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Abstract. We prove two theorems concerning expressive power of relational

and functional languages. The theorems have interesting consequences for

the history of philosophy and logic.
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1. Introduction

It is a quite common view that the transition to modern logic, made at
the turn of the XX century, was associated with the increase in the ex-
pressive power of language through the inclusion of, among other things,
judgments about relationships. It is believed that the transition to the
language and the logic of relations was a natural step, since it allows an
opportunity to give a more complete description of the world around us.
It enriched not only the logic itself, but also the overall development of
science.

This view was shared by R. Carnap, when he wrote in [1] that the re-
striction only to predicative sentences fatally affected areas lying outside
the sphere of logic, that Russell was right explaining some of the errors
of metaphysics by shortcomings of logic, and that any substantive meta-
physics can be explained as based on this error, which allegedly caused a
long delay in the development of physics, giving rise to substantive view
of matter.

We show that, contrary to the received view, the language of proper-
ties (one-place relations) and functions is sufficient for the expression of
the same mathematical and physical ideas, which are usually presented
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in terms of multi-place relations. We must conclude that, from a logi-
cal point of view, there was no need to abandon the subject-predicate
language and substantive metaphysics.

2. Basic notions

If S is a theory in a language L, then A ∈ L means that the formula A
belongs to L, and S ⊢ A means, that the formula A is provable in the
theory S.

We say that a theory S1 is subtheory of S2 (in short: S1 ⊆ S2) if and
only if L1 ⊆ L2 and from S1 ⊢ A it follows S2 ⊢ A.

Let S1 and S2 be two theories in languages L1 and L2, respectively.
A recursive function ϕ : L1 → L2 is called operation, which embeds S1

into S2, if and only if ϕ satisfies the following condition for any A ∈ L1:

S1 ⊢ A ⇐⇒ S2 ⊢ ϕ(A).

We say that a theory S1 is embeddable in a theory S2 if and only if there
is an operation which embeds S1 in S2. Theories S1 and S2 are mutually

embeddable if and only if S1 is embeddable in S2, and S2 is embeddable
into S1. Relation of being mutually embeddable is reflexive, symmetric
and transitive [4].

Lemma 1. Let S1 ⊆ S2 and there exists a recursive function φ : L2 → L1

which satisfies the following conditions:

(i) if A ∈ L2 and S2 ⊢ A, then S1 ⊢ φ(A),
(ii) if A ∈ L1 and S1 ⊢ φ(A), then S1 ⊢ A,

(iii) if A ∈ L2 and S2 ⊢ φ(A), then S2 ⊢ A.

Then

1. the identity function ι(A) = A embeds S1 in S2,

2. the function φ embeds S2 in S1,

Thus, the theories S1 and S2 are mutually embeddable.

Proof. 1. For any A ∈ L1: if S1 ⊢ A, i.e. S1 ⊢ ι(A), then S2 ⊢ ι(A), by
S1 ⊆ S2. Reversely, if S2 ⊢ ι(A), i.e. S2 ⊢ A, then S1 ⊢ φ(A), by (i). So
S1 ⊢ A, by (ii).

2. For any A ∈ L2: if S2 ⊢ A, then S1 ⊢ φ(A), by (i). Reversely, if
S1 ⊢ φ(A), then S2 ⊢ φ(A), S1 ⊆ S2. Hence S2 ⊢ A, by (iii). ⊣
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3. The main result

Let T1 be an axiomatic first-order theory in a language L1 with equality
such that T1 ⊢ ¬ a = b, for some closed terms a and b of L1. Then for
any n-ary predicate symbol P of L1, the following formulas are provable
in T1:

∃y((P (x) ∧ y = a) ∨ (¬P (x) ∧ y = b))

[((P (x) ∧ y = a) ∨ (¬P (x) ∧ y = b)) ∧ ((P (x) ∧ z = a)
∨ (¬P (x) ∧ z = b))] ⊃ y = z

where x is an n-tuple of pairwise distinct variables, and different from
the variable y.

The above facts allow us to construct the theory T2, obtained by
expanding the language L1 to L2 by adding for each n-placed predicate
symbol P a new functional symbol fP and a new axiom

(P (x1, ..., xn) ∧ fP (x1, ..., xn) = a) ∨ (¬P (x1, ..., xn) ∧ fP (x1, ..., xn) = b)

The reason for the introduction of new functional symbols is Theo-
rem 2.28 from Mendelson [3]. For each functional symbol fP the fol-
lowing formulas are provable in T2:

fP (x1, ..., xn) = a ∨ fP (x1, ..., xn) = b (†)

P (x1, ..., xn) ≡ fP (x1, ..., xn) = a (‡)

From Theorem 2.28 of Mendelson [3] and Theorem 42 of Kleene [2]
we obtain the following two facts.

Lemma 2. T1 ⊆ T2 and T2 is a conservative extension of T1. So for any

A ∈ L1: T1 ⊢ A iff T2 ⊢ A.

Lemma 3. There exists a recursive function φ : L2 → L1 such that:

(1) if A ∈ L2 then T2 ⊢ A ≡ φ(A),
(2) if A ∈ L2 and T2 ⊢ A, then T1 ⊢ φ(A).

Lemma 4. Theories T1 and T2 are mutually embeddable.

Proof. Since T1 ⊆ T2, it suffices to find a recursive function satisfying
the conditions of Lemma 1. We show that the mapping φ from Lemma 3
possesses the required properties.
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Indeed, by Lemma 3(2), we obtain the condition (i) of Lemma 1.

For (ii): if A ∈ L1 and T1 ⊢ φ(A), then T2 ⊢ φ(A), by T1 ⊆ T2.
Hence T2 ⊢ A, by Lemma 3(1). Thus T1 ⊢ A, by Lemma 2.

For (iii): if A ∈ L2 and T2 ⊢ φ(A), then T2 ⊢ A, by Lemma 3(2). ⊣

Define the language L3, which is obtained from the language L2 by
deleting all predicate symbols other than the symbol of equality. Next,
we define the following function α : L2 → L3 such that:

• α(t1 = t2) = pt1 = t2q,
• α(P (t1, ..., tn)) = pfP (t1, ..., tn) = aq, and P is different from ‘=’,
• α(¬A) = p¬α(A)q,
• α(A ◦B) = p(α(A) ◦ α(B))q, where ◦ ∈ {∧,∨,⊃,≡}
• α(QxB) = pQxα(B)q, where Q ∈ {∀, ∃}.

We define the theory T3 in the language L3 by the following condition:

A is a non-logical axiom of the theory T3 if and only if
A = α(B) for some a non-logical axiom B of T2.

Lemma 5. T3 ⊆ T2.

Proof. By the definitions, L3 ⊆ L2 and for any non-logical axiom A of
T3 there is a non-logical axiom B of T2 such that A = α(B). Moreover,
since T2 ⊢ (‡), by the definition of α and the Equivalence Theorem we
have that

T2 ⊢ B ≡ α(B) and T2 ⊢ α(B).

From this fact it follows that any proof in the theory T3 at the same
time is a proof in the theory T2 and consequently T3 ⊆ T2. ⊣

Lemma 6. (1) The identity function ι(A) = A embeds T3 in T2.

(2) The function α embeds T2 in T3.

Thus, the theories T2 and T3 are mutually embeddable.

Proof. Since T3 ⊆ T2, we need to show that α is a recursive function
satisfying the conditions of Lemma 1.

For (i): By induction on the construction of a proof of a formula A
in T2, we demonstrate that formula α(A) is provable in the theory T3.

If A is a logical axiom of T2, then α(A) is also a logical axiom and
it is provable in T3. If A is a non-logical axiom of T2, then α(A) is a
non-logical axiom of T3.
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Suppose that a formula A is obtained by the rule of modus ponens
from two previous formulas B and pB ⊃ Aq. By assumption, formulas
α(B) and α(B ⊃ A) are provable in T3. Hence the formula α(A) is also
provable in T3.

Suppose that a formula A = p∀xBq and A is obtained by the rule
of generalization from B. By assumption, the formula α(B) is provable
in T3. Hence, the same holds good for p∀xα(B)q. Since p∀xα(B)q =
pα(∀xB)q it follows that the formula pα(∀xB)q is provable in T3.

Thus, we have shown that from T2 ⊢ A it follows T3 ⊢ α(A).
For (ii): If A ∈ L3 and T3 ⊢ α(A), then T3 ⊢ A, since α(A) = A, by

the definition of α.
For (iii): Suppose that A ∈ L2 and T2 ⊢ α(A). Since T2 ⊢ (‡), by the

Equivalence Theorem, we have that T2 ⊢ A ≡ α(A). Hence T2 ⊢ A. ⊣

The next theorem follows from lemmas 4 and 6.

Theorem 1. Let T be a first-order theory with equality such that T1 ⊢
¬ a = b, for some closed terms a and b. Then there exists a first-

order theory T ′ such that T and T ′ are mutually embeddable, and T ′ is

formulated in a language with functional symbols, and only the equality

predicate.

We can go further and show that the logical predicate of equality is
not necessary and can be replaced by a special one-place predicate.

Let the theory T4 be obtained by expanding the language of the
theory T3 with the new monadic predicate symbol ‘H’ and addition of
the following new axiom

H(x) ≡ x = a

Notice that, by the definition, T3 ⊆ T4.

Lemma 7. The following formula

H(f=(x1, x2)) ≡ x1 = x2

is provable in the theory T4.

Proof. Since T2 ⊢ (‡), so T2 ⊢ x1 = x2 ≡ f=(x1, x2) = a. By
the definition of α and Lemma 6(2), we have that T3 ⊢ x1 = x2 ≡
f=(x1, x2) = a. Hence also T4 ⊢ x1 = x2 ≡ f=(x1, x2) = a, since T3 ⊆
T4. Now notice that T4 ⊢ H(f=(x1, x2)) ≡ f=(x1, x2) = a, because
∀x(H(x) ≡ x = a) is an axiom of T4. Thus, T4 ⊢ H(f=(x1, x2)) ≡ x1 =
x2. ⊣



30 Vladimir Shalack

Lemma 8. (1) The identity function ι(A) = A embeds T3 in T4.

(2) There is a function ψ : L4 → L3 which embeds T4 in T3.

Thus, the theories T3 and T4 are mutually embeddable.

Proof. Since T3 ⊆ T4, it is enough to find a recursive function ψ : L4 →
L3, satisfying the conditions of Lemma 1. We define ψ as follows:

• ψ(H(t)) = pt = aq,
• ψ(t1 = t2) = pt1 = t2q,
• ψ(¬A) = p¬ψ(A)q,
• ψ(A ◦B) = p(ψ(A) ◦ ψ(B))q, where ◦ ∈ {∧,∨,⊃,≡},
• ψ(QxB) = pQxψ(B)q, where Q ∈ {∀, ∃}.

For (i): By induction on the construction of a proof of a formula A
in T4 we demonstrate that formula ψ(A) is provable in the theory T3.

If A is a logical axiom of T4, then ψ(A) is also a logical axiom and it
is provable in T3.

If A is the axiom ‘H(x) ≡ x = a’, then ψ(A) is ‘x = a ≡ x = a’,
so T3 ⊢ ψ(A).

If A is a non-logical axiom of T4 which is a non-logical axiom of T3,
then ψ(A) = A, because A contains no occurrences of ‘H’. Therefore
T3 ⊢ ψ(A).

For the rule of modus ponens and the rule of generalization we apply
in the standard way the definition of the function ψ. Thus, we have
shown that from T4 ⊢ A it follows T3 ⊢ ψ(A).

For (ii): Suppose that A ∈ L3 and T3 ⊢ ψ(A). Then ψ(A) = A,
because A contains no occurrences of ‘H’. Therefore, T3 ⊢ A.

For (iii): Suppose that A ∈ L4 and T4 ⊢ ψ(A). Since ‘∀x(H(x) ≡
x = a)’ is an axiom of T4, so T4 ⊢ ψ(A) ≡ A, from the Equivalence
Theorem. Thus, T4 ⊢ A. ⊣

Let the language L5 be obtained by deleting symbol of equality from
the language L4. We define the following function β : L4 → L5:

• β(H(t)) = pH(t)q,
• β(t1 = t2) = pH(f=(t1, t2))q,
• β(¬A) = p¬β(A)q,
• β(A ◦ B) = p(β(A) ◦ β(B))q, where ◦ ∈ {∧,∨,⊃,≡},
• β(QxB) = pQxβ(B))q, where Q ∈ {∀, ∃}.
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We define the theory T5 as follows:

A is a non-logical axiom of the theory T5 if and only if A = α(B)
for some B which either is an axiom of equality or is a non-logical
axiom of T4.

Lemma 9. T5 ⊆ T4.

Proof. If A is an axiom of T5, then A = β(B), for some B which is
an axiom of equality or is a non-logical axiom of T4. By Lemma 7, the
definition of β and the Equivalence Theorem, we have that T4 ⊢ B ≡
β(B) and T4 ⊢ β(B). Therefore any proof in the theory T5 at the same
time is the proof in T4 and consequently T5 ⊆ T4. ⊣

Lemma 10. (1) The identity function ι(A) = A embeds T5 in T4.

(2) The function β : L4 → L5 embeds T4 in T5.

Thus, the theories T4 and T5 are mutually embeddable.

Proof. Since T5 ⊆ T4, we need to show thet β is a recursive function
satisfying the conditions of Lemma 1.

For (i): By induction on the construction of a proof of a formula A
in T4 we demonstrate that T5 ⊢ β(A).

If A is a propositional or quantifier axiom of T4, then β(A) is a logical
axiom of T5, and therefore T5 ⊢ β(A).

If A is an axiom of equality of T4 or A is a non-logical axiom of T4,
then β(A) is a non-logical axiom of T5 and therefore T5 ⊢ β(A).

As in the case of ψ, for the rule of modus ponens and the rule of gen-
eralization we apply in the standard way the definition of the function β.
Thus, we have shown that from T4 ⊢ A follows T5 ⊢ β(A).

For (ii): If A ∈ L5 and T5 ⊢ β(A), to T5 ⊢ A, since β(A) = A, by the
definition of β.

For (iii): Suppose that A ∈ L4 and T4 ⊢ β(A). By Lemma 7 and the
Equivalence Theorem, we have that T4 ⊢ A ≡ β(A). So T4 ⊢ A. ⊣

The following theorem is a consequence of Theorem 1 and lemmas 8
and 10.

Theorem 2. Let T be a first-order theory with equality such that T1 ⊢
¬ a = b, for some closed terms a and b. Then there exists a first-order

theory T ′ such that T and T ′ are mutually embeddable and the language

of T ′ contains only functional symbols, and a single one-place predicate.
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4. Concluding remarks

The proofs of the theorems in Section 3 are not complicated, and because
of that, their content seems to be trivial. However, from a philosophical
point of view, they are interesting, because they refute some widespread
views. The ontology of things, properties, and functions is not worse
than the ontology of things and relations, which de facto has become a
model for the presentation of scientific ideas.

Moreover, it appears that we can also delete properties from our
model. The ontology of objects and functions is also universal in its
expressive power. The relation of equality, which is included in the
language, is purely logical and says if two terms denote the same object
or not.

For the philosophically oriented logician it is obvious that the re-
placement of one ontology by another is not a purely formal trick, but
brings a completely different view of the surrounding world, leads us to
use new heuristics in the construction of scientific theories.
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