Logic and Logical Philosophy Volume 21 (2012), 165–174 DOI: 10.12775/LLP.2012.009

Janusz Kaczmarek

TWO TYPES OF ONTOLOGICAL STRUCTURE: Concepts Structures and Lattices of Elementary Situations*

Abstract. In 1982, Wolniewicz proposed a formal ontology of situations based on the lattice of elementary situations (cf. [7, 8]). In [3], I constructed some types of formal structure – Porphyrian Tree Structures (PTS), Concepts Structures (CS) and the Structures of Individuals (U) – that formally represent ontologically fundamental categories: species and genera (PTS), concepts (CS) and individual beings (U) (cf. [3, 4]). From an ontological perspective, situations and concepts belong to different categories. But, unexpectedly, as I shall show, some variants of CS and Wolniewicz's lattice are similar. The main theorem states that a subset of a modified concepts structure (called CS^+) based on CS fulfils the axioms of Wolniewicz' lattice. Finally, I shall draw some philosophical conclusions and state some formal facts.

Keywords: formal (formalized) ontology, ontology of situations, concepts structure, lattice.

1. Preliminaries

Following [3] and [4], let us remind ourselves of some essential definitions.

Let Q be a set of cardinality \aleph_0 . Then for any subset X of Q, $\{0, 1\}^X$ is the set of all functions from X into $\{0, 1\}$. We put:

 $CS := \bigcup \{\{0, 1\}^X : X \text{ is a finite subset of } Q \}.$ (def CS)

^{*} The first version of this work were presented during The Third Conference: Non-Classical Logic. Theory and Applications, NCU, Toruń, September 16–18, 2010.

All functions from CS will be called *formal concepts* (henceforth: *concepts*). The function on \emptyset (equal to \emptyset) will be denoted by c_{\emptyset} and called the *root of* CS.

Example. If we consider the qualities (according to their familiar definitions): of being a number (q_1) , being a natural (q_2) , being divisible by 2 (q_3) , then the concepts of (a): even number and of (b): odd number, can be defined by functions from $X = \{q_1, q_2, q_3\}$ into $\{0, 1\}$ in the following way:

even number	odd number
$q_1 \rightarrow 1$	$q_1 \rightarrow 1$
$q_2 \rightarrow 1$	$q_2 \rightarrow 1$
$q_3 \rightarrow 1$	$q_3 \rightarrow 0$

DEFINITION 1. A set CS with the relation \leq_{CS} of inclusion on CS (in short, $\langle \text{CS}, \leq_{\text{CS}} \rangle$) will be called a *concepts system*.

Remark. For all sets $X, Y \subseteq Q$ and all functions $a: X \to \{0, 1\}$ and $b: Y \to \{0, 1\}$ (i.e. $a, b \in CS$): $a \leq_{CS} b$ iff $a \subseteq b$ iff $X \subseteq Y$ and $\forall_{q \in X} a(q) = b(q)$.

We obtain an expected result:

FACT 1. (CS, \leq_{CS}) is a partially ordered set.

Let us extend the set CS to a set CS^+ . Our aim is to obtain a structure that will be parallel to Wolniewicz's structure.

DEFINITION 2. $\lambda_{\text{CS}} := Q \times \{0, 1\}.$

DEFINITION 3. $\mathrm{CS}^+ := \bigcup \{\{0,1\}^X : X \subseteq Q\} \cup \{\lambda_{\mathrm{CS}}\}.$

DEFINITION 4. Let \leq_+ denote the inclusion on CS^+ . Then the pair $\langle CS^+, \leq_+ \rangle$ is an *extended concepts system*. Of course, for any $c \in CS_+$, $c \leq_+ \lambda_{CS}$.

Remark. CS^+ includes all functions defined on any subset (not only finite) of Q. We have designated elements of CS^+ by c_1, c_2, c_3, \ldots or more simply by a, b, c. Any function c defined on the finite set $\{q_1, q_2, \ldots, q_n\}$ into $\{0, 1\}$ we depict as the set $\{q_1^*, q_2^*, \ldots, q_n^*\}$, where $* \in \{0, 1\}$; hence, q_j^* means that the given function has value * on q_j ; functions defined on Q are denoted by $c_{\infty}, c'_{\infty}, c''_{\infty}$ etc. and called *maximal concepts*; instead of \leq_+ we will write: \leq .

DEFINITION 5. For any $a, b \in CS^+$ concepts a and b are *inconsistent* iff there exist pairs $\langle q, n \rangle \in a$ and $\langle q, m \rangle \in b$ such that $\langle q, n \rangle \neq \langle q, m \rangle$. Otherwise, the concepts a and b are *consistent*.

FACT 2. For any $a \in CS^+ \setminus \{c_{\varnothing}\}$: a and λ_{CS} are inconsistent.

PROOF. Let $a \in CS^+ \setminus \{c_{\varnothing}\}$. Of course, there exists $\langle q, k \rangle \in a$. But, if $k \neq n$ and $k, n \in \{0, 1\}$, then $\langle q, n \rangle \in \lambda_{CS}$. Hence, by Definition 5, a and λ_{CS} are inconsistent.

FACT 3. For any $a \in CS^+$: the concepts a and \emptyset are consistent.

FACT 4. Let $a, b \in CS^+$ and a and b be consistent. Then for any $x \leq a, x$ and b are consistent.

PROOF. Indeed, by *absurdum*, if x and b are inconsistent, then there exist pairs $\langle q, n \rangle \in x$ and $\langle q, m \rangle \in b$, for $n \neq m$ and $n, m \in \{0, 1\}$. But $x \leq a$, so $\langle q, n \rangle \in a$. In consequence: a and b are inconsistent; contradiction.

FACT 5. (CS^+, \leq) is a lattice, i.e. (CS^+, \leq) is a poset and for any $a, b \in CS^+$ there is a supremum and infimum of $\{a, b\}$.

PROOF. It is easy to remark that the infimum of $\{a, b\}$ is $a \cap b$ and $a \cap b \in CS^+$. Next, the supremum of $\{a, b\}$ is $a \cup b$, if a and b are consistent, and is λ_{CS} , if a and b are inconsistent. But $\lambda_{CS} \in CS^+$ and in the first case $a \cup b \in CS^+$, hence (CS^+, \leq) is a lattice.

Now, I introduce two operations on CS^+ : a) an operation of *consistent join of concepts* (&) and b) operation of *common content of concepts* (#).

DEFINITION 6. Let # denote the set-theoretical intersection, and for $a, b \in CS^+$, let

$$a \& b = \begin{cases} a \cup b, & \text{if } a \text{ and } b \text{ are consistent} \\ \lambda_{CS}, & \text{otherwise.} \end{cases}$$

By Fact 5, we have that &, $\#: \mathrm{CS}^+ \times \mathrm{CS}^+ \to \mathrm{CS}^+$.

Remark. A counterpart of & is Wolniewicz's operation ; (semicolon) on sets of elementary situations and a counterpart of operation # is his operation ! (exclamation mark). The former is the supremum in the lattice, the later is the infimum (cf. [8]). In what follows, instead of ';' and '!' the signs ' \lor ' and ' \land ' will be used as in [9].

 \neg

JANUSZ KACZMAREK

FACT 6. For any $a \in CS^+$:

PROOF. The facts are evident by Definitions 2, 5 and 6.

FACT 7. $\langle CS^+, \&, \# \rangle$ is a lattice.

PROOF. Commutativity and associativity for & and # are established by Definition 6, the commutativity and associativity of \cup , \cap , and finally, by Fact 6. Let us prove absorption laws, i.e.:

(1) a & (a # b) = a,(2) a # (a & b) = a.

We have to consider four cases:

 $\begin{array}{ll} 1^{\circ} & a = \lambda_{\rm CS} \text{ and } b = \lambda_{\rm CS}, \\ 2^{\circ} & a = \lambda_{\rm CS} \text{ and } b \in {\rm CS}^+ \backslash \{\lambda_{\rm CS}\}, \\ 3^{\circ} & a \in {\rm CS}^+ \backslash \{\lambda_{\rm CS}\} \text{ and } b = \lambda_{\rm CS}, \\ 4^{\circ} & a, b \in {\rm CS}^+ \backslash \{\lambda_{\rm CS}\}. \end{array}$

Let us consider the law (1). In case of 1° and 2° (1) is fulfilled by (& 1), (# 1), (# 2). In case 3° by (& 1), (# 1), (# 2). To prove (1) for 4° , i.e. if *a* and *b* are inconsistent, (1) is true by the absorption law for \cup and \cap . But if *a* and *b* are inconsistent, then $a \# b \subseteq a$ and then a & (a # b) = a.

Similarly, by (& 1), (# 1), (# 2) and the absorption law for \cap and \cup , we obtain (2).

2. Wolniewicz's axioms for lattices of elementary situations

The axioms for the lattice of situations were given in [7] and [8]. Yet both sets of axioms are different. The axiomatics presented below follows [8].

- **S.1.** SE = SEC \cup { o, λ }, where SEC is a (empty or non-empty) set of the contingent situations, o is called an empty situation and $\lambda \neq o$ the impossible one. SE is a universe of *elementary situations*.
- **S.2.** \leq is a partial order on SE such that *o* is its zero and λ is its unit. Hence, for any $x \in$ SE: $o \leq x \leq \lambda$.
- **S.3.** For any $A \subseteq SE$ there exists $x \in SE$ such that: $x = \sup A$.

168

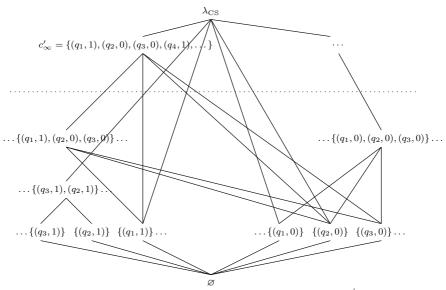


Figure 1. Diagram of fragment of the lattice CS^+ .

- **S.4.** For any $x, y, z \in SE$: $x \leq y \leq z \Rightarrow \exists_{y' \in SE} (x = y \land y')$ and $z = y \lor y'$.
- **S.5**. For any $x, y, z \in SE$:
 - (a) $(x \lor y \neq \lambda \text{ and } x \lor z \neq \lambda) \Rightarrow (x \lor y) \land (x \lor z) \le x \lor (y \land z),$
 - (b) $y \lor z \neq \lambda \Rightarrow x \land (y \lor z) \leq (x \land y) \lor (x \land z).^1$
- **S.6.** Let $SE' = SE \setminus \{\lambda\}$. Then: $\forall_{x \in SE'} \exists_{w \in Max(SE')} x \leq w$.

The set $Max(SE') = \{x \in SE : \lambda \text{ covers } x\}$ of maximal possible situations, where *b* covers *a*, for $a \neq b$, means that $\{x : a \leq x \leq b\} = \{a, b\}$, is called the *logical space* (SP) and its elements *logical points* or *possible worlds*.

- **S.7.** $x, y \in SE: x \neq y \Rightarrow \exists_{w \in SP} ((x \leq w \text{ and } \sim y \leq w) \text{ or } (\sim x \leq w \text{ and } y \leq w)).$
- **S.8.** Let $SA = \{x \in SE : x \text{ covers } o\}$. Then: $\forall_{x \in SE} \exists_{A \subseteq SA} (x = \sup A)$ (so, the lattice SE is *atomistic*).
- **S.9.** For any $x, y \in SE$: $x \lor y = \lambda \Rightarrow \exists_{a,a' \in SA} (a \le x \text{ and } a' \le y \text{ and } a \lor a' = \lambda).$

 $\mathbf{S.10.} \ \forall_{x,y,z \in \mathrm{SA}}((x \lor z = \lambda \land y \lor z = \lambda) \Rightarrow (x = y \lor x \lor y = \lambda)).$

¹ The conditions (a) and (b) are equivalent in each lattice with the unit element (see [1, 5]).

JANUSZ KACZMAREK

Now, following Wolniewicz, to define logical dimensions of the space SP, we redefine equivalence relation = on SA.

DEFINITION 7. For any $x, y \in SA$: $(x = y \text{ iff } (x = y \text{ or } x \lor y = \lambda)$. The classes of the partition $SA/_{=}$ are the *logical dimensions* of SP, provided SEC is not empty. Otherwise, $SP = \{o\}$, $SA = \{\lambda\}$, $SA/_{=} = \{\{\lambda\}\}$.

S.11. dim SP = n, where dim SP is the number of logical dimensions.

3. Concepts Structure CS⁺ and Wolniewicz's structure

The axioms **S.1–S.11** can be rewritten in the following way:

(REW) We take CS⁺ for SE with \emptyset and $\lambda_{\rm CS}$ for o and λ . Partial order in CS⁺ is the order given by Definition 4, operations & and # correspond to Wolniewicz's \lor and \land . Next, as maximal possible situations we will consider the functions c_{∞} , c'_{∞} , c''_{∞} from Q into $\{0,1\}$ and the set of atoms CS⁺At in CS⁺ = $Q \times \{0,1\}$. Finally, I define the relation \approx_{D} on CS⁺At by the condition:

DEFINITION 8. For any $a, b \in CS^+At$: $a \approx b_D \text{ iff } (a = b \text{ or } a \& b = \lambda_{CS}).$

The equivalence relation \approx_D is to be a counterpart of $=_d$ defined by Wolniewicz.

3.1. CS⁺ fulfils S.1–S.10 and does not fulfil S.11

THEOREM 1. The Axioms S.1–S.10 hold for the structure $\langle CS^+, \&, \# \rangle$. PROOF. The truth of S.1–S.3 is evident (by (REW)).

To prove **S.4** we show that:

for any $a, b, c \in CS^+$: $a \le b \le c \Rightarrow \exists b' \in CS^+ (a = b \# b' \text{ and } c = b \& b')$. Obviously, if a = b, we put b' = c, but if b = c, we take b' = a. The case when a = b = c is trivial for then b' = b.

Now, let us assume that $a \leq b \leq c$ and $a \neq b \neq c$. If $a = \emptyset$, then we put $b' = c \setminus b \neq \emptyset$. Then $a = \emptyset = b \# b'$ and c = b & b'. If $a \neq \emptyset$, we take $b' = (c \setminus b) \cup a$. So,

$$b \# b' = b \cap ((c \setminus b) \cup a) = (b \cap (c \setminus b)) \cup (b \cap a) = \emptyset \cup a = a \text{ and} \\ b \& b' = b \cup ((c \setminus b) \cup a) = c \cup a = c.$$

Ad **S.5**. For $a, b, c \in CS^+$:

(a)
$$(a \& b \neq \lambda_{\rm CS} \land a \& c \neq \lambda_{\rm CS}) \Rightarrow (a \& b) \# (a \& c) \le a \& (b \# c),$$

(b) $b \& c \neq \lambda_{CS} \Rightarrow a \# (b \& c) \le (a \# b) \& (a \# c).$

In the case of (a) we assume the predecessor. Then a, b, c are concepts and by the definitions of & and #:

$$(a \& b) #(a \& c) = (a \cup b) \cap (a \cup c) = ((a \cup b) \cap c) \cup ((a \cup b) \cap c) = = a \cup ((a \cap c) \cup (b \cap c)) = (a \cup (a \cap c)) \cup (b \cap c) = = a \cup (b \cap c) = a \& (b # c).$$

The last equation follows from Fact 4. Hence, if (a & b) # (a & c) = a & (b # c), then, by reflexivity of $\leq : (a \& b) \# (a \& c) \leq a \& (b \# c)$.

To prove (b), we assume: $b \& c \neq \lambda_{\rm CS}$. But then: $b \neq \lambda_{\rm CS}$, $c \neq \lambda_{\rm CS}$, $b \cup c$ (i.e. b & c) $\in {\rm CS}^+ \setminus \{\lambda_{\rm CS}\}$ and b and c are consistent. So, we have:

$$a \# (b \& c) = a \cap (b \cup c) = (a \cap b) \cup (a \cap c) = (a \# b) \& (a \# c),$$

The last equality holds because the concepts: $(a \cap b)$ and $(a \cap c)$ are consistent. Hence,

$$a \# (b \& c) \le (a \# b) \& (a \# c).$$

Axiom **S.6** is evident. If we take any concept c defined on a proper subset Q' of Q, then there exists a function c_{∞} on Q, such that $c_{\infty}|_{\text{DOM}(c)} = c$. Then, of course, $c \leq c_{\infty}$. But if $c = c_{\infty}$, then $c_{\infty} \leq c_{\infty}$.

Ad **S.7**. We will show that: $a, b \in CS^+$: $a \neq b \Rightarrow \exists c_{\infty} \in SP$: $((x \leq c_{\infty} and \sim y \leq c_{\infty}) \text{ or } (\sim x \leq c_{\infty} and y \leq c_{\infty})).$

To prove it, let us consider two different non-empty concepts a and b. Then, there exists $\langle q, k \rangle$ such that $\langle q, k \rangle \in a$ and $\langle q, k \rangle \notin b$ (or vice versa). Let us take into account a c_{∞} such that $a \leq c_{\infty}$ and consider two cases: (a) if $b \leq a$, we can point to c'_{∞} such that $\langle q, m \rangle \in c'_{\infty}$ for $m \neq k$; and then $b \leq c'_{\infty}$ and $\sim (a \leq c'_{\infty})$; if $\sim (b \leq a)$, then there exists a c_{∞} such that $a \leq c_{\infty}$; but $\langle q, k \rangle \in c_{\infty}$ and $\langle q, k \rangle \notin b$, so $\sim (b \leq c_{\infty})$. This means that the successor is true.

S.8. is trivial by the definition of concept and the definition of CS^+At .

S.9. follows from the definition of concepts that are not inconsistent.

Ad **S.10**. We have to prove that for any $a, b, c \in CS^+At((a \& c = \lambda_{CS}) and b \& c = \lambda_{CS}) \Rightarrow (a = b \text{ or } a \& b = \lambda_{CS})).$

We remark that for an atom $\{\langle q, * \rangle\}$ there exists only one atom inconsistent with it. It is an atom of the form $\{\langle q, -* \rangle\}$, where -* = 1(0), if * = 0(1). So, if $x \& y = \lambda_{\rm CS}$ and $y \& z = \lambda_{\rm CS}$, then x and y are inconsistent and z = x.

3.2. A fragment of CS⁺ fulfils S.1–S.11

THEOREM 2. $(CS^+, \&, \#)$ has an infinite number of logical dimensions $(\dim SP = \aleph_0)$.

PROOF. It is easy to notice that any dimension has two elements (of the form: $\{q_i^1, q_i^0\}$). Hence, dim SP = \aleph_0 , because the cardinal number of Q is \aleph_0 .

It appears that a fragment of CS^+ fulfils the axiom **S.11**. Namely, the following theorem is true.

THEOREM 3. Let $X \subsetneq Q$, $\operatorname{card}(X) < \aleph_0$ and $\operatorname{At}_{\operatorname{CS}(\operatorname{FIN})} = X \times \{0, 1\}$. The set $\operatorname{CS}_{\operatorname{FIN}}^+$ (with operations &, #) such that:

- (1) $\operatorname{At}_{\operatorname{CS}(\operatorname{FIN})} \subseteq \operatorname{CS}_{\operatorname{FIN}}^+$,
- (2) CS^+_{FIN} is closed on & and #,

is a lattice fulfilling **S.1–S.11**.

Remark. Functions defined on the set X are maximal elements of CS_{FIN}^+ .

PROOF OF THEOREM 3. Let us show that **S.11** holds. Indeed, considering the equivalence relation we obtain $\operatorname{card}(X)$ dimensions, $\operatorname{card}(X) < \aleph_0$. In turn, axioms **S.1–S.10** can be considered as particular cases of Theorem 1.

4. Conclusions and perspectives

1. The investigations were presented in the simplest form possible. The case of CS^+ , where the partial functions on $X \subseteq Q$ into $\{0, 1\}$ are considered, corresponds to Wolniewicz's lattice for Wittgenstein's atomism (each dimension has then 2 elements). It is evident, however, that CS structures can be extended to the case where functions on X have values from the set $\{1, \ldots, k\}$, for $k \in \omega$ (or even from some infinite set). At the present time we have k inconsistent elements in each dimension. If we, additionally, reject — in spite of Wolniewicz's suggestion — axiom

S.11, then we can speak of lattices with infinite width and length. A CS structure is suitable for this kind of lattice.

2. Crossing the boundary between 2-element dimensions to k-element ones causes the change of paradigm connected with grasping given property (feature or quality). If card(D) = 2, then we obtain the so-called Meinongian case (let us remind ourselves that Meinong proposed the concept of a complement property non-P besides the property P, for example: redness and non-redness). The so-called complete objects are characterized by the condition: for any property P, either the object has P or has non-P. In my proposal possessing P means that the value of property P is 1 and possessing non-P amounts to 0. The matter is discussed by Kaczmarek in [2, 3, 4]. In turn, the case when the functions from CS^+ have the value from $\{1, \ldots, k\}$, is present in information systems (cf. Pawlak [6]). Pawlak proposes to replace the concept of a property by the concept of an attribute (for example, age, growth, colour) and to bind with any attribute a set of k_a values $(k_a \in \omega, k_a \ge 1)$. I propose to call this approach an *attributive paradigm* and I investigate it elsewhere. It is interesting and fruitful that the set of information and partial information with an order on that set is isomorphic to a fragment of a set $CS^+(k)$ containing all functions from subsets of Q into $\{1, \ldots, k\}$. So, I present the following facts:

- FACT 8. (1) Let $k \ge 2$, $\lambda_{\rm CS} = Q \times \{1, \ldots, k\}$, $\operatorname{CS}^+(k) = \bigcup \{\{1, \ldots, k\}^X : X \subseteq Q\} \cup \{\lambda_{\rm CS}\}$ and $\leq_{\rm CS}$ be the inclusion on the set $\operatorname{CS}^+(k)$. Then $\langle \operatorname{CS}^+(k), \leq_{\rm CS} \rangle$ is a lattice.
- (2) Let $S = \langle O, A, V, \rho \rangle$ be an information system, where O is a finite set of objects, A is a finite set of attributes, $V = \bigcup_{a \in A} V_a$, where $\{V_a\}_{a \in A}$ is an indexed family of sets, and ρ is function on $O \times A$ into V, such that $\rho(x, a) \in V_a$ for any $x \in O$ and $a \in A$. Let us define a set $\operatorname{Inf}^*(S) = \bigcup \{\{0, 1\}^B : B \subseteq A\}$ of all information and partial information of S, the number $k = \max(\operatorname{card} V_a)$ for $a \in A$ and \leq_{\inf} is the inclusion on the set $\operatorname{Inf}^*(S)$. Then there exists a set $\operatorname{CS}^+_{\operatorname{FIN}}(k) \subseteq \operatorname{CS}^+(k)$ such that $\langle \operatorname{CS}^+_{\operatorname{FIN}}(k), \leq_{\operatorname{CS}} \rangle$ and $\langle \operatorname{Inf}^*(S), \leq_{\inf} \rangle$ are isomorphic.

FACT 9. Consider CS^+ given in Definition 3 and the lattice $CS^+ = \langle CS^+, \&, \#, \emptyset, \lambda_{CS} \rangle$. Let $SE = \langle SE, \lor, \land, o, \lambda \rangle$ be a lattice of elementary situations fulfilling S.1–S.6, S.8 and S.11, such that for any dimension

d: card(d) = 2. There exists a sublattice CS_A of CS^+ such that CS_A and SE are isomorphic.

In my opinion, by proving these facts we have shown that mutual relations between certain aspects of formal ontology and informatics do exist.

References

- Hawranek, J., and J. Zygmunt, "Some elementary properties of conditionally distributive lattices", *Bulletin of the Section of Logic* 12, 3 (1983): 117–120.
- [2] Kaczmarek, J., "Positive and negative Properties. A Logical Interpretation", Bulletin of the Section of Logic 32, 4 (2003): 179–189.
- [3] Kaczmarek, J., Indywidua. Idee. Pojęcia. Badania z zakresu ontologii sformalizowanej (Individuals. Ideas. Concepts. Investigations on formalized ontology), Wyd. UL, Łódź 2008.
- [4] Kaczmarek, J., "What is a formalized ontology today? An example of IIC", Bulletin of the Section of Logic 37, 3/4 (2008): 233–244.
- [5] Nasieniewski, M., and A. Pietruszczak, "An elementary proof of equivalence of conditions in definition of conditionally distributive lattices", *Bulletin of* the Section of Logic 26, 4 (1997): 193–196.
- [6] Pawlak, Z., "Information systems theoretical foundations", Information systems 6, 3 (1981): 205–218.
- [7] Wolniewicz, B., "A formal ontology of situations", Studia Logica 41, 4 (1982): 381–413.
- [8] Wolniewicz, B., Ontologia sytuacji (Ontology of Situations), PWN, Warszawa, 1985.
- [9] Wolniewicz, B., Logic and Metaphysics. Studies in Wittgenstein's Ontology of Facts, Biblioteka Myśli Semiotycznej, no 45, J. Pelc (ed.), Warszawa, 1999.

JANUSZ KACZMAREK Lodz University Department of Logic ul. Kopcińskiego 16/18 87-100 Łódź, Poland kaczmarek@filozof.uni.lodz.pl