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TWO TYPES OF ONTOLOGICAL STRUCTURE:

Concepts Structures and Lattices

of Elementary Situations∗

Abstract. In 1982, Wolniewicz proposed a formal ontology of situations
based on the lattice of elementary situations (cf. [7, 8]). In [3], I constructed
some types of formal structure  Porphyrian Tree Structures (PTS), Con-
cepts Structures (CS) and the Structures of Individuals (U)  that formally
represent ontologically fundamental categories: species and genera (PTS),
concepts (CS) and individual beings (U) (cf. [3, 4]). From an ontological
perspective, situations and concepts belong to different categories. But,
unexpectedly, as I shall show, some variants of CS and Wolniewicz’s lattice
are similar. The main theorem states that a subset of a modified concepts
structure (called CS+) based on CS fulfils the axioms of Wolniewicz’ lattice.
Finally, I shall draw some philosophical conclusions and state some formal
facts.

Keywords: formal (formalized) ontology, ontology of situations, concepts
structure, lattice.

1. Preliminaries

Following [3] and [4], let us remind ourselves of some essential definitions.
Let Q be a set of cardinality ℵ0. Then for any subset X of Q, {0, 1}X

is the set of all functions from X into {0, 1}. We put:

CS :=
⋃

{{0, 1}X : X is a finite subset of Q}. (def CS)

∗ The first version of this work were presented during The Third Conference:
Non-Classical Logic. Theory and Applications, NCU, Toruń, September 16–18, 2010.
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All functions from CS will be called formal concepts (henceforth: con-

cepts). The function on ∅ (equal to ∅) will be denoted by c∅ and called
the root of CS.

Example. If we consider the qualities (according to their familiar defini-
tions): of being a number (q1), being a natural (q2), being divisible by 2
(q3), then the concepts of (a): even number and of (b): odd number, can
be defined by functions from X = {q1, q2, q3} into {0, 1} in the following
way:

even number odd number
q1 → 1 q1 → 1
q2 → 1 q2 → 1
q3 → 1 q3 → 0

Definition 1. A set CS with the relation ≤CS of inclusion on CS (in
short, 〈CS, ≤CS〉) will be called a concepts system.

Remark. For all sets X, Y ⊆ Q and all functions a : X → {0, 1} and
b : Y → {0, 1} (i.e. a, b ∈ CS): a ≤CS b iff a ⊆ b iff X ⊆ Y and
∀q∈X a(q) = b(q).

We obtain an expected result:

Fact 1. 〈CS, ≤CS〉 is a partially ordered set.

Let us extend the set CS to a set CS+. Our aim is to obtain a struc-
ture that will be parallel to Wolniewicz’s structure.

Definition 2. λCS := Q × {0, 1}.

Definition 3. CS+ :=
⋃

{{0, 1}X : X ⊆ Q} ∪ {λCS}.

Definition 4. Let ≤+ denote the inclusion on CS+. Then the pair
〈CS+, ≤+〉 is an extended concepts system. Of course, for any c ∈ CS+,
c ≤+ λCS.

Remark. CS+ includes all functions defined on any subset (not only
finite) of Q. We have designated elements of CS+ by c1, c2, c3, . . . or more
simply by a, b, c. Any function c defined on the finite set {q1, q2, . . . , qn}
into {0, 1} we depict as the set {q∗

1 , q∗
2 , . . . , q∗

n}, where ∗ ∈ {0, 1}; hence,
q∗

j means that the given function has value ∗ on qj ; functions defined on
Q are denoted by c∞, c′

∞, c′′
∞ etc. and called maximal concepts; instead

of ≤+ we will write: ≤.
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Definition 5. For any a, b ∈ CS+ concepts a and b are inconsistent

iff there exist pairs 〈q, n〉 ∈ a and 〈q, m〉 ∈ b such that 〈q, n〉 6= 〈q, m〉.
Otherwise, the concepts a and b are consistent.

Fact 2. For any a ∈ CS+ \ {c∅}: a and λCS are inconsistent.

Proof. Let a ∈ CS+ \ {c∅}. Of course, there exists 〈q, k〉 ∈ a. But, if
k 6= n and k, n ∈ {0, 1}, then 〈q, n〉 ∈ λCS. Hence, by Definition 5, a and
λCS are inconsistent. ⊣

Fact 3. For any a ∈ CS+: the concepts a and ∅ are consistent.

Fact 4. Let a, b ∈ CS+ and a and b be consistent. Then for any x ≤ a, x
and b are consistent.

Proof. Indeed, by absurdum, if x and b are inconsistent, then there
exist pairs 〈q, n〉 ∈ x and 〈q, m〉 ∈ b, for n 6= m and n, m ∈ {0, 1}.
But x ≤ a, so 〈q, n〉 ∈ a. In consequence: a and b are inconsistent;
contradiction. ⊣

Fact 5. 〈CS+, ≤〉 is a lattice, i.e. 〈CS+, ≤〉 is a poset and for any a, b ∈
CS+ there is a supremum and infimum of {a, b}.

Proof. It is easy to remark that the infimum of {a, b} is a ∩ b and
a ∩ b ∈ CS+. Next, the supremum of {a, b} is a ∪ b, if a and b are
consistent, and is λCS, if a and b are inconsistent. But λCS ∈ CS+ and
in the first case a ∪ b ∈ CS+, hence (CS+, ≤) is a lattice. ⊣

Now, I introduce two operations on CS+: a) an operation of consis-

tent join of concepts (&) and b) operation of common content of concepts

(#).

Definition 6. Let # denote the set-theoretical intersection, and for
a, b ∈ CS+, let

a & b =

{

a ∪ b, if a and b are consistent

λCS, otherwise.

By Fact 5, we have that &, #: CS+ × CS+ → CS+.

Remark. A counterpart of & is Wolniewicz’s operation ; (semicolon) on
sets of elementary situations and a counterpart of operation # is his
operation ! (exclamation mark). The former is the supremum in the
lattice, the later is the infimum (cf. [8]). In what follows, instead of ‘;’
and ‘!’ the signs ‘∨’ and ‘∧’ will be used as in [9].
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Fact 6. For any a ∈ CS+:

(& 1) a & λCS = λCS & a = λCS & λCS = λCS

(# 1) a # λCS = λCS # a = a
(# 2) λCS # λCS = λCS

Proof. The facts are evident by Definitions 2, 5 and 6. ⊣

Fact 7. 〈CS+, &, #〉 is a lattice.

Proof. Commutativity and associativity for & and # are established
by Definition 6, the commutativity and associativity of ∪, ∩, and finally,
by Fact 6. Let us prove absorption laws, i.e.:

(1) a &(a # b) = a,
(2) a #(a & b) = a.

We have to consider four cases:

1◦ a = λCS and b = λCS,
2◦ a = λCS and b ∈ CS+\{λCS},
3◦ a ∈ CS+\{λCS} and b = λCS,
4◦ a, b ∈ CS+\{λCS}.

Let us consider the law (1). In case of 1◦ and 2◦ (1) is fulfilled by (& 1),
(# 1), (# 2). In case 3◦ by (& 1), (# 1), (# 2). To prove (1) for 4◦, i.e.
if a and b are inconsistent, (1) is true by the absorption law for ∪ and ∩.
But if a and b are inconsistent, then a # b ⊆ a and then a &(a # b) = a.

Similarly, by (& 1), (# 1), (# 2) and the absorption law for ∩ and ∪,
we obtain (2). ⊣

2. Wolniewicz’s axioms for lattices of elementary situations

The axioms for the lattice of situations were given in [7] and [8]. Yet both
sets of axioms are different. The axiomatics presented below follows [8].

S.1. SE = SEC∪{o, λ}, where SEC is a (empty or non-empty) set of the
contingent situations, o is called an empty situation and λ(6= o)
the impossible one. SE is a universe of elementary situations.

S.2. ≤ is a partial order on SE such that o is its zero and λ is its unit.
Hence, for any x ∈ SE: o ≤ x ≤ λ.

S.3. For any A ⊆ SE there exists x ∈ SE such that: x = sup A.
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λCS

c′

∞
= {(q1, 1), (q2, 0), (q3, 0), (q4, 1), . . . } . . .

. . . {(q1, 1), (q2, 0), (q3, 0)} . . . . . . {(q1, 0), (q2, 0), (q3, 0)} . . .

. . . {(q3, 1), (q2, 1)} . . .

. . . {(q3, 1)} {(q2, 1)} {(q1, 1)} . . . . . . {(q1, 0)} {(q2, 0)} {(q3, 0)} . . .

∅

Figure 1. Diagram of fragment of the lattice CS+.

S.4. For any x, y, z ∈ SE: x ≤ y ≤ z ⇒ ∃y′∈SE(x = y ∧ y′ and
z = y ∨ y′).

S.5. For any x, y, z ∈ SE:
(a) (x ∨ y 6= λ and x ∨ z 6= λ) ⇒ (x ∨ y) ∧ (x ∨ z) ≤ x ∨ (y ∧ z),
(b) y ∨ z 6= λ ⇒ x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z).1

S.6. Let SE′ = SE\{λ}. Then: ∀x∈SE′∃w∈Max(SE′)x ≤ w.

The set Max(SE′) = {x ∈ SE : λ covers x} of maximal possible situa-
tions, where b covers a, for a 6= b, means that {x : a ≤ x ≤ b} = {a, b},
is called the logical space (SP) and its elements logical points or possible

worlds.

S.7. x, y ∈ SE: x 6= y ⇒ ∃w∈SP((x ≤ w and ∼ y ≤ w) or (∼ x ≤ w
and y ≤ w)).

S.8. Let SA = {x ∈ SE : x covers o}. Then: ∀x∈SE∃A⊆SA(x = sup A)
(so, the lattice SE is atomistic).

S.9. For any x, y ∈ SE: x ∨ y = λ ⇒ ∃a,a′∈SA(a ≤ x and a′ ≤ y and
a ∨ a′ = λ).

S.10. ∀x,y,z∈SA((x ∨ z = λ ∧ y ∨ z = λ) ⇒ (x = y ∨ x ∨ y = λ)).

1 The conditions (a) and (b) are equivalent in each lattice with the unit element
(see [1, 5]).
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Now, following Wolniewicz, to define logical dimensions of the space SP,
we redefine equivalence relation =

d
on SA.

Definition 7. For any x, y ∈ SA: (x =
d

y iff (x = y or x ∨ y = λ. The

classes of the partition SA/=
d

are the logical dimensions of SP, provided

SEC is not empty. Otherwise, SP = {o}, SA = {λ}, SA/=
d

= {{λ}}.

S.11. dim SP = n, where dim SP is the number of logical dimensions.

3. Concepts Structure CS+ and Wolniewicz’s structure

The axioms S.1–S.11 can be rewritten in the following way:

(REW) We take CS+ for SE with ∅ and λCS for o and λ. Partial order
in CS+ is the order given by Definition 4, operations & and # correspond
to Wolniewicz’s ∨ and ∧. Next, as maximal possible situations we will
consider the functions c∞, c′

∞, c′′
∞ from Q into {0, 1} and the set of

atoms CS+At in CS+ = Q × {0, 1}. Finally, I define the relation ≈
D

on

CS+At by the condition:

Definition 8. For any a, b∈CS+At: a ≈
D

b iff (a=b or a & b=λCS).

The equivalence relation ≈
D

is to be a counterpart of =
d

defined by

Wolniewicz.

3.1. CS+ fulfils S.1–S.10 and does not fulfil S.11

Theorem 1. The Axioms S.1–S.10 hold for the structure 〈CS+, &, #〉.

Proof. The truth of S.1–S.3 is evident (by (REW)).

To prove S.4 we show that:

for any a, b, c ∈ CS+ : a ≤ b ≤ c ⇒ ∃b′ ∈ CS+(a = b # b′ and c = b & b′).

Obviously, if a = b, we put b′ = c, but if b = c, we take b′ = a. The case
when a = b = c is trivial for then b′ = b.

Now, let us assume that a ≤ b ≤ c and a 6= b 6= c. If a = ∅, then we
put b′ = c \ b 6= ∅. Then a = ∅ = b # b′ and c = b & b′. If a 6= ∅, we
take b′ = (c \ b) ∪ a. So,

b # b′ = b ∩ ((c \ b) ∪ a) = (b ∩ (c \ b)) ∪ (b ∩ a) = ∅ ∪ a = a and

b & b′ = b ∪ ((c \ b) ∪ a) = c ∪ a = c.
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Ad S.5. For a, b, c ∈ CS+:

(a) (a & b 6= λCS ∧ a & c 6= λCS) ⇒ (a & b) #(a & c) ≤ a &(b # c),
(b) b & c 6= λCS ⇒ a #(b & c) ≤ (a # b) &(a # c).

In the case of (a) we assume the predecessor. Then a, b, c are concepts
and by the definitions of & and #:

(a & b) #(a & c) = (a ∪ b) ∩ (a ∪ c) = ((a ∪ b) ∩ c) ∪ ((a ∪ b) ∩ c) =

= a ∪ ((a ∩ c) ∪ (b ∩ c)) = (a ∪ (a ∩ c)) ∪ (b ∩ c) =

= a ∪ (b ∩ c) = a &(b # c).

The last equation follows from Fact 4. Hence, if (a & b) #(a & c) =
a &(b # c), then, by reflexivity of ≤: (a & b) #(a & c) ≤ a &(b # c).

To prove (b), we assume: b & c 6= λCS. But then: b 6= λCS, c 6= λCS,
b ∪ c (i.e. b & c) ∈ CS+\{λCS} and b and c are consistent. So, we have:

a #(b & c) = a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) = (a # b) &(a # c),

The last equality holds because the concepts: (a ∩ b) and (a ∩ c) are
consistent. Hence,

a #(b & c) ≤ (a # b) &(a # c).

Axiom S.6 is evident. If we take any concept c defined on a proper subset
Q’ of Q, then there exists a function c∞ on Q, such that c∞|DOM(c) = c.
Then, of course, c ≤ c∞. But if c = c∞, then c∞ ≤ c∞.

Ad S.7. We will show that: a, b ∈ CS+: a 6= b ⇒ ∃c∞ ∈ SP: ((x ≤ c∞

and ∼ y ≤ c∞) or (∼ x ≤ c∞ and y ≤ c∞)).
To prove it, let us consider two different non-empty concepts a and b.

Then, there exists 〈q, k〉 such that 〈q, k〉 ∈ a and 〈q, k〉 /∈ b (or vice versa).
Let us take into account a c∞ such that a ≤ c∞ and consider two cases:
(a) if b ≤ a, we can point to c′

∞ such that 〈q, m〉 ∈ c′
∞ for m 6= k; and

then b ≤ c′
∞ and ∼(a ≤ c′

∞); if ∼(b ≤ a), then there exists a c∞ such
that a ≤ c∞; but 〈q, k〉 ∈ c∞ and 〈q, k〉 /∈ b, so ∼(b ≤ c∞). This means
that the successor is true.

S.8. is trivial by the definition of concept and the definition of CS+At.

S.9. follows from the definition of concepts that are not inconsistent.

Ad S.10. We have to prove that for any a, b, c ∈ CS+At((a & c = λCS

and b & c = λCS) ⇒ (a = b or a & b = λCS)).
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We remark that for an atom {〈q,∗ 〉} there exists only one atom in-
consistent with it. It is an atom of the form {〈q, −∗〉}, where −∗ = 1(0),
if ∗ = 0(1). So, if x & y = λCS and y & z = λCS, then x and y are
inconsistent and z = x. ⊣

3.2. A fragment of CS+ fulfils S.1–S.11

Theorem 2. 〈CS+, &, #〉 has an infinite number of logical dimensions
(dim SP = ℵ0).

Proof. It is easy to notice that any dimension has two elements (of the
form: {q1

i , q0
i }). Hence, dim SP = ℵ0, because the cardinal number of Q

is ℵ0. ⊣

It appears that a fragment of CS+ fulfils the axiom S.11. Namely,
the following theorem is true.

Theorem 3. Let X ( Q, card(X) < ℵ0 and AtCS(FIN) = X × {0, 1}.

The set CS+
FIN (with operations &, #) such that:

(1) AtCS(FIN) ⊆ CS+
FIN,

(2) CS+
FIN is closed on & and #,

is a lattice fulfilling S.1–S.11.

Remark. Functions defined on the set X are maximal elements of CS+
FIN.

Proof of Theorem 3. Let us show that S.11 holds. Indeed, consid-
ering the equivalence relation we obtain card(X) dimensions, card(X) <
ℵ0. In turn, axioms S.1–S.10 can be considered as particular cases of
Theorem 1. ⊣

4. Conclusions and perspectives

1. The investigations were presented in the simplest form possible. The
case of CS+, where the partial functions on X ⊆ Q into {0, 1} are con-
sidered, corresponds to Wolniewicz’s lattice for Wittgenstein’s atomism
(each dimension has then 2 elements). It is evident, however, that CS
structures can be extended to the case where functions on X have values
from the set {1, . . . , k}, for k ∈ ω (or even from some infinite set). At
the present time we have k inconsistent elements in each dimension.
If we, additionally, reject  in spite of Wolniewicz’s suggestion  axiom
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S.11, then we can speak of lattices with infinite width and length. A CS
structure is suitable for this kind of lattice.

2. Crossing the boundary between 2-element dimensions to k-element
ones causes the change of paradigm connected with grasping given prop-
erty (feature or quality). If card(D) = 2, then we obtain the so-called
Meinongian case (let us remind ourselves that Meinong proposed the
concept of a complement property non-P besides the property P , for
example: redness and non-redness). The so-called complete objects are
characterized by the condition: for any property P , either the object
has P or has non-P . In my proposal possessing P means that the value
of property P is 1 and possessing non-P amounts to 0. The matter is
discussed by Kaczmarek in [2, 3, 4]. In turn, the case when the functions
from CS+ have the value from {1, . . . , k}, is present in information sys-
tems (cf. Pawlak [6]). Pawlak proposes to replace the concept of a prop-
erty by the concept of an attribute (for example, age, growth, colour)
and to bind with any attribute a a set of ka values (ka ∈ ω, ka  1). I
propose to call this approach an attributive paradigm and I investigate
it elsewhere. It is interesting and fruitful that the set of information
and partial information with an order on that set is isomorphic to a
fragment of a set CS+(k) containing all functions from subsets of Q into
{1, . . . , k}. So, I present the following facts:

Fact 8. (1) Let k  2, λCS = Q×{1, . . . , k}, CS+(k) =
⋃

{{1, . . . , k}X :
X ⊆ Q}∪{λCS} and ≤CS be the inclustion on the set CS+(k). Then
〈CS+(k), ≤CS〉 is a lattice.

(2) Let S = 〈O, A, V, ρ〉 be an information system, where O is a finite
set of objects, A is a finite set of attributes, V =

⋃

a∈A Va, where
{Va}a∈A is an indexed family of sets, and ρ is function on O × A
into V , such that ρ(x, a) ∈ Va for any x ∈ O and a ∈ A. Let us
define a set Inf∗(S) =

⋃

{{0, 1}B : B ⊆ A} of all information and
partial information of S, the number k = max(card Va) for a ∈ A
and ≤inf is the inclusion on the set Inf∗(S). Then there exists a set
CS+

FIN(k) ⊆ CS+(k) such that 〈CS+
FIN(k), ≤CS〉 and 〈Inf∗(S), ≤inf〉

are isomorphic.

Fact 9. Consider CS+ given in Definition 3 and the lattice CS
+ =

〈CS+, &, #,∅, λCS〉. Let SE = 〈SE, ∨, ∧, o, λ〉 be a lattice of elementary
situations fulfilling S.1–S.6, S.8 and S.11, such that for any dimension
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d: card(d) = 2. There exists a sublattice CSA of CS
+ such that CSA

and SE are isomorphic.

In my opinion, by proving these facts we have shown that mutual
relations between certain aspects of formal ontology and informatics do
exist.
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