b ∈ L. Then from the description
of the orbits of H in Lemma 4.3 we conclude that

H0,0 = {〈0, 0〉}, H1,1 = {〈1, 1〉}, H0,1 = {〈0, 1〉}, H1,0 = {〈1, 0〉}(5.1)

H0,a = {0}×K, Ha,0 = K×{0}, H0,b = {0}×L, Hb,0 = L×{0}(5.2)
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x · − y −x · − y

x · y −x · y

Figure 3. Atomic configurations

H1,a = {1}×K, Ha,1 = K×{1}, H1,b = {1}×L, Hb,1 = L×{1}(5.3)

are all atoms of Aρσ and are contained in A. All that is left is to exhibit
the atoms of Aρσ below B × B. To this end, we introduce for each
atomic relation Hx,y a unique graph representation, and show that two
atomic relations are the same if and only if they have the same graph
representations.

5.1. Atomic configurations

Given x, y ∈ B, let Bx,y be the (Boolean) subalgebra of B generated
by {x, y}, and Bx,y the substructure of B induced by C. Note that
each element in N(x, y) := {x · y,−x · y, x · − y,−x · − y} is either 0
or an atom of Bx,y and Bx,y has no other atoms. Furthermore, since a
contact relation on a finite Boolean algebra is determined by its action
on the atoms, Bx,y can be described by a graph on the nodes N(x, y),
where two points are connected by an edge if and only if they are
(externally) connected in C, see Figure 3. Write G(x, y) for the graph
as in Figure 3, and E(x, y) for the set of edges of G(x, y). We note that
E(x, y) contains at most six elements. In what follows, we call G(x, y)
the atomic configuration of Hx,y. We will show that each atom Hx,y of
Aρσ is uniquely determined by its atomic configuration.

Theorem 5.3. Suppose a, b, a′, b′ are elements in B. Then Ha,b = Ha′,b′

if and only if there is a graph isomorphism f : G(a, b) → G(a′, b′) such
that at · bt = 0 if and only if a′t · b′t = 0 and f(at · bt) = a′t · b′t for
at ∈ {a,− a} and bt ∈ {b,− b}.

Proof. If Ha,b = Ha′,b′ , then there is some f ∈ Aρ = H such that
f(a) = a′ and f(b) = b′. Since f is an automorphism of B it follows that
f : Ba,b → Ba′,b′ is an isomorphism. It is clear that f , when restricted
to N(a, b), is a graph isomorphism that satisfies the condition in the
theorem.
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On the other hand, suppose there exists a graph isomorphism
f : Ga,b → Ga′,b′ such that at · bt = 0 if and only if a′t · b′t = 0 and

f(at ·bt) = a′t ·b′t for at ∈ {a,− a} and bt ∈ {b,− b}. It is clear that f can
be uniquely extended to an isomorphism between Ba,b and Ba′,b′ . Also
write f for this isomorphism between Ba,b and Ba′,b′ . Then f satisfies
the condition f(a) = a′ and f(b) = b′. By the homogeneity of B, we
know f can be further extended to an automorphism f of B. Thus,
〈a′, b′〉 ∈ Ha,b and therefore, Ha,b = Ha′,b′ .

By the above theorem, each atom is uniquely determined by its
atomic configuration. For any x = y ∈ B, exactly two nodes are 0,
i.e. x · y∗ and x∗ · y. There are only two atomic configurations in this
case, both with nodes {x, x∗}. If x is connected to −x, then both x and
y are elements in K; otherwise, both are elements in L. Therefore, the
two corresponding atomic relations in Aρσ split the identity relation 1′

(when restricted to B) into (K ×K) ∩ 1′ and (L×L) ∩ 1′. Similarly, for
any x = − y ∈ B, there are only two atomic configurations in this case,
both with nodes {x, y}, and the two corresponding atomic relations in
A

ρσ split the relation DD into ECD = (K×K) ∩ DD and (L×L) ∩ DD.
In fact, these four atoms can be directly computed as follows:

Ha,a = (K ×K) ∩ 1′, Hb,b = (L× L) ∩ 1′,

Ha,− a = (K ×K) ∩ DD, Hb,− b = (L× L) ∩ DD,
(5.4)

where a ∈ K and b ∈ L. It is clear that these relations are also in A.

There are 2(3

2) × 4 = 32 atomic configurations with exactly three

nodes, and 2(4

2) = 64 atomic configurations with four nodes. Putting all
of this together results in the following:

Theorem 5.4. Aρσ has 112 atoms, where exactly 100 are below B×B.

Before giving a closer examination of these atoms below B × B, we
first summarize some useful properties of atomic configurations.

Notation. When representing an atomic configuration G, we often omit
the names of the four nodes, and address the four nodes as, respectively,
the bottom left node, the bottom right node, the top left node, the top
right node, and the six edges as, respectively, the left edge, the right
edge, the top edge, the bottom edge, the major diagonal, and the minor
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diagonal of G. For example, in case all the six edges are in the graph, i.e.
every two elements are connected, we have the following representation:

•

@@
@@

@@
@ •

~~
~~
~~
~

• •

Let a, b ∈ B. Recall that Ha,b is the atomic relation in Aρσ that
contains (a, b). Then

Hb,a = Ha,b ˘(5.5)

H− a,b = DD;Ha,b(5.6)

Ha,− b = Ha,b; DD(5.7)

As far as configurations are concerned, G(b, a) can be obtained by mir-
roring G(a, b) along the major diagonal; G(−a, b) can be obtained by
mirroring G(a, b) along the left edge; and G(a,− b) can be obtained by
mirroringG(a, b) along the bottom edge (see (5.8) for illustrations). Four
other atomic relations H− a,− b, Hb,− a, H− b,a, and H− b,− a can be ob-
tained from Ha,b similarly. Therefore, given G(a, b), we can define seven
other atomic relations using composition (with DD) and conversion.

(5.8)

• •

~~
~~
~~
~

• •

• •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

• •

•

@@
@@

@@
@ •

• •
G(a, b) G(b, a) G(− a, b) G(a,− b)

Proposition 5.5. Given a, b ∈ B, if Ha,b is a relation in A, then so are
H− a,b, Ha,− b, H− a,− b, Hb,a, Hb,− a, H− b,a, and H− b,− a.

Recall K = {a ∈ B : a C − a} and L = {a ∈ B : a(− C) −a}. Given
an atomic relation Ha,b in A

ρσ, we can determine if a (b, resp.) is in K

by examining the atomic configuration G(a, b).

Proposition 5.6. Let a, b ∈ B. Suppose G(a, b) is the atomic configu-
ration of the atom Ha,b. Then

(1) a ∈ K if the bottom edge or the top edge is in E(a, b);
(2) b ∈ K if the left edge or the right edge is in E(a, b);
(3) a, b ∈ K if the major diagonal or the minor diagonal is in E(a, b).
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As a corollary, we know

Corollary 5.7. Let a, b ∈ B. Suppose G(a, b) is the atomic configura-
tion of the atom Ha,b. Then

(1) a ∈ L, b ∈ K if and only if E(a, b) is nonempty and contains at most
the left and the right edges.

(2) a ∈ K, b ∈ L if and only if E(a, b) is nonempty and contains at most
the bottom and the top edges.

(3) a, b ∈ L if and only if E(a, b) contains no edge.

Let

R = ECN ; TPP,(5.9)

S = (ECN ; TPP) ; ECD.(5.10)

It is easy to prove that S = TPP; TPP˘ and S˘ = TPP˘; TPP. Düntsch
et al. [7] defined a set of 25 necessary relations in every RCC algebra
(see Table 2). In what follows, we call these the RCC-25 relations.
In the following two subsections, we examine the atomic configurations
with three and, respectively, four nodes. For each atomic configuration
G(a, b), we will decide the RCC-25 relation that related a to b.

5.2. Atomic configurations with three nodes

If an atomic configuration has three nodes, then either x · y = 0, or
x · − y = 0, or −x · y = 0, or −x · − y = 0. That is, each atomic
configuration has one of the following forms

x · y = 0 x · − y = 0 −x · y = 0 −x · − y = 0
• •

•

•

• •

• •

•

•

• •

Since there are eight different configurations in each case, we have in
total 4 × 8 = 32 atomic configurations that have three nodes. We now
examine these configurations in detail.

Recall that L× L, L×K, K × L, and K ×K are all relations in A,
hence relations in Aρσ.
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1′

NTPP

NTPP ˘

DD

DC

ECNA = ECN ∩ S

ECNB = ECN ∩ −S

TPPA = TPP ∩R

TPPB = TPP ∩ −R

TPPA˘ = TPP ˘ ∩R˘

TPPB ˘ = TPP ˘ ∩ −R˘

PODYA = POD ∩ −(ECN ; NTPP) ∩ (TPP ˘; TPP)

PODYB = POD ∩ −(ECN ; NTPP) ∩ −(TPP ˘; TPP)

PODZ = POD ∩ (ECN ; NTPP)

PONXA1 = PON ∩R ∩R˘ ∩ S ∩ S˘

PONXA2 = PON ∩R ∩R˘ ∩ S ∩ −S˘

PONXB1 = PON ∩R ∩R˘ ∩ −S ∩ S˘

PONXB2 = PON ∩R ∩R˘ ∩ −S ∩ −S˘

PONY A1 = PON ∩ −R ∩R˘ ∩ S ∩ S˘

PONXA2 = PON ∩ −R ∩R˘ ∩ S ∩ −S˘

PONY A1˘ = PON ∩R ∩ −R˘ ∩ S ∩ S˘

PONY A2˘ = PON ∩R ∩ −R˘ ∩ S ∩ −S˘

PONY B = PON ∩ −R ∩R˘ ∩ −S

PONY B˘ = PON ∩R ∩ −R˘ ∩ −S

PONZ = PON ∩ −R ∩ −R˘

Table 2. RCC-25 relations

We first consider those atoms of Aρσ which are contained in L ×
L. Let Ha,b be an atomic relation of Aρσ that is contained in L × L.
If Ga,b contains only three nodes, then because a, b ∈ L, we have by
Corollary 5.7 that E(a, b) contains no edge. Therefore, there are exactly
four atomic configurations in this case:
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x · y = 0 x · − y = 0 −x · y = 0 −x · − y = 0
• •

•

•

• •

• •

•

•

• •
DC ∩ L× L PP ∩ L× L PP ˘ ∩ L× L POD ∩ L× L

It is clear that these four atomic relations are the intersections of L×L

with, respectively, DC , PP , PP˘, and POD, hence are all relations in A.

Second, we consider those atoms which are contained in L×K. Let
Ha,b be an atomic relation of Aρσ that is contained in L × K. If Ga,b

contains only three nodes, then because a ∈ L and b ∈ K, we have by
Corollary 5.7 that E(a, b) is nonempty and contains at most the left edge
or the right edge. Therefore, there are exactly four atomic configurations
in this case:

x · y = 0 x · − y = 0
• •

•

•

• •
DC ∩ (L×K) PP ∩ (L×K)

−x · y = 0 −x · − y = 0
• •

•

•

• •
PP ˘ ∩ (L×K) POD ∩ (L×K)

These four atomic relations are the intersections of L×K with, respec-
tively, DC , PP , PP ˘, and POD, hence are all relations in A.

Third, we consider those atoms which are contained in K × L. Let
Ha,b be an atomic relation of A

ρσ that is contained in K × L. If Ga,b

contains only three nodes, then because a ∈ K, b ∈ L, we have by
Corollary 5.7 that E(a, b) is nonempty and contains at most the left edge
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or the right edge. Therefore, there are exactly four atomic configurations
in this case:

x · y = 0 x · − y = 0 −x · y = 0 −x · − y = 0
• •

•

•

• •

• •

•

•

• •
DC ∩K × L PP ∩K × L PP ˘ ∩K × L POD ∩K × L

These four atomic relations are the intersections of K × L with, respec-
tively, DC , PP , PP ˘, and POD, hence are all relations in A.

Last, we consider those atoms which are contained in K × K. Let
Ha,b be an atomic relation of Aρσ that is contained in K × K. If Ga,b

contains only three nodes, then because a, b ∈ K, we have by Corol-
lary 5.7 that E(a, b) contains the major diagonal, or the minor diagonal,
or contains the non-diagonal edges. Therefore, there are exactly twenty
atomic configurations in this case.

Case 1. Suppose x · y = 0. Then xDCy or xECNy.
(5.11)

• •

•

•

@@
@@

@@
@ •

•

•

@@
@@

@@
@ •

•

•

@@
@@

@@
@ •

•

•

@@
@@

@@
@ •

•
DC ∩K ×K ECN 1 ECN 2 ECN 3 ECN 4

Note that if the minor diagonal is not in E(x, y), then xDCy. The
other four atomic configurations correspond to ECN relations. Recall
that xDC −x · − y if and only if xNTPP(x + y). Consider the second
graph, in which we have xNTPP(x + y), and yNTPP(x + y), hence
xHLy and yHLx. On the other hand, if xHLy and yHLx, then we have
xDC − y · − y and yDC −x · − y. That is, G(x, y) is the same as the
second graph. Therefore, we know

(5.12) ECN 1 = ECN ∩ HL ∩ HL˘ .

Similarly, we can show that

ECN 2 = ECN ∩ −HL ∩ HL˘(5.13)

ECN 3 = ECN ∩ HL ∩ −HL˘(5.14)

ECN 4 = ECN ∩ −HL ∩ −HL˘.(5.15)
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Therefore all relations in (5.11) are in A. Note if (x, y) ∈ ECN 4, then
we have xTPP(x + y) and yTPP(x + y). Therefore (x, y) ∈ ECN ∩
(TPP; TPP˘) := ECNA. On the other hand, if (x, y) ∈ ECNA, then we
can also obtain that xTPP(x+ y) and yTPP(x+ y), which implies that
G(x, y) is the same as the atomic configuration of ECN 4. So we know
ECN 4 = ECNA, and ECNB = ECN 1 ∪ ECN 2 ∪ ECN 3.

Case 2. Suppose x · − y = 0. Then xPPy. There are also five atomic
configurations, which can be obtained by mirroring the configurations in
(5.11) along the bottom edge. It is easy to see that the first configuration
defines the relation NTPP ∩ K × K. Furthermore, we can prove that
TPPi = ECN i; ECD for i = 1 ∼ 4. Therefore, these relations are all
in A.

•

• •

•

~~
~~
~~
~

• •

•

~~
~~
~~
~

• •
NTPP ∩K ×K TPP1 TPP2

•

~~
~~
~~
~

• •

•

~~
~~
~~
~

• •
TPP3 TPP4

(5.16)

Similar to ECN relations, we can show TPPA = TPP4, and TPPB =
TPP1 ∪ TPP2 ∪ TPP3.

Case 3. Suppose −x·y = 0. Then xPP˘y. There are also five atomic
configurations, which are converses of the five configurations in (5.16).
The atomic relations of Aρσ represented by these graphs are therefore
also in A.

• •

•

• •

~~
~~
~~
~

•

• •

~~
~~
~~
~

•
NTPP ˘ ∩K ×K TPP1 ˘ TPP2 ˘

• •

~~
~~
~~
~

•

• •

~~
~~
~~
~

•
TPP3 ˘ TPP4 ˘

In this case, we have TPPA ˘ = TPP4 ˘ , and TPPB ˘ = TPP1 ˘ ∪
TPP2 ˘ ∪ TPP3 ˘.
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Case 4. Suppose −x · − y = 0. Then x + y = 1 and POD(x, y).
There are also five atomic configurations. It is straightforward to show
that POD0 = POD∩DD; NTPP, and PODi = ECD; TPPi for i = 1 ∼ 4.
Therefore, these relations are all in A.

•

• •

•

@@
@@

@@
@

• •

•

@@
@@

@@
@

• •

•

@@
@@

@@
@

• •

•

@@
@@

@@
@

• •
POD0 POD1 POD2 POD3 POD4

In this case, we have PODZ = POD0, PODYA = POD4, and PODYB
= POD1 ∪ POD2 ∪ POD3.

In summary, all the 32 atomic configurations with three nodes rep-
resent atomic relations in A.

5.3. Atomic configurations with four nodes

Let a, b ∈ B. It is clear that G(a, b) has four nodes if and only if (a, b) ∈
PON . In this case, G(a, b) contains four nodes, and has at most six edges.
Therefore, there are 26 = 64 atomic configurations. If a, b ∈ L, we know,
by Corollary 5.7 again, that E(a, b) is empty, and the corresponding
atom in A

ρσ is the restriction of PON to L × L. If a ∈ L, b ∈ K, then
E(a, b) is nonempty and contains at most the left edge and the right
edge. There are three atomic configurations that satisfy this condition.
The case when a ∈ K and b ∈ L is the converse of the second case.
Therefore, there remains 64 − 1 − 3 − 3 = 57 atoms of Aρσ that are
contained in K ×K.

We summarize our results in the following theorem.

Theorem 5.8. In Aρσ, there are 64 PON atomic relations, including
19 PONXA1 relations, 3 PONXA2 relations, 3 PONXB1 relations, 9
PONXB2 relations, 3 PONYA1 (PONYA1 ˘ ) relations, 1 PONYA2
(PONYA2 ˘ ) relation, 3 PONYB (PONYB ˘ ) relations, and 18 PONZ
relations.

We next discuss when a PON atomic relation is in an RCC-25 rela-
tion, e.g. PONXA1 . To this end, we introduce the following relations
in A:

LT := PON ∩ ECN �rr O(5.17)

LB := PON ∩ (ECN �rr O) ; DD(5.18)
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RT := PON ∩ DD ; (ECN �rr O)(5.19)

RB := PON ∩ DD ; (ECN �rr O) ; DD(5.20)

BR := PON ∩ (ECN �rr O)˘(5.21)

BL := PON ∩ DD ; (ECN �rr O)˘(5.22)

TR := PON ∩ (ECN �rr O)˘ ; DD(5.23)

TL := PON ∩ DD ; (ECN �rr O)˘ ; DD(5.24)

We have the following characterizations of the above relations.

Proposition 5.9. Let x, y be two elements in B with xPONy. Then

xLTy iff xDC −x · − y.

xLBy iff xDC −x · y.

xRTy iff −xDCx · − y.

xRBy iff −xDCx · y.

xBRy iff yDC −x · − y.

xBLy iff yDCx · − y.

xTRy iff − yDC −x · y.

xTLy iff − yDCx · y.

Proof. We take the case of LT relation as an example. The other cases
are similar. Because xPONy, we have 0 6= −x · − y 6= −x. Suppose
xLTy. Then by the definition of the LT relation we know xECNz only
if yOz for any z ∈ B. Let z0 = −x · − y. Then by y − Oz0 we know
x− ECNz0. Because x · z0 = 0 and z0 6= −x, this implies that xDCz0.
On the other hand, suppose xDC −x · − y. We show xLTy. For any
z with xECNz, we need only show z · y > 0. Suppose this is not true.
Then z ≤ − y. Note that z ≤ −x for xECNz. We have z ≤ −x · − y.
So xDCz for xDC −x · − y. This is a contradiction. Therefore we have
x · y > 0, i.e. xOy.

These relations have very nice graphical representations. Take LT as
an example. Suppose G(x, y) is the graph that represents Hx,y. Then
(x, y) ∈ LT if and only if G(x, y) contains neither the top edge nor the
major diagonal. In other words, if (x, y) 6∈ LT if and only if G(x, y)
contains either the top edge or the major diagonal.
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In what follows, we represent the relation LT as a graph

• dc •

dc
~~
~

~~
~

• •

where the nodes are explained in the same way as an atomic configura-
tion, but an edge indicates that the two nodes are disconnected. Because
LT is a relation in A, each atom Hx,y of Aρσ is either contained in LT
or disjoint from LT. The graphic representation of LT as given above
provides an easy way for characterizing the atoms Hx,y contained in LT.
In fact, we have the following proposition.

Proposition 5.10. Let x, y ∈ B. Then Hx,y is contained in LT if and
only if Gx,y, the atomic configuration of Hx,y, contains neither the top
edge nor the major diagonal.

In this way, we regard the graph • dc •

dc
~~
~

~~
~

• •

as a set of atomic configu-

rations, and say an atomic configuration Gx,y is an instance of • dc •

dc
~~
~

~~
~

• •

,

written Gx,y ∈ • dc •

dc
~~
~

~~
~

• •

, if Hx,y ⊆ LT . Note that Hx,y ∩ LT = ∅ if Gx,y

contains either the top edge or the major diagonal. Similar explanations
and illustrations apply to the other seven relations.

Using these relations, we are able to give a graphical characterization
for the relation PON ∩ α for each α ∈ {−R,−S,−R˘ ,−S˘}.

Proposition 5.11. For R, S as defined in (5.9-5.10), we have

PON ∩ −R = LB ∪ TR,

PON ∩ −R˘ = BL ∪RT,

PON ∩ −S = LT ∪BR,

PON ∩ −S˘ = TL ∪RB.

In other words, for x, y ∈ B and xPONy, we have

(x, y) ∈ −R iff xDC −x · y or − yDC −x · y

(x, y) ∈ −R˘ iff −xDCx · − y or yDCx · − y

(x, y) ∈ −S iff xDC −x · − y or yDC −x · − y

(x, y) ∈ −S˘ iff −xDCx · y or − yDCx · y.
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We now examine for each RCC-25 relation α the atomic relations
Hx,y of Aρσ belonging to α.

5.3.1. PONXA1 graphs

Suppose (x, y) ∈ PON . By PONXA1 = PON ∩ R ∩ R˘ ∩ S ∩ S ˘ and
Proposition 5.11, we know (x, y) ∈ PONXA1 if and only if (x, y) is not
an instance of any of LB, TR, BL, RT, LT, BR, TL, RB, i.e. G(x, y)
satisfies the following equation

(5.25) G(x, y) 6∈ •

dc

@@
@

@@
@

•

• dc •

∪ •

dc

@@
@

@@
@

•

dc

• •

∪ •

dc dc

@@
@

@@
@

•

• •

∪ • dc

dc

@@
@

@@
@

•

• •

∪ • dc •

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~ dc

• •

∪ •

dc

•

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~

• dc •

.

If G(x, y) does not contain the major diagonal, then by (5.25) G(x, y)
contains each of the four non-diagonal edges; similarly, if G(x, y) does
not contain the minor diagonal, then by (5.25) G(x, y) contains each of
the four non-diagonal edges. On the other hand, if G(x, y) contains the
major and the minor diagonals, then G(x, y) satisfies the above condition
and hence is a PONXA1 graph. Therefore, PONXA1 has the following
19 graphs:

(PONXA1 graphs that contain at most one diagonal)
• •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

• •

• •

• •

(PONXA1 graphs that contain the diagonals)
•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •
•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •
•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •

•

@@
@@

@@
@ •

~~
~~
~~
~

• •
•

@@
@@

@@
@ •

~~
~~
~~
~

• •
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5.3.2. PONXA2 graphs

Suppose (x, y) ∈ PON . By PONXA2 = PON ∩R∩R˘ ∩ S ∩ −S˘ and
Proposition 5.11, we know (x, y) is an instance of PONXA2 if and only
if G(x, y) satisfies the following two equations

G(x, y) ∈ •

dc

•

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~

• dc •

;(5.26)

G(x, y) 6∈ •

dc
@@

@

@@
@

•

• dc •

∪ •

dc
@@

@

@@
@

•

dc

• •

∪ •

dc dc
@@

@

@@
@

•

• •

∪ • dc

dc
@@

@

@@
@

•

• •

∪ • dc •

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~ dc

• •

.(5.27)

By (5.26), G(x, y) does not contain the main diagonal. Hence, by (5.27),
it contains the top and the right edges. If G(x, y) also contains the
minor diagonal, then all constraints are satisfied; if not, then by (5.27),
G(x, y) also contains the bottom and the left edges, which violates (5.26).
Therefore, PONXB2 has the following three graphs
•

@@
@@

@@
@ •

• •

•

@@
@@

@@
@ •

• •

•

@@
@@

@@
@ •

• •

5.3.3. PONXB1 graphs

Suppose (x, y.) ∈ PON . By PONXB1 = PON ∩R∩R˘ ∩ −S ∩ S˘ and
Proposition 5.11, we know (x, y) is an instance of PONXB1 if and only
if G(x, y)

G(x, y) ∈ • dc •

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~ dc

• •

(5.28)

G(x, y) 6∈ •

dc

@@
@

@@
@

•

• dc •

∪ •

dc

@@
@

@@
@

•

dc

• •

∪ •

dc dc

@@
@

@@
@

•

• •

∪ • dc

dc

@@
@

@@
@

•

• •

∪ •

dc

•

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~

• dc •

.(5.29)

(5.28) implies that G(x, y) is a subgraph of
•

@@
@@

@@
@ •

• •

or •

@@
@@

@@
@ •

• •
Because the major diagonal is not in these graphs, we have by (5.29)

that the left and the bottom edges are in such a graph. Note if G(x, y)
does not contain the minor diagonal, then it should contain all non-
diagonal edges, which is contradicts (5.28). Hence G(x, y) contains the
minor diagonal. Therefore, by (5.29) again, we know PONXB1 has three
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graphs, i.e.
•

@@
@@

@@
@ •

• •

and •

@@
@@

@@
@ •

• •

and •

@@
@@

@@
@ •

• •

5.3.4. PONXB2 graphs

Suppose (x, y) ∈ PON . By PONXB2 = PON ∩ R ∩ R˘ ∩ −S ∩ −S ˘
and Proposition 5.11, we know (x, y) is an instance of PONXB1 if and
only if

G(x, y) ∈ • dc •

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~ dc

• •

;(5.30)

G(x, y) ∈ •

dc

•

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~

• dc •

;(5.31)

G(x, y) 6∈ •

dc

@@
@

@@
@

•

• dc •

∪ •

dc

@@
@

@@
@

•

dc

• •

∪ •

dc dc

@@
@

@@
@

•

• •

∪ • dc

dc

@@
@

@@
@

•

• •

.(5.32)

The first two conditions imply that each PONXB2 graph is a subgraph
of
•

@@
@@

@@
@ •

• •

or •

@@
@@

@@
@ •

• •

or •

@@
@@

@@
@ •

• •

or •

@@
@@

@@
@ •

• •

If the minor diagonal is not an edge in G(x, y), then by (5.32) we
know G(x, y) contains the four non-diagonal edges, which is however
impossible. So we know each PONXB2 graph G(x, y) contains the minor
diagonal, and is a subgraph of one of the above four graphs. Therefore,
PONXB2 has the following nine graphs:
(PONXB2 graphs that contain one or two edges)
•

@@
@@

@@
@ •

• •

•

@@
@@

@@
@ •

• •

•

@@
@@

@@
@ •

• •

•

@@
@@

@@
@ •

• •

•

@@
@@

@@
@ •

• •
(PONXB2 graphs that contain three edges)
•

@@
@@

@@
@ •

• •

•

@@
@@

@@
@ •

• •

•

@@
@@

@@
@ •

• •

•

@@
@@

@@
@ •

• •
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5.3.5. PONYA1 graphs

Suppose (x, y) ∈ PON . By PONYA1 = PON ∩ −R ∩R˘ ∩ S ∩ S˘ and
Proposition 5.11, we know (x, y) is an instance of PONYA1 if and only
if G(x, y) satisfies the following conditions

G(x, y) ∈ •

dc

@@
@

@@
@

•

• dc •

∪ •

dc

@@
@

@@
@

•

dc

• •

;(5.33)

G(x, y) 6∈ •

dc dc
@@

@

@@
@

•

• •

∪ • dc

dc
@@

@

@@
@

•

• •

∪ • dc •

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~ dc

• •

∪ •

dc

•

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~

• dc •

.(5.34)

By (5.33) we know G(x, y) is a subgraph of
• •

~~
~~
~~
~

• •

or • •

~~
~~
~~
~

• •
Because G(x, y) does not contain the minor diagonal, by (5.34), it con-
tains the left and the top edges. It is also clear that such a graph should
contain the major diagonal: otherwise it should contain all the other non-
diagonal edges hence not a subgraph of the above two graphs. Therefore,
there are only three PONYA1 graphs, i.e.
• •

~~
~~
~~
~

• •

• •

~~
~~
~~
~

• •

• •

~~
~~
~~
~

• •

5.3.6. PONYA2 graphs

Suppose (x, y) ∈ PON . By PONYA2 = PON ∩ −R∩R˘ ∩S ∩ −S˘ and
Proposition 5.11, we know (x, y) is an instance of PONYA1 if and only
if G(x, y) satisfies the following conditions

G(x, y) ∈ •

dc

@@
@

@@
@

•

• dc •

∪ •

dc

@@
@

@@
@

•

dc

• •

;(5.35)

G(x, y) ∈ •

dc

•

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~

• dc •

;(5.36)

G(x, y) 6∈ •

dc dc

@@
@

@@
@

•

• •

∪ • dc

dc

@@
@

@@
@

•

• •

∪ • dc •

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~ dc

• •

.(5.37)
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(5.35) and (5.36) imply that G(x, y) is a subgraph of
• •

• •

or • •

• •

or • •

• •

or • •

• •

It is now easy to see that only the second graph satisfies (5.37).
Moreover, no subgraph of the second graph satisfies (5.37). Therefore,
PONYA2 has only one graph, i.e.
• •

• •

5.3.7. PONYA1 ˘ graphs

Suppose (x, y) ∈ PONYA1 ˘ . By the symmetry between G(x, y) and
G(y, x), each atomic configuration of PONYA1 ˘ is obtained by mir-
roring an atomic configuration of PONYA1 along the major diagonal.
Therefore, PONYA1 ˘ has only three atomic configurations
• •

~~
~~
~~
~

• •

or • •

~~
~~
~~
~

• •

or • •

~~
~~
~~
~

• •

5.3.8. PONYA2 ˘ graphs

Suppose (x, y) ∈ PONYA2 ˘ . By the symmetry between G(x, y) and
G(y, x), each atomic configuration of PONYA2 ˘ is obtained by mir-
roring an atomic configuration of PONYA2 along the major diagonal.
Therefore, PONYA2 ˘ has only one atomic configuration, i.e.
• •

• •

5.3.9. PONYB graphs

Suppose (x, y) ∈ PON . By PONYB = PON ∩ −R ∩ R ˘ ∩ −S and
Proposition 5.11, we know (x, y) is an instance of PONYB if and only if
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G(x, y) satisfies the following conditions

G(x, y) ∈ •

dc
@@

@

@@
@

•

• dc •

∪ •

dc
@@

@

@@
@

•

dc

• •

(5.38)

G(x, y) ∈ • dc •

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~ dc

• •

(5.39)

G(x, y) 6∈ •

dc dc

@@
@

@@
@

•

• •

∪ • dc

dc

@@
@

@@
@

•

• •

(5.40)

By (5.38) and (5.39), we know G(x, y) is a subgraph of either of the
following four graphs
• •

• •

• •

• •

• •

• •

• •

• •

Because (5.40), we know G(x, y) contains the minor diagonal or con-
tains both the left and the top edges. Therefore, PONYB contains only
two graphs
• •

• •

• •

• •

5.3.10. PONYB˘ graphs

Suppose (x, y) ∈ PONYB ˘ . By the symmetry between G(x, y) and
G(y, x), each atomic configuration of PONYB˘ is obtained by mirroring
an atomic configuration of PONYB along the major diagonal. Therefore,
PONYB ˘ has only two atomic configurations
• •

• •

• •

• •

5.3.11. PONZ graphs

Lastly, we consider PONZ graphs. Suppose (x, y) ∈ PON . By PONZ =
PON ∩ −R ∩ −R˘ and Proposition 5.11, we know (x, y) is an instance
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of PONZ if and only if G(x, y) satisfies the following conditions

G(x, y) ∈ •

dc

@@
@

@@
@

•

• dc •

∪ •

dc

@@
@

@@
@

•

dc

• •

(5.41)

G(x, y) ∈ •

dc dc

@@
@

@@
@

•

• •

∪ • dc

dc

@@
@

@@
@

•

• •

(5.42)

By (5.41) and (5.42), we know G(x, y) is contained in either of:

•

dc
@@

@

@@
@

•

• dc •

∩ •

dc dc
@@

@

@@
@

•

• •

, •

dc
@@

@

@@
@

•

• dc •

∩ • dc

dc
@@

@

@@
@

•

• •

, •

dc
@@

@

@@
@

•

dc

• •

∩ •

dc dc
@@

@

@@
@

•

• •

, •

dc
@@

@

@@
@

•

dc

• •

∩ • dc

dc
@@

@

@@
@

•

• •

.

This means that G(x, y) is a subgraph of the following graphs:
(Maximal PONZ graphs)
• •

~~
~~
~~
~

• •

• •

~~
~~
~~
~

• •

• •

~~
~~
~~
~

• •

• •

~~
~~
~~
~

• •
Except these, G(x, y) could be the following graphs:

(Connected PONZ graphs with one or two edges)
• •

~~
~~
~~
~

• •

• •

~~
~~
~~
~

• •

• •

~~
~~
~~
~

• •

• •

~~
~~
~~
~

• •

• •

~~
~~
~~
~

• •

•

• •

• •

• •

(Disconnected PONZ graphs)
• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

In summary, there are all together 18 PONZ relations, 11 contained
in K ×K, and seven are disconnected.
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Theorem 5.12. In Aρσ, there are 64 PON atomic relations, including
19 PONXA1 relations, 3 PONXA2 relations, 3 PONXB1 relations, 9
PONXB2 relations, 3 PONYA1 (PONYA1 ˘ ) relations, 1 PONYA2
(PONYA2 ˘ ) relation, 3 PONYB (PONYB ˘ ) relations, and 18 PONZ
relations.

5.4. When is an atom of Aρσ in A

From §§5.1 and 5.2 we know that each atomic configuration with three
or less nodes represents an atomic relation in A (see (5.1–5.3), (5.4), and
the equations in §5.2). In this subsection we consider the PON graphs.
Note that PONYA2 has only one atomic configuration. This means that
PONYA2 itself is an atom of Aρσ, hence an atom of A. How about the
other graphs? Are they also atoms of A?

Given a PON graph G(x, y), to show Hx,y (the atomic Aρσ relation
represented by G(x, y)) is a relation in A, our strategy is to show that it
can be generated by the eight relations LT, BR, LB, TR, RT, BL, RB,
and TL in A defined in (5.17–5.24). Recall that each of the eight relations
has a graphical representation, which can be regarded as a set of atomic
configurations. For example, LT is the set of atomic configurations which
do not contain the major diagonal and the top edge. In what follows,
for an atomic configuration G, we write ↓ G for the set of subgraphs of
G. Note that each subgraph of G is also an atomic configuration. We
say an atomic configuration G is representable (w.r.t. the relations in
(5.17–5.24)) if ↓ G is the intersection of a subset of the eight relations
in (5.17–5.24)); we say G is strongly representable if G and all its proper
subgraphs are all representable. We have the following proposition.

Proposition 5.13. Suppose (x, y) ∈ PON . Then Hx,y is a relation in
A if G(x, y) is strongly representable.

Proof. We prove this by using induction on the number of edges con-
tained in G(x, y). Suppose G(x, y) is strongly representable. If G(x, y)
contains no edge, i.e. E(x, y) = ∅, then G(x, y) is the unique graph
contained in

(5.43) • dc •

dc
~~
~

~~
~

• •

∩ • •

dc
~~
~

~~
~ dc

• •

∩ •

dc
@@

@

@@
@

•

• dc •

∩ •

dc
@@

@

@@
@

•

dc

• •

∩ • dc

dc
@@

@

@@
@

•

• •

∩ •

dc dc
@@

@

@@
@

•

• •

∩ • •

dc
~~
~

~~
~

• dc •

∩ •

dc

•

dc
~~
~

~~
~

• •

In general, suppose G(x, y) has k > 0 edges and each proper subgraph
of G(x, y) represents a relation in A. Note that the union of these rela-
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tions, written α1, is also a relation in A. Moreover, because G(x, y) is
representable, the union of all the atoms in A

ρσ that are represented by
G(x, y) or one of its proper subgraphs, written α, is also a relation in A.
Since Hx,y is exactly the difference of α and α1, we know Hx,y is also a
relation in A. It is clear that it is also atomic in A.

So, when is an atomic configuration strongly representable? We have
the following result:

Proposition 5.14. Suppose (x, y) ∈ PON . Then G(x, y) is strongly
representable if and only if it is not a PONXA1 graph, i.e. if it contains
the two diagonals or contains at least the four non-diagonal edges.

Proof. Suppose G(x, y) is a PONXA1 graph. Then it is clear that
G(x, y) is not in any of the eight relations defined in (5.17–5.24), i.e.

(5.44) G(x, y) 6∈ • dc •

dc
~~
~

~~
~

• •

∪ • •

dc
~~
~

~~
~ dc

• •

∪ •

dc

@@
@

@@
@

•

• dc •

∪ •

dc

@@
@

@@
@

•

dc

• •

∪ • dc

dc

@@
@

@@
@

•

• •

∪ •

dc dc

@@
@

@@
@

•

• •

∪ • •

dc
~~
~

~~
~

• dc •

∪ •

dc

•

dc
~~
~

~~
~

• •

This shows that G(x, y) is not representable.2 On the other hand, we
show each non-PONXA1 graph is strongly representable. Note that if
G(x, y) is not a PONXA1 graph, then none of its proper subgraphs is
a PONXA1 graph. Therefore, to show all non-PONXA1 graphs are
strongly representable, we need only show that they are representable.

We first consider graphs with fewer edges. In the proof of Proposi-
tion 5.13, we have seen that the empty graph G0 is the intersection of
all the eight relations in (5.17–5.24). There are six graphs which have
only one edge. We write these graphs as Gl, Gt, Gb, Gr, Gmj , and Gmn,
where for example Gl is the graph which contains the left edge, and Gmn

is the graph which contains the minor diagonal. The interpretations of
the other graphs are clear. Then we have

↓ Gl = • dc •

dc
~~
~

~~
~

• •

∩ • •

dc
~~
~

~~
~ dc

• •

∩ •

dc

@@
@

@@
@

•

• dc •

∩ •

dc

@@
@

@@
@

•

dc

• •

∩ • dc

dc

@@
@

@@
@

•

• •

∩ • •

dc
~~
~

~~
~

• dc •

↓ Gt = • •

dc
~~
~

~~
~ dc

• •

∩ •

dc

@@
@

@@
@

•

• dc •

∩ •

dc

@@
@

@@
@

•

dc

• •

∩ •

dc dc

@@
@

@@
@

•

• •

∩ • •

dc
~~
~

~~
~

• dc •

∩ •

dc

•

dc
~~
~

~~
~

• •

↓ Gr = • dc •

dc
~~
~

~~
~

• •

∩ •

dc

@@
@

@@
@

•

• dc •

∩ • dc

dc

@@
@

@@
@

•

• •

∩ •

dc dc

@@
@

@@
@

•

• •

∩ • •

dc
~~
~

~~
~

• dc •

∩ •

dc

•

dc
~~
~

~~
~

• •

2 Actually, each atomic relation of A
ρσ contained in PONXA1 is not in the

Boolean algebra generated by the eight relations in (5.17–5.24).
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↓ Gb = • dc •

dc
~~
~

~~
~

• •

∩ • •

dc
~~
~

~~
~ dc

• •

∩ •

dc

@@
@

@@
@

•

dc

• •

∩ • dc

dc

@@
@

@@
@

•

• •

∩ •

dc dc

@@
@

@@
@

•

• •

∩ •

dc

•

dc
~~
~

~~
~

• •

↓ Gmj = •

dc

@@
@

@@
@

•

• dc •

∩ •

dc

@@
@

@@
@

•

dc

• •

∩ • dc

dc

@@
@

@@
@

•

• •

∩ •

dc dc

@@
@

@@
@

•

• •

↓ Gmn = • dc •

dc
~~
~

~~
~

• •

∩ • •

dc
~~
~

~~
~ dc

• •

∩ • •

dc
~~
~

~~
~

• dc •

∩ •

dc

•

dc
~~
~

~~
~

• •

That is, each graph with one edge is representable.

Suppose G(x, y) is an atomic configuration that has two edges. Note
that G(x, y) is a PONXA1 graph only if it contains the two diagonals.
Write G× for this graph, and write, for instance, Gmjt for the graph that
contains the major diagonal and the top edge. Then we have

↓ Gmjt = •

dc
@@

@

@@
@

•

• dc •

∩ •

dc dc
@@

@

@@
@

•

• •

∩ •

dc
@@

@

@@
@

•

dc

• •

↓ Gmjr = •

dc
@@

@

@@
@

•

• dc •

∩ • dc

dc
@@

@

@@
@

•

• •

∩ •

dc dc
@@

@

@@
@

•

• •

↓ Gmjb = • dc

dc
@@

@

@@
@
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Rels. Conv. atoms in atoms in atoms in atoms in
K ×K K × L L×K L× L

1′ 1′ 1 0 0 1
DC DC 1 1 1 1
DD DD 1 0 0 1

NTPP NTPP ˘ 1 1 1 1
ECN ECN 4 0 0 0
TPP TPP ˘ 4 0 0 0
POD POD 5 1 1 1

PONXA1 PONXA1 19 0 0 0
PONXA2 PONXA2 3 0 0 0
PONXB1 PONXB1 3 0 0 0
PONXB2 PONXB2 9 0 0 0
PONYA1 PONYA1 ˘ 3 0 0 0
PONYA2 PONYA2 ˘ 1 0 0 0
PONYB PONYB ˘ 2 0 0 0
PONZ PONZ 11 3 3 1

79 7 7 7

Table 3. Atomic relations in Aρσ that are contained in B ×B
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Therefore, all non-PONXA1 graphs with two edges are representable.
Note that a non-PONXA1 graph contains at most four edges. The cases
when G(x, y) has three or four edges are similar. We omit the details
here.

5.5. Summary

Above, we have shown that Aρσ has 100 atoms below B×B, where seven
are below L×L, seven are below L×K, seven below K ×L, and 79 are
below K × K (see Table 3 for details.) Except the 19 atoms contained
in PONXA1 , the other atoms are all known to be atoms of A. It is still
open if the atoms of PONXA1 are also atoms of A.
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6. Conclusion and outlook

In this paper, we have investigated the countable homogeneous BCA B

and the contact relation algebra A of B. In particular, we have shown
that B can be partitioned into four sets {0}, {1}, K, and L, which are
the only orbits of the group of automorphisms of B. Moreover, we have
shown that both K and L are dense in B, L ∪ {0, 1} is a subalgebra
of B, and K generates B. As for the contact relation algebra A of B,
we have shown that Aρσ, the Galois closure of A, has 112 atoms. This
seems to be the first known infinite BCA with non-minimal C which
has a finite contact relation algebra. We have also introduced a graphic
representation for each atom of Aρσ that is below B × B. Based upon
this graphical representation, we have shown how these atoms in Aρσ

refine the 25 relations defined in Düntsch et al. [7].
There are several problems we leave open: Which, if not all,

PONXA1 graphs represent relations in A? Are the 79 relations below
K ×K realizable in the real plane (or in any extensional and connected
BCA, i.e. RCC algebra)? Is there an extensional and connected BCA
with more than two elements and a finite CRA?
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