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ON A NON-REFERENTIAL THEORY OF

MEANING FOR SIMPLE NAMES BASED ON

AJDUKIEWICZ’S THEORY OF MEANING

Abstract. In 1931–1934 Kazimierz Ajdukiewicz formulated two versions
of the theory of meaning (A1 and A2). Tarski showed that A2 allows syn-
onymous names to exist with different denotations. Tarski and Ajdukiewicz
found that this feature disparages the theory. The force of Tarski’s argument
rests on the assumption that none of adequate theories of meaning allow
synonymous names to exist with different denotations. In the first part of
this paper we present an appropriate fragment of A2 and Tarski’s argument.
In the second part we consider an elementary interpreted language in which
individual constants occur, but not functional symbols. For such a language
we define semantically a relation of synonymity for simple names and show
that it fulfills syntactical conditions formulated by Ajdukiewicz in A2 and
allows synonymous names to exist with different denotations.

Keywords: Ajdukiewicz, Tarski, theory of meaning, simple names, syn-
onymity, meaning directives.

1. Historical remarks

In 1931–1934 Kazimierz Ajdukiewicz formulated two versions of the the-
ory of meaning ([1, 2]). It is assumed that it was the first attempt to de-
fine this term using the methods taken from formal logic. Ajdukiewicz’s
theories of meaning have been studied by a number of researches (see
e.g. [6, 7, 9, 10, 11, 13, 14]). Despite the great precision of the lan-
guage of Kazimierz Ajdukiewicz, his texts leave considerable room for
interpretation. This is how this dissertation should be considered.
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The Ajdukiewicz’s idea was to bind an intuitive concept of syn-
onymity with a syntactic-pragmatic relation of mutual interchangeability
of expressions over a set of so-called meaning directives of language. In
these two theories, the definition of the mutual interchangeability of
expressions was formulated differently. In [9] I tried to compare both
theories exactly for the sake of Ajdukiewicz’s modification of the def-
inition. Let A1 represent the theory from 1931 and A2  the theory
from 1934. It is a well-known fact that the theory from 1934 allows
synonymous names to exist with different denotations. It was Alfred
Tarski who noticed this fact first and then conveyed his observation to
Ajdukiewicz during their conversation.

The fact that the theory of meaning allows synonymous names to ex-
ist with different denotations was considered by Ajdukiewicz and Tarski
to be an evidence that the theory was incorrect. In fact, the problem
of interpreting Tarski’s argument in relation to the theory A2 is more
complicated. I discussed it in [9]. I also showed in this work that con-
trary to popular opinion, the theory A1 also allows synonymous names to
exist with different denotations.1 I expressed the opinion backed up with
arguments that in certain very special cases theories of meaning should
allow such names to exist with different denotations. I also framed an
open problem of semantic defining a relation of synonymity of names, for
which Ajdukiewicz’s theory would provide a syntactic sine qua non and
which could be fundamental for a non-referential theory of meaning of
names. The following dissertation is a partial solution of this problem.

2. About meaning directives

We are going to deliberate here on very special cases of applying the A2
theory. However, we will present its general principles, in order to situate
these special cases even better. One of the fundamental concepts of both
Kazimierz Ajdukiewicz’s theories of meaning is a concept of a meaning
directive. Let L be any interpreted language, formal or ethnic. A possible
meaning directive of L is an ordered pair 〈Wα, α〉, where α is a sentence
in the language L, and Wα is a possible condition (a set of conditions) for
acceptance of α by users of L, regardless of what is the character of the

1 There are two definitions of synonymity in [1], on pp. 132 and 134. In the
second one Ajdukiewicz uses the notion of an essential directive and I assume that
A1 is based on this definition.
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condition and how it is defined. Let W L represent the set of all possible
conditions for acceptance of sentences in the language L, SL – the set of
all sentences in the language L and ExpL – the set of all expressions of
L. The concept of a possible meaning directive for L becomes a formal
concept only when both L and W L are formally defined.

Let 〈Wα, α〉 be a possible meaning directive of L. We say that
〈Wα, α〉 is a meaning directive for L, if the following condition is met:
if Wα is satisfied, a member of community using the language L cannot
reject the sentence α, he has to accept it. Ajdukiewicz understands an
act of acceptance in a purely pragmatic way and it does not have to
be connected with a belief or knowledge of a language user. It is an
expression of community’s language habit and it show how the commu-
nity uses the language. Rejecting the sentence α, when the condition
Wα is fulfilled and when the pair 〈Wα, α〉 is the meaning directive of the
language L, means that a given person does not belong to the commuity
using the language L and assigning the same meanings to its expressions.
Ajdukiewicz assumes that, for any expression of L, there are meaning
directives for L in which this expression occurs.

The condition Wα, which is the component of the meaning directive
〈Wα, α〉 in a special case can consist in accepting some sentences (it can
be the empty set). We will say then, that it has a linguistic character
and we will identify it with the set of those sentences.

Depending on the type of condition Wα, Ajdukiewicz distinguishes
three kinds of meaning directives. Axiomatic directives are characterized
by an empty set of conditions of accepting sentences. We identify such
directives with the sentences. In deductive directives the condition of
sentences’ acceptance is to accept other sentences; in empirical direc-
tives it is a user’s appropriate extralinguistic experience (e.g. sensory,
metaphysical). In the last case, we identify Wα with the type of that ex-
perience. The above characteristic of the meaning directives differs a bit
from the original perspective of Kazimierz Ajdukiewicz. However, I think
that it properly conveys the nature of his conception; the differences are
technical, and the omitted details are of secondary importance.2

Ajdukiewicz assumes that expressions of any interpreted language
L, used by a language community for communicative purposes, have
meanings that allow users to recognize them and make users understand
each other. For every such language there exists a relation of synonymity

2 I discussed this matter in more detail in [9, pp. 128–129].
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between expressions, which is intuitively recognized by users and put into

language practice. Let
int
∼ represent this relation when it is known which

language is meant.
In his theories of meaning, Ajdukiewicz assumes that the fact that

the expressions of the language L have meanings is equivalent to the
existence of the set of meaning directives for L, and that the synonymity
relation for L depends on the form of that set. Therefore, by referring
to meaning directives, we can formulate conditions that describe the

intuitive relation
int
∼ of synonymity.

3. Basic definitions

Let L be an interpreted language and D a set of meaning directives for L.
The syntactic definition of the relation of a mutual interchangeability

of expressions of L over the set D of meaning directives for that language
is one of the crucial definitions of the theory A2 (and also A1). Aj-
dukiewicz connected this relation with the intuitive synonymity relation
int
∼ for L. In his definition he used syntactic operations on expressions,
which can be defined in the following way:

Definition 1. Let L be any language and α, β, λ be any members of
ExpL. We define the operation

α � β : ExpL 7→ ExpL

by putting that λα�β is the expression resulting from λ by replacing all
occurrences of α with β (and vice versa).

It turns out that the transformations defined in Definition 1 have
many merits in comparison to analogical transformations defined in [1].
However, they have a serious defect as well, which was not noticed by
Kazimierz Ajdukiewicz. They are not always possible to execute. If
some expressions α and β are not disjoint, that is to say, α is a part
of β or vice versa, then for some expressions γ the operation of the
mutual interchange is not possible to execute.3 So Definition 1 defines
only partial operations in such cases. Nothing stands in the way of
using Definition 1, provided that the parameters of operations α � β
are going through the set of simple expressions of the given language.

3 That was noticed by professor W. Buszkowski in [6].
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We always obtain, in such a case, the total operations. If we want to
apply Definition 1 without limitation, in the same way as Ajdukiewicz
did it, we have to modify the definition, so that it would consider the
fact, that the transformation α � β is not always possible. Otherwise,
the next definition is not correct. In this article we will only consider
simple names, so we do not have to worry about this problem. It follows
from Definition 1 that if α /∈ λ and β /∈ λ, then λα�β = λ. The notation
α /∈ λ, in the context of expressions, stands for α does not occur in λ.

The syntactic operations defined above allow us to define analog-
ical operations on conditions Wα and, in a consequence, on meaning
directives. We assume that if Wα is a component of an axiomatic or
empirical meaning directive, then W γ�β

α = Wα. Let’s now assume that
Wα = {δ1, . . . , δn}, where δ1, . . . , δn are sentences. Then we set:

W γ�β
α = {δγ�β

1 , . . . , δγ�β
n }.

Let ∆ be a meaning directive of the form 〈Wα, α〉. We set that,

∆γ�β = 〈W γ�β
α , αγ�β〉.

Now we can give a definition of a mutual interchangeability of ex-
pressions over a set D of meaning directives of a language L.

Definition 2. Let L be any language, D a set of meaning directives of
L, α, β ∈ ExpL. We say that α and β are mutual interchangeable over

D, written α
D
≈ β, if and only if for any directive ∆ ∈ D, ∆α�β ∈ D. In

other words: α
D
≈ β if and only if the set of directives D is closed under

the operation α � β.

We noticed, that Tarski showed that the theory A2 allows synony-
mous names to exist with different denotations. Now, we can present his
reasoning.

Example 1 (Tarski). Let L be an elementary language, in which the
individual constants a and b are the only specific symbols. We assume
that a model M is an interpretation of the language L and its universe
consists of two elements aM and bM, for which we have aM 6= bM. Let
a set of meaning directives D be an elementary theory generated by two
sentences : a 6= b and b 6= a.4 As all the tautologies expressible in the

4 Tarski in his example assumed that the set D of meaning directives consists
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language L belong to the set D, we can assume that the meaning of the
symbols of equality and negation which occur in these two sentences, is
the meaning which is assigned to classical logic. It is hard to believe that
a user of the language L, accepting the set D as the set of the sentences
defining the meanings of that language’s symbols, could use the sym-
bols of equality and negation in different meanings from the classical.
Therefore, the names a and b have different denotations and, moreover,
regardless of that fact, the sentences a 6= b and b 6= a should be inter-
preted as the sentences saying that a and b have different denotations.5

However, if we take any sentence ∆ ∈ D, it is easy to notice that the
sentence ∆a�b belongs to D as well. And so, according to Definition 2.2,

the result is that a
D
≈ b. ⊣

The interpretation of Tarski’s argument is clear, provided that in
the theory A2 Ajdukiewicz equated the relation of synonymity with the

relation
D
≈. However, it is not true. Regardless of how Tarski’s argument

concerns the theory A2, in my view, he attracts attention to an inter-
esting problem: whether there are any permissible cases in an accurate
theory of meaning when synonymous names have different denotations.
It seems that Tarski, as well as Ajdukiewicz, rejected such possibility.6

If we limit the field of
D
≈ to simple expressions, it will turn out that

it is an equivalence relation. Let δ be any expression of L, α, β, γ any
simple expressions of that language. Then

((δα�β)β�γ)α�β = δα�γ .

Checking whether the relation
D
≈ is reflexive and symmetrical is not a

problem. We assume that α
D
≈ β and β

D
≈ γ. Let ∆ ∈ D. Then, by Defi-

of all logical tautologies expressible in the language L and of the sentences a 6= b

and b 6= a. We assumed a slightly different solution. However, it does not influence
the interpretation of the example discussed. The above example can be also easily
supplemented by a set of logical deductive directives, because the interchange of all
names a and b (and vice versa) transforms any substitution instance of modus ponens
into a substitution instance of modus ponens and the similar case concerns the rule
of generalization.

5 If the set D of directives consisted only of the sentences a 6= b and b 6= a,
nothing would entitle us to claim that these sentences express the fact of different
denotations of names a and b. In that case, these sentences would express the same
as e.g. the sentences R(a, b) and R(b, a).

6 Ajdukiewicz stated that clearly in [4].
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nition 2, ∆α�β, (∆α�β)β�γ also belong to D. And so ((∆α�β)β�γ)α�β =

∆α�γ . Hence α
D
≈ γ.7

The way in which a relation of expression’s interchangeability is con-
nected with a synonymity relation was presented by Ajdukiewicz in the
form of the following thesis.

Thesis (Ajdukiewicz) Let L be any interpreted language, D a set of

meaning directives of that language, α and β its any expressions. If

α
int
∼ β, then α

D
≈ β.

4. About theories of meaning of names

As a matter of fact, the theories A2 and A1 are universal and refer
to any expressions of any language  ethnic or interpreted formal lan-
guage.8 There are also no limiting conditions imposed on sets of meaning
directives. As far as kinds of the languages in question, a shape of the
meaning directives’ set and the range of the expressions are concerned,
we will further assume far-reaching limitations. As we have mentioned,
Ajdukiewicz in his theory does not impose any essential conditions on
a language. A set of meaning directives depends on linguistic habits of
language users, which are not limited by any conditions. Therefore we
can assert that our findings are not exactly modifying Ajdukiewicz’s the-
ory of meaning but rather focus attention on some special applications.
However, it does not mean that Ajdukiewicz’s theory of meaning can be
reduced to these particular cases. We assume the following:

1. We limit the class of considered languages to interpreted, elementary
languages based on classical logic. In order to specify our delibera-
tions, we choose the specific system of logic. Let it be the system of
elementary logic with the identity defined in [12]. In this system, the
modus ponens and the rule of generalization are rules of inference
(we have only the general quantifier in the language of this logic).

7 I am copying here the reasoning of W. Buszkowski from [6].
8 In the second part of [2] Ajdukiewicz restricted considered languages to coherent

and closed languages. However, this assumption was connected with the definition of
a translation, thus with pondering the synonymy of expressions belonging to different
languages. If we limit ourselves to pondering the synonymy of expressions belonging
to one language, that assumption is not needed.
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2. We limit members of sets of meaning directives to axiomatic direc-
tives. Furthermore, we assume that a set of axiomatic directives is
an elementary theory, true in a distinguished model, being an inter-
pretation of a given language.

3. We limit the range of considered expressions to simple names, i.e.
individual constants of elementary languages.

Thereby, we assume that not all true sentences of a given language
L have to be accepted by users of that language on the strength of the
meaning of expressions (the knowledge does not have to be analytical),
and that users of L have a full ability to deduce.

Point 2 requires a justification. Let L be any interpreted elementary
language and D a set of meaning directives for L. The assumption that
there are no empirical directives in D seems natural. If we assume that
the set of deductive directives for L consists of all substitution instances
of modus ponens and the rule of generalization, it will turn out that it

does not influence the form of the relation
D
≈.

Let ∆ ∈ D be any substitution instance of modus ponens, α and β
any disjoint expressions of L belonging to the same syntactic category.
Then ∆α�β is also a substitution instance of modus ponens, regardless
of whether the expressions α and β are terms, formulas or variables,
provided that the operation α � β is possible to execute. In such a case
for any formula γ and δ we have

(γ → δ)α�β = γα�β → δα�β .

Hence ∆α�β ∈ D. Therefore, these directives do not influence the re-

lation
D
≈ on the set of simple expressions of these categories. They can

influence this relation on the set of logical symbols. However, it is easy
to show that even only the axiomatic directives are the reason for which
the relation of mutual interchangeability coincides with the identity rela-
tion on this set. It would be enough to consider some tautologies in the

language L, in order to check that
D
≈ is always an identity relation on the

set of logical symbols. For example: if α is any axiomatic directive, then
¬α → ¬α and α∨¬α are also axiomatic directives, but (¬α → ¬α)→�∧,
(¬α → ¬α)→�∨ and (α∨¬α)∧�∨ are not. The similar situation is for the
rule of generalization. Therefore, provided the assumptions, deductive

directives do not influence the relation
D
≈ on the set of logical symbols

too, and can be omitted.
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The fact that deductive directives do not influence the relation of
mutual interchangeability for non-logical expressions is the advantage
of the theory A2. I suppose it was one of the causes for changing the
definition by Ajdukiewicz. Thus, if some meaning directives cause that
on the set of the logical symbols the relation of mutual interchangeability
coincides with the identity relation, then all the remaining deductive
directives can be omitted, without changing the form of the relation on
the set of all expressions. Therefore we can assume that sets of meaning
directives consist only of axiomatic directives. The sentences which are
elements of sets of axiomatic meaning directives we shall simply call the
meaning directives.

Let us sum up our settlements. We consider interpreted elementary
languages. Every set of meaning directives consists of true sentences and
is closed under the logical consequence.

The topic of our interest is the possibility of formal defining for any
interpreted, elementary language L a semantic relation (on the set of
simple names of L), which could be identified with intuitively understood

relation
int
∼ occurring in Ajdukiewicz’s Thesis. However, that is not all.

We would like the definition of a synonymity relation to be the base of
the non-referential theory of meaning for simple names, i.e. the theory
allowing names to exist with different meanings and the same denotation
as well as names with different denotations and the same meaning.

We shall define the above postulates in more detail for a bit more
general case, in which we take into account any elementary language and
all constant terms, not only simple names. Let Tr

L denote the algebra
of constant terms of L. We define it in standard manner. Tr

L has as
its universe the set Tr

L of all constant terms of L. The signature of the
algebra consists of all individual constants and all function symbols of
L. They are interpreted as follows: if c is an individual constant, then
cTr

L

= c; if F is an n-argument function symbol and t1, . . . , tn are any
elements of the universe, then

FTr
L

(t1, . . . , tn) = F (t1, . . . , tn).

Let us denote the family of all consistent theories in L by Th(L).
Any consistent theory in L can serve as the set of axiomatic directives
for L, provided that the interpretation of L is a model of that theory.
In every such case, our desired theory of meaning should allow to define
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with semantic means the relation R ⊆ Tr
L × Tr

L × Th(L) satisfying for
any T ∈ Th(L) the following conditions:

1.
T
∼ = {〈t1, t2〉 : 〈t1, t2, T 〉 ∈ R} is a congruence relation on Tr

L,

2. if t1
T
∼ t2, then t1

T
≈ t2.

It follows from the above conditions that the synonymity relation
T
∼ over the set T of meaning directives determined on the set of con-
stant terms of L should be a congruence on Tr

L and it should meet
Ajdukiewicz’s Thesis. Certainly, when there are no function symbols in
L, every equivalence relation on the universe of TrL is a congruence.

If M is an interpretation of L, then there exists a distinct congru-
ence relation on Tr

L, connected with that interpretation. This is the

congruence relation
M

≍ defined as follows :

t1
M

≍ t2 if and only if tM1 = tM2 .

Let us denote the congruence lattice of TrL by Con(TrL). We can
divide theories of meaning of names into three kinds, depending on an
area of the universe of Con(TrL) in which synonymity relations deter-
mined by a given theory, relative to various sets T ⊆ Th(M) of meaning
directives, can occur.

1. The theories in which synonymity relations always come out below

the relation
M

≍. We will call them connotative theories.
2. The theories in which synonymity relations always come out above

the relation
M

≍. We do not have a good name for these theories, besides,
they do not occur in practice.

3. The theories in which synonymity relations can occur incompara-

ble with relation
M

≍. We will call them non-referential theories.9

5. Languages, in which only simple names occur

In this chapter we will consider elementary languages in which individual
constants occur, but not functional symbols. We say that such languages
are functionless.

9 The term was borrowed from [11]. Of course non-referential theories are not
extensional, but the question whether a meaning theory have to be extensional seems
to be open. I discussed this problem in [9].
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Definition 3. Let L be a functionless elementary language, a and b
individual constants of L, M a model for L.

1. We define the function fa�b : M → M by

fa�b(x) =















aM if x = bM,

bM if x = aM,

x otherwise.

2. We define the model Ma�b of the same type as M putting that Ma�b

and M have the same universe and

aM
a�b

= (bM),

bM
a�b

= (aM).

We assume that interpretations of the remaining symbols of L are in
Ma�b the same as in M.

Definition 4. Let L be a functionless elementary language, M a model

of L. We define the relation
M
∼ on the set of the individual constants

of L, assuming for any constants a and b that a
M
∼ b if and only if the

function
fa�b : M 7−→ Ma�b

is an isomorphism between M and Ma�b.

Lemat 1. Let a, b and c be individual constants of a functionless el-

ementary language L and let M be a model of L. If aM = bM and

cM 6= bM then both c
M
≁ a and c

M
≁ b.

Proof. We assume the appropriate premises and for the indirect proof

let us suppose that c
M
∼ a. Then fc�a is an isomorphism between M and

M
c�a. Thus

fc�a(bM) = bM
c�a

= bM = fc�a(aM) = aM
c�a

= cM.

Thereby, bM = cM, which is contradictory to the assumption. We show

similarly that c
M
≁ b. ⊣

Lemat 2. Let L be a functionless elementary language and M a model

of L. The relation
M
∼ defined on the set of the constants of L, according

to Definition 4, is a congruence on the algebra Tr
L.
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Proof. If there are not function symbols in L, then every equivalence
relation on the set of the constant terms is a congruence relation on

the algebra Tr
L. It shall be enough to show that

M
∼ is an equivalence

relation. The condition of reflexivity and symmetry is easy to check.
We shall show that it is also a transitive relation. Let us suppose that

for some individual constants a, b, and c of L we have a
M
∼ b and b

M
∼

c. It means that there exist isomorphisms fa�b : M −→ Ma�b and
f b�c : M −→ Mb�c.

If bM = cM or bM = aM, then appropriately fa�c = f b�c or fa�c =
fa�b.

Thus we can assume that bM 6= cM and bM 6= aM. We know from
Lemma 1 that in such case aM 6= cM as well. In case aM = cM, then

because bM 6= cM, we would obtain b
M
≁ c, which is contrary to our

assumption. So, the elements aM, bM and cM are different in pairs.
We define the function h : M −→ M assuming that h = fa�b ◦f b�c ◦

fa�b. Of course, h is a bijection. Now, we shall only show that this is
the function fa�c, and that h is a homomorphism sending the model M
into the model Ma�c. Let’s first consider the constants: a, b and c.

h(aM) = fa�bf b�cfa�b(aM)

= fa�bf b�c(aM
a�b

)

= fa�bf b�c(bM)

= fa�b(bM
b�c

)

= fa�b(cM)

= cM
a�b

= cM

= aM
a�c

.

h(bM) = fa�bf b�cfa�b(bM)

= fa�bf b�c(bM
a�b

)

= fa�bf b�c(aM)

= fa�b(aM
b�c

)

= fa�b(aM)

= aM
a�b

= bM

= bM
a�c

.
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h(cM) = fa�bf b�cfa�b(cM)

= fa�bf b�c(cM
a�b

)

= fa�bf b�c(cM)

= fa�b(cM
b�c

)

= fa�b(bM)

= bM
a�b

= aM

= cM
a�c

.

If e ∈ Mand e /∈ {aM, bM, cM}, then

h(e) = fa�bf b�cfa�b(e)

= fa�bf b�c(e)

= fa�b(e)
= e.

We have shown that h = fa�c, and that the condition of homomorphism
for the constants a, b, c is met. Now, let d be an individual constant of
L different from a, b and c. We know, from Lemma 1, that in this case
dM is different from aM, bM and cM. Then dM

a�c

= dM and

h(dM) = dM = dM
a�c

.

Thus, the homomorphic condition on the individual constants is met.
Let P be an n-argument predicate symbol and n1, . . . , nk ∈ M . Then

PM(n1, . . . , nk) ⇔ PM
a�b

(fa�b(n1), . . . , fa�b(nk))

⇔ PM(fa�b(n1), . . . , fa�b(nk))

⇔ PM
b�c

(f b�cfa�b(n1), . . . , fb�cfa�b(nk))

⇔ PM(f b�cfa�b(n1), . . . , fb�cfa�b(nk))

⇔ PM
a�b

(fa�bf b�cfa�b(n1), . . . , fa�bf b�cfa�b(nk))

⇔ PM(fa�bf b�cfa�b(n1), . . . , fa�bf b�cfa�b(nk))

⇔ PM(h(n1), . . . , h(nk))

⇔ PM
a�c

(h(n1), . . . , h(nk)).
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We should remember that from Definition 3 follows PM = PM
b�c

=
PM

a�b

= PM
a�c

. The function h is the isomorphism we were looking

for and the relation
M
∼ is transitive. ⊣

Definition 5. Let L be a given functionless elementary language and

D a set of its meaning directives. We define the synonymity relation
D
∼

on the set of individual constants of L, assuming for any constants a and

b of L that a
D
∼ b if and only if for every model N of L, the following

condition is met: if N |= D, then a
N
∼ b.

Therefore, for any language L and a set D of meanings directives for
L we have :

D
∼ =

⋂

{
N
∼ : N |= D}.

Since a product of congruences is also a congruence relation, let us make
a note of the following trivial fact:

Fact 3. If L is a functionless elementary language, D a set of meaning

directives for L, then the synonymity relation
D
∼ on the set of individual

constants of L is a congruence relation on the algebra Tr
L.

Theorem 4. Let L be a functionless elementary language, D a set of

meaning directives for L. For any individual constants a and b of L, the

following condition is met: if a
D
∼ b, then a

D
≈ b.

Proof. We assume that a
D
∼ b and ϕ ∈ D, where ϕ is a sentence

in the language L. Let M be a model of L and M |= D. If in the
sentence ϕ the constants a and b do not occur, then ϕ = ϕa�b and the
thesis is self-evident. We assume that a and b occur in ϕ and maybe
some other constants c1, . . . , ck also, and the sentence ϕ takes the form
ϕ(c, a, b). To make the calculation simpler, we assume that in ϕ we have
one occurrence of a and the other one of b. In case of more occurrences,

we follow in a similar way. We know that if a
D
∼ b, then a

M
∼ b. Let us

consider two cases.
aM = bM: We have from logic that M |= ϕ ↔ ϕa�b and hence

M |= ϕa�b.
aM 6= bM: In this case we know from Lemma 1 that for any 1 ¬ i ¬ k,

aM 6= cMi and bM 6= cMi . Then

M |= ϕ(c, a, b) ⇒ M |= ϕ(cM1 , . . . , cMk , aM, bM)

⇒ M
a�b |= ϕ(fa�b(cM), fa�b(aM), fa�b(bM))
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⇒ M |= ϕ(fa�b(cM), fa�b(aM), fa�b(bM))

⇒ M |= ϕ(cM1 , . . . , cMk , bM, aM)

⇒ M |= ϕ(c1, . . . , ck, b, a)

⇒ M |= ϕ(c, a, b)a�b.

We follow by analogy when the constant a occurs in ϕ and there are
no occurrences of the constant b or vice versa. And so in every case we
obtain M |= ϕa�b, which means that ϕa�b ∈ D because of the fact that

D is closed under the logical consequence. Hence a
D
≈ b. ⊣

It follows from Fact 3 and Theorem 4 that in our simple case of a
functionless elementary language L we can define the desired relation
R ⊆ Tr

L × Tr
L × Th(L) putting

〈a, b, T 〉 ∈ R ⇐⇒ a
T
∼ b.

It is worth noting that the above facts remain true also for languages,
in which function symbols occur, provided that we limit our synonymity
relations only to sets of individual constants of that languages. In such a
case synonymity relations stop being congruences in algebras of constant
terms of languages but remain equivalence relations, because the function
h(x), defined by us, remains an isomorphism. Let F be a k-argument
function symbol and let n1, . . . , nk ∈ M .

h(FM(n1, . . . , nk)) = fa�bf b�cfa�b(FM(n1, . . . , nk))

= fa�bf b�c(FM
a�b

(fa�b(n1), . . . , fa�b(nk)))

= fa�bf b�c(FM(fa�b(n1), . . . , fa�b(nk)))

= fa�b(FM
b�c

(f b�cfa�b(n1), . . . , fb�cfa�b(nk)))

= fa�b(FM(f b�cfa�b(n1), . . . , fb�cfa�b(nk)))

= FM
a�b

(fa�bf b�cfa�b(n1), . . . , fa�bf b�cfa�b(nk))

= FM(h(n1), . . . , h(nk))

= FM
a�c

(h(n1), . . . , h(nk)).

Synonymity relations for simple names defined above are very sensi-
tive, even to small changes in the considered language. It is illustrated
by the following examples.
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Example 2. Let us consider the example given by Tarski, in which we
only make a slight change in the language L. We add a new individual
constant to the language, that is c. The set S of meaning directives
remains the same. There exists a model M1 for the set S, such that

cM1 = aM1 . Thus, from the Lemma 1 we have a
M1

≁ b and b
M1

≁ c. There
exists also a model M2 for the set S, in which we have cM2 = bM2 . Hence

a
M2

≁ c. So, we obtain that a
S
≁ c, a

S
≁ b, b

S
≁ c, i.e. all the names are

having different meanings. Therefore, adding one symbol to the language
without changing the set of meaning directives causes the significant
change of the synonymity relation. Since the set S of meaning directives
remains the same, this example also shows that with our interpretation
of the intuitive synonymity relation, the implication in Ajdukiewicz’s
Thesis cannot be reinforced to the equivalence. If we additionally change
the set S of directives by adding the axiomatic directive c = a to it, then

we will obtain a
S
∼ c, a

S
≁ b, b

S
≁ c. ⊣

Example 3. Let L be a functionless elementary language containing in-
dividual constants a, b, c, d and a unary predicative symbol P . We
assume that a model M is an interpretation of the language L such that
aM = bM, cM 6= dM, cM 6= aM, dM 6= aM, PM = {aM}. Let D be a
set of meaning directives. We assume that D is an elementary theory
generated by the following sentences: c 6= d, c 6= a, c 6= b, d 6= a, d 6= b,
(∀x){P (x)↔x = a}. There exists a model M1 such that M1 |= D and

M1 |= a 6= b ∧ ¬P (b).

Therefore, a
M1

≁ b and a
D
≁ b. On the other hand, for any model N

of L such that N |= D, we have c
N
∼ d so c

D
∼ d. Then we obtain a

D
≁ b

and c
D
∼ d. In the interpreted language L, the names a and b have the

same denotation and different meanings, whilst the names c and d have
different denotations and the same meaning. ⊣

The open problem: find a definition of synonymity relation of names,
which will be an extension of the definition given in this article on any
elementary languages.
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