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Abstract. In [Waragai & Shidori, 2007], a system of paraconsistent logic
called PCL1, which takes a similar approach to that of da Costa, is pro-
posed. The present paper gives further results on this system and its
related systems. Those results include the concrete condition to enrich
the system PCL1 with the classical negation, a comparison of the con-
crete notion of “behaving classically” given by da Costa and by Waragai
and Shidori, and a characterisation of the notion of “behaving classi-
cally” given by Waragai and Shidori.
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1. Introduction

We shall first recall some basic definitions used in the study of paracon-
sistent logics. Then, the position of the system PCL1 in the systems of
paraconsistent logic will be given. Finally, the aim and the outline of the
present paper will be clarified.

1.1. Basic Definitions

In this paper, we understand by logic L an ordered pair of a set of
formulas (written as For) and a consequence relation ⊢ defined over For.

∗We would like to thank the referee for his/her advice to make some differences
between da Costa’s system Cn and PCL1 clear.
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We shall write the consequence relation of the logic L as ⊢L. Also any
subset Γ of For will be called a theory of L.

Definition 1. Let L be a logic and Γ be a theory of L. Then,

• Γ is said to be contradictory when for some formula A, Γ ⊢L A and
Γ ⊢L ¬A both hold.

• Γ is said to be explosive with respect to A and ¬ when Γ ⊢L A ⊃ (¬A ⊃
B) holds for any formula B.

• Γ is said to be trivial when Γ ⊢L A holds for any formula A.

• L is said to be contradictory, explosive with respect to A and ¬, or

trivial when any theories of L are contradictory, explosive with respect
to A and ¬, or trivial respectively.

• L is said to be paraconsistent when there exists a theory which is
contradictory but not trivial.

It should be noted here that two logical notions, that a theory Γ being
contradictory and a theory Γ being trivial, are different logical notions.
In many of the familiar logics such as classical propositional calculus or
intuitionistic propositional calculus these two notions do coincide, though
in logics which are paraconsistent, it does not. In general, to treat these
two notions as different logical notions must be the common objective
in the study of paraconsistent logic. As it is known, however, there are
several approaches to this objective such as that of Jaśkowski, da Costa,
Priest, Batens, etc.

Since the systems to be treated in this paper are in the tradition of
da Costa’s approach, we shall next recall his idea briefly.

1.2. Recalling da Costa’s Approach

In da Costa’s systems of paraconsistent logic Cn (1 ¬ n < ω), the fol-
lowing definition is given:

A◦ =def N(A ∧ NA)

An =def A

n

︷ ︸︸ ︷

◦◦· · ·◦

A(n) =def A1 ∧ · · · ∧ An

Formula A is said to be behaving classically in Cn when ⊢Cn
A(n) holds.
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Keeping this definition in mind, the following results hold in Cn:

0Cn
A ⊃ (NA ⊃ B)

⊢Cn
A(n) ⊃ (A ⊃ (NA ⊃ B))

That is, Cn is not necessarily explosive with respect to A and N, though
if it turns out that A behaves classically in Cn, then Cn is explosive with
respect to A and N.

As we can see here, the idea to internalise the notion regulating the
explosion of the system into the object-language level is one of the main
features of da Costa’s system, and this idea was enlarged in a more gen-
eral setting by Carnielli, Coniglio and Marcos.1 Taking their treatment
into account, we shall next give a definition.

Definition 2. Let L be a logic, Γ be a theory of L, and ∆(A) be a
formula which depends only on A. Then Γ is said to be gently explosive

with respect to A and ¬ when the following conditions hold:

(a) Neither {∆(A), A} nor {∆(A), ¬A} are trivial.

(b) For any formula B, the following holds:

(gOEF) Γ ⊢L ∆(A) ⊃ (A ⊃ (¬A ⊃ B))

Also the logic L is said to be gently explosive with respect to A and

¬ when any theories of L are gently explosive with respect to A and ¬.

Remark. In the system PCL1, which is to be treated in the present paper,
∆(A) is the formula pA ⊃ NNAq and will be written as AI.

As we pointed out above, da Costa’s idea is generalised by the work
given by Carnielli, Coniglio and Marcos, but still the concrete treatment
of the notion of “behaving classically” must be an important task in order
to make an evaluation of da Costa’s approach. That is to say, if we are to
develop a system of paraconsistent logic by da Costa’s appraoch, then it
must also be necessary to introduce some concrete notions of “behaving
classically” defined differently from the one given by da Costa, and to
compare the new definitions with da Costa’s original definition.

1See [Carnielli & Marcos, 2002] and [Carnielli et al, 2005].



132 Toshiharu Waragai, Hitoshi Omori

1.3. Aim and Outline of the Present Paper

With all the observations given above in mind, we shall now make the
aim and the outline of the present paper clear. The objective of the
present paper is to discuss the following three points:

• to clarify the conditions needed to enrich the system PCL1 with the
classical negation.

• to give a justification of the notion of “behaving classically” given by
Waragai and Shidori.

• to examine the concrete notions of “behaving classically” given by da
Costa and by Waragai and Shidori.2

We shall add some words for each of the points. The first point is im-
portant since if we take a different notion of “behaving classically” from
that of da Costa’s, then we won’t be able to define the classical negation
as it is done in da Costa’s systems. The second point must help us to
grasp the idea of the new definition. Finally, the third point is necessary
in order to see the differences between the original definition and the new
definition of the notion of “behaving classically”.

Now, in order to reach these three points, the following three steps
will be taken beforehand:

1. to state the axiom schemata and the rules of inference of PCL1.

2. to give some basic results of PCL1.

3. to define the strong negation and show some of its results.

These three steps will be the content of the coming three sections from 2
to 4 respectively and are followed by three sections from 5 to 7 treating
the above three points respectively.

2. The Axiom Schemata and the Rules of Inference of PCL1

We shall now give the axiom schemata and the rules of inference of
PCL1. As da Costa’s systems Cn are based on the axiomatisation of
classical propositional calculus in [Kleene, 1967], PCL1 is based on the

2There is another concrete notion of “behaving classically” proposed by Guillaume
in his [Guillaume, 2007]. However, we shall discuss his definition in another paper.
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axiomatisation of it given in [Rasiowa & Sikorski, 1970]. In this section,
we shall first recall the formulation of classical propositional calculus in
[Rasiowa & Sikorski, 1970], and then give the formulation of PCL1.

2.1. Formulation of Classical Propositional Calculus
in [Rasiowa & Sikorski, 1970]

The formulation of classical propositional calculus given in [Rasiowa &
Sikorski, 1970] consists of the following axiom schemata and a rule of
inference:

Axiom Schemata

(A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))APCL11

A ⊃ (A ∨ B)APCL12

B ⊃ (A ∨ B)APCL13

(A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C))APCL14

(A ∧ B) ⊃ AAPCL15

(A ∧ B) ⊃ BAPCL16

(C ⊃ A) ⊃ ((C ⊃ B) ⊃ (C ⊃ (A ∧ B)))APCL17

(A ⊃ (B ⊃ C)) ⊃ ((A ∧ B) ⊃ C)APCL18

((A ∧ B) ⊃ C) ⊃ (A ⊃ (B ⊃ C))APCL19

(A ∧ ¬A) ⊃ BA10

(A ⊃ (A ∧ ¬A)) ⊃ ¬AA11

A ∨ ¬AA12

Rule of Inference

MP A, A ⊃ B / B

Remark. It should be noted here that if we eliminate the last axiom
scheme A12 then a formulation of intuitionistic propositional calculus
will be obtained. We will make use of this fact later in this paper.

2.2. Formulation of PCL1

Keeping the formulation of classical propositional calculus given above
in mind, we shall now state the axiom schemata, two rules of inference
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and two definitions of the system PCL1 which will be the main system
to be discussed in this paper.

Axiom Schemata1: APCL11–APCL19 are in common with those stated
above,

NNA ⊃ AAPCL110

A ∨ NAAPCL111

AI =def A ⊃ NNAD1

Axiom Schemata2:

AI ⊃ ((NA ∨ B) ⊃ (A ⊃ B))APCL112.1

(AI ∧ BI) ⊃ (N(A ∧ B) ⊃ (NA ∨ NB))APCL113

(AI ∧ BI) ⊃ (N(A ∨ B) ⊃ (NA ∧ NB))APCL114

AI ⊃ ((A ∧ NB) ⊃ N(A ⊃ B))APCL115

Rules of Inference

A, A ⊃ B / BMP

AI / N(A ⊃ B) ⊃ (A ∧ NB)RA15

A ≡ B =def (A ⊃ B) ∧ (B ⊃ A)D2

Remark. Several modifications, which will be given below, have been
made from the point of view of the previous formulation of PCL1 given
in [Waragai & Shidori, 2007].

1. A ∨ NA is substituted for NA ⊃ NNNA in A11 of the previous
formulation.

2. ⊃ is substituted for ≡ in A12 of the previous formulation and A12 is
relabelled as APCL112.1.

3. ⊃ is substituted for ≡ in D2 of the previous formulation and D2 is
relabelled as D1.

We shall prove the inferential equivalence of these two formulations in
the end of the next section.

Another point to be noted is that two axiom schemata APCL113,
APCL114 and one of the rules of inference RA15, which are stated with the
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help of AI, enable us to derive the formulas expressing the propagation
of the notion of “behaving classically”.3

Finally, a justification of the two axioms, APCL110 and APCL111,
together with the justification of AI will be given in the later section.

3. Some Basic Results on PCL1

In this section, some of the basic results on PCL1 will be presented. We
shall first point out some positive theses to be made use of in the present
paper, and then prove some results related with the negation N. And in
the last subsection, the inferential equivalence of the two formulations of
PCL1 mentioned above will be given.

3.1. Preliminaries on “Positive” Formulas

Since the system PCL1 has intuitionistic positive calculus as a subsystem,
we can certainly prove the following theses:

⊢PCL1 A ⊃ ATPCL11

⊢PCL1 A ⊃ (B ⊃ A)TPCL12

⊢PCL1 (A ⊃ (B ⊃ C)) ⊃ (B ⊃ (A ⊃ C))TPCL13

⊢PCL1 (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)TPCL14

⊢PCL1 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))TPCL15

As is shown by TPCL12 and TPCL15, we have Simplification and Fregean
Syllogism available. So we can make use of the so-called Deduction Theo-

rem, which will be abbreviated to (DT) hereafter, if the rule of inference
RA15 is not involved in the proof.

We can also prove the following two theses; the former is quite useful
in the present paper:

⊢PCL1 (A ∨ B) ⊃ ((B ⊃ C) ⊃ (A ∨ C))TPCL16

⊢PCL1 (A ∨ (B ∧ C)) ≡ ((A ∨ B) ∧ (A ∨ C))TPCL17

The theses appearing here are all “positive” ones which we shall make
use of in the following sections. Now, we shall start to observe some
theses in which negation N is involved.

3This is one of the main results presented in [Waragai & Shidori, 2007], and will
be examined further in [Omori & Waragai, 2010].
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3.2. Results Related with the Negation N

Since we have the law of the excluded middle with respect to N, we can
prove the following:

TPCL18 ⊢PCL1 (A ⊃ NA) ⊃ NA APCL14, TPCL13, TPCL11, APCL111

TPCL19 ⊢PCL1 (NA ⊃ A) ⊃ A APCL14, TPCL11, TPCL13, APCL111

The next thesis TPCL110 shows that PCL1 is not necessarily explosive
with respect to A and N.

TPCL110 0PCL1 A ⊃ (NA ⊃ B)

Proof. Use Waragai and Shidori’s matrix (see [Waragai & Shidori,
2007], p. 184), given below, and assign the value ½, 0 to A, B respec-
tively. Then the formula we are considering takes the value 0 which gives
the desired result.

∧ 1 ½ 0

1 1 ½ 0

½ ½ ½ 0

0 0 0 0

∨ 1 ½ 0

1 1 1 1

½ 1 1 ½

0 1 ½ 0

⊃ 1 ½ 0

1 1 ½ 0

½ 1 ½ 0

0 1 1 1

N

1 0

½ 1

0 1

Note that 1 and ½ are the distinguished values. ⊣

3.2.1. Explosion and Reductio ad Absurdum

We shall here offer an useful proof-mechanism, which can be applied if
we are not making use of the rule (RA15). As we saw in the previous
subsection, we are free to use the well-known Deduction Theorem, if the
rule (RA15) is not concerned.

Theorem 1. The following metatheorem holds in PCL1, if we are not

making use of the rule (RA15):

(RA) ∀B (Γ, A ⊢PCL1 B) ⇒ Γ ⊢PCL1 NA
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Proof. 1. ∀B (Γ, A ⊢PCL1 B) sup.

2. Γ, A ⊢PCL1 NA 1 (B/NA)

3. Γ ⊢PCL1 A ⊃ NA 2, (DT)

4. Γ ⊢PCL1 (A ⊃ NA) ⊃ NA TPCL18

5. Γ ⊢PCL1 NA 3, 4 ⊣

This (RA) says that if we succeed in showing that A causes logical
explosion, then we can derive that NA holds. This offers us a kind of
reductio ad absurdum method to prove NA.

3.2.2. Bottom Particles in PCL1

Now we shall observe some bottom particles in PCL1.

TPCL111 ⊢PCL1 AI ⊃ (A ⊃ (NA ⊃ B)) APCL112.1, APCL12, (DT)

As we saw in TPCL110, PCL1 is not always explosive with respect to
A and N, but this TPCL111 tells us that if it turns out that A behaves
classically in PCL1, then PCL1 is explosive with respect to A and N. In
other words, PCL1 is gently explosive with respect to A and N for any
formula A.

By a simple calculation based on TPCL111, we reach the following:

TPCL112 ⊢PCL1 (AI ∧ A ∧ NA) ⊃ B TPCL111

This TPCL112 shows that AI ∧ A ∧ NA is a bottom particle in PCL1.
We actually have another bottom particle in PCL1 and in order to prove
this fact, we need the help of TPCL115 below:

TPCL113 ⊢PCL1 NNA ⊃ (A ∧ AI) APCL110, TPCL12, D1, APCL17

TPCL114 ⊢PCL1 (A ∧ AI) ⊃ NNA TPCL112, (RA)

TPCL115 ⊢PCL1 NNA ≡ (A ∧ AI) TPCL113, TPCL114

According to this TPCL115 it is shown that double negation of A in PCL1
can be split into two parts: A itself and AI.

Now, TPCL112 together with TPCL115 enables us to derive the fol-
lowing thesis:

TPCL116 ⊢PCL1 (NA ∧ NNA) ⊃ B TPCL112, TPCL115

Therefore, NA ∧ NNA is also a bottom particle in PCL1.4

4Note that 0Cn
NNA ≡ (A ∧ A

(n)) and 0Cn
(NA ∧ NNA) ⊃ B.
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3.3. Equivalence between the two formulations of PCL1

We shall here prove the equivalence between the previous formulation of
PCL1 developed in [Waragai & Shidori, 2007] and the present formula-
tion of PCL1. It will be sufficient to prove the following two formulas in
the present PCL1:

⊢PCL1 NA ⊃ NNNATPCL117

⊢PCL1 AI ⊃ ((A ⊃ B) ⊃ (NA ∨ B))TPCL118

Proof. For TPCL117:

1.1. NA sup.

1.2. NNA sup.

1.3. NA ∧ NNA 1.1,1.2,APCL17, MP

1.4. B 1. 3, TPCL116, MP

1. NA,NNA ⊢PCL1 B 1.1–1.4

2. NA ⊢PCL1 NNNA 1, (RA)

3. ⊢PCL1 NA ⊃ NNNA 2, (DT)

For TPCL118:

1. (NA ∨ A) ⊃ ((A ⊃ B) ⊃ (NA ∨ B)) TPCL16

2. NA ∨ A APCL14, APCL13, APCL12, APCL111, MP

3. (A ⊃ B) ⊃ (NA ∨ B) 1, 4, MP

4. AI ⊃ ((A ⊃ B) ⊃ (NA ∨ B)) 5, TPCL12, MP

Therefore, the desired result is proved. ⊣

4. Strong Negation in PCL1

In this section, the strong negation in PCL1 will be defined. Also some of
the results showing the properties of the strong negation and its relation
with the paraconsistent negation N and AI will be given.
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4.1. Definition of Strong Negation and Some Results

In addition to the fact that we have the bottom particle NA ∧NNA at
hand in PCL1, we can also prove the following thesis:

TPCL119 ⊢PCL1 (NA ∧ NNA) ≡ (NB ∧ NNB) TPCL116

Therefore, with this result in mind, let us define the strong negation ¬
with respect to A as follows:

Definition 3. For a certain formula X, we put the formula NX∧NNX
as f, and define strong negation of A as follows:

DSN ¬A =def A ⊃ f

We shall now prove some results on the strong negation using the
definition given above.

TPCL120 ⊢PCL1 (A ⊃ ¬A) ⊃ ¬A TPCL14, DSN

TPCL121 ⊢PCL1 (A ⊃ (A ∧ ¬A)) ⊃ ¬A TPCL120

With the help of TPCL120, we also have (RA) stated in terms of strong
negation, i.e. the following theorem holds:

Theorem 2. If we are not making use of the rule (RA15), then the

following metatheorem holds in PCL1:

(RAS) ∀B(Γ, A ⊢PCL1 B) ⇒ Γ ⊢PCL1 ¬A

TPCL122 ⊢PCL1 A ⊃ (¬A ⊃ B) APCL11, TPCL13, TPCL116, TPCL13, DSN

This TPCL122 shows that PCL1 is explosive with respect to A and ¬.

TPCL123 ⊢PCL1 (A ∧ ¬A) ⊃ B TPCL122, APCL18

Since we have this TPCL123, we immediately reach the following results.

TPCL124 ⊢PCL1 N(A ∧ ¬A) TPCL123, (RA)

TPCL125 ⊢PCL1 ¬(A ∧ ¬A) TPCL123, (RAS)

It should also be noted that the following theorem holds for the strong
negation in PCL1:

Theorem 3. The strong negation in PCL1 is not the classical negation.
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Proof. It would be sufficient to prove 0PCL1 A ∨ ¬A, and this can
be proved by using Alves’ matrix given below (see [Carnielli & Marcos,
2002], pp. 34–35). Just assign the value ½ to A.

∧ 1 ½ 0

1 1 ½ 0

½ ½ ½ 0

0 0 0 0

∨ 1 ½ 0

1 1 1 1

½ 1 ½ ½

0 1 ½ 0

⊃ 1 ½ 0

1 1 ½ 0

½ 1 1 0

0 1 1 1

N

1 0

½ 1

0 1

Note that 1 is the only distinguished value. ⊣

Remark. It should be noted here that this result is showing a difference
of the behaviour of strong negation in da Costa’s Cn and PCL1, i.e. the
strong negation in Cn is the classical negation.5

We can also prove the following theorem.

Theorem 4. PCL1 contains intuitionistic propositional calculus as a

subsystem.

Proof. “Positive” axiom schemata of PCL1 from APCL11 to APCL19 to-
gether with the two theses for the strong negation TPCL121 and TPCL123
show that PCL1 has intuitionistic propositional calculus as a subsys-
tem. ⊣

4.2. Strong Negation, Paraconsistent Negation and AI

We now relate the strong negation to the paraconsistent negation and AI.

TPCL126 ⊢PCL1 ¬A ⊃ NA TPCL123, (RA)

TPCL127 0PCL1 NA ⊃ ¬A

Proof. Use Waragai and Shidori’s matrix and assign the value ½ to A.
This gives the desired result. ⊣

These two results show the basic relations between the strong nega-
tion ¬ and the paraconsistent negation N.

TPCL128 ⊢PCL1 ¬A ⊃ AI TPCL122, TPCL13, D1

TPCL129 ⊢PCL1 ¬A ⊃ (NA ∧ AI) TPCL126, TPCL128, APCL17

5Cf. [da Costa, 1974], p. 500, Theorem 5.
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TPCL130 ⊢PCL1 (NA ∧ AI) ⊃ ¬A TPCL112, (RAS)

TPCL131 ⊢PCL1 ¬A ≡ (NA ∧ AI) TPCL129, TPCL130

In the literature, TPCL131 is often taken as the definition of strong nega-
tion6, though in PCL1 this can be proved as is demonstrated above.

TPCL132 ⊢PCL1 ¬NA ⊃ NNA TPCL126

TPCL133 ⊢PCL1 NNA ⊃ ¬NA TPCL116, (RAS)

TPCL134 ⊢PCL1 ¬NA ≡ NNA TPCL132, TPCL133

This TPCL134 says that when N is iterated, the outer N can be replaced
by the strong negation.7

Now, as we saw in TPCL127, NA ⊃ ¬A is not a thesis of PCL1, but
this is actually equivalent to the formula AI as it is given in TPCL137.

TPCL135 ⊢PCL1 AI ⊃ (NA ⊃ ¬A) TPCL112, (RAS)

TPCL136 ⊢PCL1 (NA ⊃ ¬A) ⊃ AI TPCL123, (RA), (DT), D1

TPCL137 ⊢PCL1 AI ≡ (NA ⊃ ¬A) TPCL135, TPCL136

We can also derive the following result:

TPCL138 ⊢PCL1 AI ≡ (¬A ≡ NA) TPCL137, TPCL126

Remark. This TPCL138 together with TPCL134 enables us to derive

⊢PCL1 (NA)I.

The same fact can be proved by D1 and TPCL117. Again, note that
0Cn

(NA)(n).

It is obvious by the definition of AI that the following holds:

TPCL139 ⊢PCL1 AI ≡ (NNA ≡ A) D1, APCL110

But if we replace N with ¬, then it is no longer a thesis of PCL1:

TPCL140 ⊢PCL1 A ⊃ ¬¬A TPCL123, (RAS)

TPCL141 ⊢PCL1 AI ⊃ (¬¬A ⊃ A) TPCL135, TPCL132, APCL110

TPCL142 ⊢PCL1 AI ⊃ (¬¬A ≡ A) TPCL140, TPCL141

TPCL143 0PCL1 (¬¬A ≡ A) ⊃ AI

Proof. Assign ½ to A in Waragai and Shidori’s matrix. ⊣

6See, for example, [da Costa, 1974], p. 500, Definition 1.
7Note that 0C1

¬NA ≡ NNA.



142 Toshiharu Waragai, Hitoshi Omori

5. PCL1 and PCL1C

The objective of this section is to give some conditions which enable us
to enrich the system PCL1 with the classical negation. We shall begin
with the following theorem which shows that the strong negation defined
in the previous section plays an important role for the present purpose.

Theorem 5. The following two conditions are equivalent:

1. The system PCL1 is equipped with the classical negation.

2. The strong negation in the system PCL1 is the classical negation.

Proof. Assume that PCL1 is equipped with the classical negation which
we shall write as ¬c. Then based on the formulation of classical proposi-
tional calculus given in [Rasiowa & Sikorski, 1970], this classical negation
¬c satisfies the following conditions:

(A ∧ ¬cA) ⊃ B(CN1)

(A ⊃ (A ∧ ¬cA)) ⊃ ¬cA(CN2)

A ∨ ¬cA(CN3)

By (CN1) and (RAS), we have ⊢PCL1 ¬cA ⊃ ¬A. So this together with
(CN3) and TPCL16 enables us to derive ⊢PCL1 A ∨ ¬A which shows that
the strong negation in PCL1 is the classical negation.

For the other way around, just regard the strong negation which is
the classical negation by the assumption as the classical negation with
which PCL1 is equipped. ⊣

With the help of this result, we can prove the following:

Theorem 6. The system PCL1 itself does not have the classical nega-

tion.8

Proof. It is an immediate consequence of theorems 3 and 5. ⊣

This Theorem 6 shows that there is room to find out some condi-
tions to enrich the system PCL1 with the classical negation and, for this
purpose, Theorem 5 tells us that the strong negation is the key.

With all these observations in mind, we shall define the system
PCL1C as follows:

8Note that da Costa’s Cn does have the classical negation since the strong negation
in Cn is the classical negation as we remarked after Theorem 3.
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Definition 4. A system is called PCL1C if that system is the minimal
extension of PCL1 such that the strong negation is the classical negation.

Remark. Note that the definition of PCL1C given here is different from
the one given in [Waragai & Shidori, 2007]. Details will be discussed in
another paper.

Now, on the basis of Theorem 5, the idea is to make the strong
negation in PCL1 work as the classical negation by adding a certain
formula which is either logically equivalent to the law of the excluded
middle with respect to the strong negation or adequate to derive the law
of the excluded middle with respect to the strong negation.

In this section, we shall give two ways of extending the system PCL1.
The first one is to add Dummett’s formula (i.e. A∨(A ⊃ B), abbreviated
to DF hereafter) and the other is to add Peirce’s law.

5.1. Extending PCL1 by Dummett’s Formula

First of all, we shall find out the formula which is logically equivalent to
the law of the excluded middle with respect to the strong negation.

TPCL144 ⊢PCL1 (A ∨ ¬A) ≡ (A ∨ AI)

Proof. 1. (A ∨ ¬A) ≡ (A ∨ (NA ∧ AI)) TPCL131

2. (A ∨ (NA ∧ AI)) ≡ ((A ∨ NA) ∧ (A ∨ AI)) TPCL17

3. ((A ∨ NA) ∧ (A ∨ AI)) ≡ (A ∨ AI) APCL111

4. (A ∨ ¬A) ≡ (A ∨ AI) 1, 2, 3 ⊣

With this result in mind, we reach the following theorem:

Theorem 7. The system obtained from PCL1 by adding the formula

A ∨ AI has the classical negation.

The formula which we added here is A ∨ AI i.e. A ∨ (A ⊃ NNA)
and this formula is a special case of Dummett’s formula A ∨ (A ⊃ B).
Therefore, we reach the following theorem:

Theorem 8. The system obtained from PCL1 by adding the formula

A ∨ (A ⊃ B) has the classical negation.
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Now, it is obvious that the system obtained in Theorem 7 is a subsys-
tem of the one obtained in Theorem 8, but we can also prove the inverse
of this fact. That is to say, we can prove the following theorem:

Theorem 9. The systems obtained in theorems 7 and 8 are inferentially

equivalent.

This can be proved by using the following result of PCL1:

TPCL145 ⊢PCL1 (A ∨ AI) ⊃ (A ∨ (A ⊃ B))

Proof. 1.1. A ∨ AI sup.

1.2. A ∨ ¬A 1.1, TPCL144

1.3. ¬A ⊃ (A ⊃ B) TPCL122

1.4. A ∨ (A ⊃ B) 1.2, 1.3

1. A ∨ AI ⊢PCL1 A ∨ (A ⊃ B) 1.1–1.4

2. ⊢PCL1 (A ∨ AI) ⊃ (A ∨ (A ⊃ B)) 1, (DT) ⊣

Proof of Theorem 9. It is an immediate consequence of TPCL145. ⊣

On the basis of the result of Theorem 9, we shall hereafter refer to
the system obtained in theorems 7 and 8 as PCL1DF.

It should also be noted that we have the following result:

TPCL146 0PCL1 (A ∨ (A ⊃ B)) ⊃ (A ∨ AI)

Proof. Assign ½ and 1 to A and B respectively in Alves’ matrix. ⊣

5.2. Extending PCL1 by Peirce’s Law

This time, we shall begin with a definition.

Definition 5. Let PCL1PL be the system which can be obtained from
PCL1 by adding the formula (((A ⊃ f) ⊃ A) ⊃ A), which can be written
as ((¬A ⊃ A) ⊃ A) with the strong negation.

Then the following fact can be proved:
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Theorem 10. The following metatheorem holds in PCL1PL if we are

not making use of the rule (RA15):

(RAS′) ∀B (Γ, ¬A ⊢PCL1PL B) ⇒ Γ ⊢PCL1PL A

that is, if we succeed in showing that ¬A causes logical explosion, then

we can derive that A holds.

Proof. 1. ∀B (Γ, ¬A ⊢PCL1PL B) sup.

2. Γ, ¬A ⊢PCL1PL A 1 (B/A)

3. Γ ⊢PCL1PL ¬A ⊃ A 2, (DT)

4. Γ ⊢PCL1PL (¬A ⊃ A) ⊃ A def. of PCL1PL

5. Γ ⊢PCL1PL A 3, 4 ⊣

Making use of this theorem, we can prove the law of the excluded
middle with respect to the strong negation in PCL1PL as follows:

TPCL147 ⊢PCL1PL A ∨ ¬A

Proof. 1.1. ¬(A ∨ ¬A) sup.

1.2. ¬A ∧ ¬¬A 1

1.3. B 2, TPCL123

1. A ∨ ¬A 1.1–1.3, (RAS′) ⊣

We therefore reach the following theorem:

Theorem 11. PCL1DF is a subsystem of PCL1PL.

The inverse of this theorem, i.e. the following theorem holds:

Theorem 12. The systems PCL1DF and PCL1PL are inferentially

equivalent.

In order to prove this theorem, we need the following result of the
system PCL1DF:

TPCL148 ⊢PCL1DF (¬A ⊃ A) ⊃ A

Proof. This follows immediately since the strong negation in PCL1DF
is the classcal negation. ⊣

Proof of Theorem 12. It is a consequence of TPCL148. ⊣
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It should also be noted that as A ∨ AI is a special form of Dummett’s
formula, (((A ⊃ f) ⊃ A) ⊃ A) is a special form of Peirce’s law. We shall
here point out that the general form of Peirce’s law can be proved in
PCL1PL since we have the following result in PCL1:

TPCL149 ⊢PCL1 ((¬A ⊃ A) ⊃ A) ⊃ (((A ⊃ B) ⊃ A) ⊃ A)

Proof. 1. (¬A ⊃ (A ⊃ B)) ⊃ (((A ⊃ B) ⊃ A) ⊃ (¬A ⊃ A)) APCL11

2. ¬A ⊃ (A ⊃ B) TPCL122, TPCL13

3. ((A ⊃ B) ⊃ A) ⊃ (¬A ⊃ A) 1, 2, MP

4. (((A ⊃ B) ⊃ A) ⊃ (¬A ⊃ A)) ⊃
(((¬A ⊃ A) ⊃ A) ⊃ (((A ⊃ B) ⊃ A) ⊃ A)) APCL11

5. ((¬A ⊃ A) ⊃ A) ⊃ (((A ⊃ B) ⊃ A) ⊃ A) 3 , 4, MP ⊣

We therefore reach the following theorem:

Theorem 13. The systems PCL1PL and PCL1 strengthened by the

formula ((A ⊃ B) ⊃ A) ⊃ A are inferentially equivalent.

It should be noted that we also have the following result:

TPCL150 0PCL1 (((A ⊃ B) ⊃ A) ⊃ A) ⊃ ((¬A ⊃ A) ⊃ A)

Proof. Assign ½ and 1 to A and B respectively in Alves’ matrix. ⊣

5.3. Summary of Extending PCL1

Now, as a matter of fact, the system PCL1DF is the system PCL1C since
we have the following result:

Theorem 14. PCL1DF is contained in any extended system of PCL1
which has the classical negation.

Proof. What we have to prove is that DF can be proved in the extended
system. Now, let us write the classical negation in the extended system
as ¬c as we did in the proof of Theorem 5. Then, we certainly have
A ∨ ¬cA and ¬cA ⊃ (A ⊃ B) as theses in the extended system so we can
prove DF with the help of TPCL16. ⊣
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Therefore in order to extend PCL1 to PCL1C, we may add any of
the following four formulas9:

• A ∨ (A ⊃ B)

• A ∨ AI

• ((A ⊃ B) ⊃ A) ⊃ A

• (¬A ⊃ A) ⊃ A

6. Justification of APCL110, APCL111 and A
I

Since we have the system PCL1C at hand by the results of the previous
section, we are now in the position to give a justification of the notion
of “behaving classically” using AI and two axiom schemata APCL110,
APCL111 of PCL1. The outline of our justification given here will be as
follows:

• First, we shall take a system, called W, which includes classical propo-
sitional calculus as a subsystem and has an unary operator N without

any syntactical constraints.

• We then give a semantical condition for N which seems to be appro-
priate and also natural under a certain situation.

• Finally, we will show that the syntactical condition which follows by
the semantical condition corresponds to the formulas we took as axiom
schemata.

We shall begin with the first step.

6.1. The First Step —System W—

We take the system of classical propositional calculus and enrich the
system with an unary operator N by taking the smallest set W which is
closed under the following two conditions:

(a) A : PC-wff =⇒ A ∈ W,

9Since the strong negation in da Costa’s system Cn is the classical negation, the
results of this section trivially holds for Cn. The key fact is Lemma 2 of [Urbas, 1989],
p. 593, which states that A ∨ A

(n) is derivable in Cω , for 1 ≤ n < ω. Obviously,
A ∨ A

(n) in Cn corresponds to A ∨ A
I in PCL1.



148 Toshiharu Waragai, Hitoshi Omori

(b) A, B ∈ W =⇒ NA, ¬A, A ⊃ B, A ∧ B, A ∨ B ∈ W.

It should be noted that here we are writing the classical negation as ¬.

6.2. The Second Step —Setting of the Justification—

We shall now make the semantical condition for the system W clear.

Definition 6. Let Λ be a set of formulas of W. Then,

• Λ is said to be W-inconsistent with respect to ¬ when there are some
formulas A1, . . . , An ∈ Λ such that

⊢W ¬(A1 ∧ · · · ∧ An)

• Λ is said to be W-consistent with respect to ¬ when it is not W-
inconsistent with respect to ¬.

• Λ is said to be maximal with respect to ¬ when for every formula A,
either A ∈ Λ or ¬A ∈ Λ.

• Λ is said to be maximally consistent with respect to ¬ when Λ is both
W-consistent with respect to ¬ and maximal with respect to ¬.

With this definition in mind, take a set of all the theorems of classical
propositional calculus which we shall denote as CPC. Then, apply Lin-
denbaum’s Lemma to CPC in order to obtain maximal consistent sets.
After that, collect all the maximal consistent sets, and denote this as
{Γλ}λ∈Λ. Finally, we assume an equivalence relation R over {Γλ}λ∈Λ.
Within this setting, we shall make two more definitions as follows:

x |=W A
def

⇐⇒ A ∈ ΓxDW1

x |=W NA
def

⇐⇒ ∃y (xRy & y 6|=W A)DW2

Two remarks for the above definition DW2. The first point is that the
semantical condition for NA has the same form as the one for ♦¬A where
♦ is the possibility operator in the modal logic S5. The other point is
that the above definition DW2 actually appears in one of the Marcos’
work in a more general way (see [Marcos, 2005b]). The point which we
want to emphasise here is that we can also reach an interesting result if
we consider not the general case but one of the special cases.
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Now, before giving the justification we shall derive some results which
will be used in the justification.

TW1 x |=W ¬A ⇐⇒ x 6|=W A

Proof. If x |=W ¬A holds, then ¬A ∈ Γx by DW1. So, by the consis-
tency of Γx, we have A 6∈ Γx which is equal to x 6|=W A. For the other
way around, we assume x 6|=W A which is A 6∈ Γx by DW1. Then this
time, by the maximality of Γx, we have ¬A ∈ Γx and this is x |=W ¬A
by DW1. ⊣

TW2 x |=W A & x |=W (A ⊃ B) =⇒ x |=W B

Proof. Suppose that x |=W A and x |=W (A ⊃ B) but not x |=W B.
Then we have x |=W ¬B, so {A, A ⊃ B, ¬B} as a subset of Γx. But
this again makes Γx inconsistent since ⊢W ¬(A ∧ (A ⊃ B) ∧ ¬B) holds
in W. ⊣

TW3 (x |=W A =⇒ x |=W B) =⇒ x |=W (A ⊃ B)

Proof. Suppose that (x |=W A =⇒ x |=W B) and not x |=W (A ⊃ B).
Then we have x |=W ¬(A ⊃ B). Now we split the case by the validity
of A. If |=W A, then we have {B, ¬(A ⊃ B)} as a subset of Γx, but
this makes Γx inconsistent since we have ⊢W ¬(B ∧ ¬(A ⊃ B)). Also if
6|=W A, then we have {¬A, ¬(A ⊃ B)} as a subset of Γx, but this makes
Γx inconsistent since we have ⊢W ¬(¬A ∧ ¬(A ⊃ B)). ⊣

TW4 x |=W NNA =⇒ ∀z (xRz ⇒ z |=W A)

Proof. We can prove this as follows:

x |=W NNA ⇐⇒ ∃y(xRy & y 6|=W NA) (DW2)

⇐⇒ ∃y (xRy & not(∃z (yRz & z 6|=W A))) (DW2)

=⇒ xRy0 & not(∃z (y0Rz & z 6|=W A))

⇐⇒ xRy0 & (∀z (y0Rz ⇒ z |=W A))

⇐⇒ ∀z (xRy0 & (y0Rz ⇒ z |=W A))

⇐⇒ ∀z ((xRy0 & not y0Rz) or (xRy0 & z |=W A))

=⇒ ∀z ((not xRz) or (xRy0 & z |=W A))

(R : symmetric, transitive)
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=⇒ ∀z ((not xRz) or z |=W A)

⇐⇒ ∀z (xRz ⇒ z |=W A) ⊣

TW5 ∀z (xRz ⇒ z |=W A) =⇒ x |=W NNA

Proof. The proof runs as follows:

∀z (xRz ⇒ z |=W A) ⇐⇒ xRx & ∀z (xRz ⇒ z |=W A)

R : reflexive

=⇒ ∃y (xRy & ∀z (yRz ⇒ z |=W A))

⇐⇒ ∃y (xRy & y 6|=W NA)) (DW2)

⇐⇒ x |=W NNA (DW2) ⊣

TW6 x |=W NNA ⇐⇒ ∀z (xRz ⇒ z |=W A)

Proof. This is an immediate consequence of TW4 and TW5. ⊣

This TW6 plays an important role in deriving the syntactical condi-
tion for N in the following subsection.

6.3. The Third Step —Syntactical Conditions We Reach—

In this final step, we shall see that under the semantical conditions we
posed in the previous step, we are forced to accept the formulas we stated
as an axiom schemata and also that it is quite natural to read the formula
AI as “behaving classically”.

We shall begin with the case of APCL110, i.e. the formula NNA ⊃ A.

x |=W NNA ⇐⇒ ∀z (xRz ⇒ z |=W A) TW6

=⇒ xRx ⇒ x |=W A

⇐⇒ x |=W A R : reflexive

Therefore, with the help of TW3 we have x |=W (NNA ⊃ A) for all the
“worlds” x which forces us to accept NNA ⊃ A as an axiom scheme.

For the case of APCL111, i.e. the formula A ∨ NA runs as follows:

x |=W ¬A ⇐⇒ x 6|=W A TW1
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⇐⇒ xRx & x 6|=W A R : reflexive

=⇒ ∃y (xRy & y 6|=W A)

⇐⇒ x |=W NA DW2

So, again with the help of TW3 we have x |=W (¬A ⊃ NA) and thus
x |=W (A ∨ NA) for all the “worlds” x. This means that we are again
forced to accept A ∨ NA as an axiom scheme.

Finally, the case of AI runs as follows:

⊢CPC A =⇒ ∀y (y |=W A) definition of {Γλ}λ∈Λ

⇐⇒ ∀y (xRy ⇒ y |=W A) R : reflexive

⇐⇒ x |=W NNA TW6

=⇒ x |=W (A ⊃ NNA) TW2

This shows that if A is a thesis of classical propositional calculus, then
we have x |=W (A ⊃ NNA) for all “worlds” x. In other words, it is
necessary for (A ⊃ NNA) to hold in every “world” if A is a thesis of
classical propositional calculus. This seems to be giving a reason for us
to read the formula AI as “behaving classically”.

7. On the Concrete Notions of “behaving classically”

In this final section we shall first compare the notions of “behaving clas-
sically” given by da Costa and by Waragai and Shidori. After that, we
shall discuss a characterisation of the notion of “behaving classically”
given by Waragai and Shidori.

7.1. On da Costa’s Notion of “behaving classically”

We shall here examine the notion of “behaving classically” given by da
Costa.

Da Costa’s notion of “behaving classically” in C1 is defined as N(A ∧
NA), but for this notion we have the following theses TC11 and TC12
which show that the formulas we reach by switching the places of A and
NA are not logically equivalent:

⊢C1 N(A ∧ NA) ⊃ N(NA ∧ A)TC11

0C1 N(NA ∧ A) ⊃ N(A ∧ NA)TC12
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The latter result TC12 was first shown in [Urbas, 1989], and Marcos
says that there seems to be no particular reason to accept this result
(see [Marcos, 2005c]). Now we shall see what is the case for the same
formulas in PCL1.

TPCL151 0PCL1 N(A ∧ NA) ⊃ N(NA ∧ A)

Proof. Use the matrix given below, and assign the value ½ to A. Then
the formula we are considering takes the value 0 which gives the desired
result.

∧ 1 ½ 0

1 1 1 0

½ ½ ½ 0

0 0 0 0

∨ 1 ½ 0

1 1 1 1

½ 1 ½ ½

0 1 ½ 0

⊃ 1 ½ 0

1 1 ½ 0

½ 1 ½ 0

0 1 1 1

N

1 0

½ 1

0 1

Note that 1 and ½ are the distinguished values. ⊣

TPCL152 0PCL1 N(NA ∧ A) ⊃ N(A ∧ NA)

Proof. Use the matrix given below, and assign the value ½ to A. Then
the formula we are considering takes the value 0 which gives the desired
result.

∧ 1 ½ 0

1 1 ½ 0

½ 1 ½ 0

0 0 0 0

∨ 1 ½ 0

1 1 1 1

½ 1 ½ ½

0 1 ½ 0

⊃ 1 ½ 0

1 1 ½ 0

½ 1 ½ 0

0 1 1 1

N

1 0

½ 1

0 1

Note that 1 and ½ are the distinguished values. ⊣

Remark. The three-valued matrix we made use of here also enables us to
give a simple proof of TC12 compared with the one given in Theorem 4
of [Urbas, 1989].

Now above two results show that the case is actually worse in PCL1.
But here, it should be noted that in PCL1, these two formulas do not

play the same role as it does in C1. Therefore, these results are not so
serious as it was in C1.

However, da Costa’s approach, which tries to internalise the notion
regulating the explosion of the system by making use of a certain form
of the law of non-contradiction, seems to be quite a natural one. This
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is because there are relations between the law of non-contradiction and
paraconsistency. We won’t of course be able to say that the system is
always explosive with respect to A and N, though if we were sure, to
some extent, that it is not the case that both A and NA hold, then it
must be reasonable to require the system to be explosive with respect
to A and N in such a case. And actually, as for this point we have the
following results in PCL1:

TPCL153 ⊢PCL1 AI ⊃ ¬(A ∧ NA) TPCL112, (RAS)

TPCL154 ⊢PCL1 ¬(A ∧ NA) ⊃ AI TPCL123, (RA), (DT), D1

TPCL155 ⊢PCL1 AI ≡ ¬(A ∧ NA) TPCL153, TPCL154

TPCL156 ⊢PCL1 AI ≡ ¬(NA ∧ A) TPCL155

TPCL155 says that the notion of “behaving classically” in PCL1 ac-
tually has a relation with a certain type of the law of non-contradiction
differing from da Costa’s notion only in the outer negation. In the for-
mula ¬(A ∧ NA), we won’t be troubled by switching the place of A and
NA, as is shown in TPCL156, since the strong negation has at least the
power of intuitionistic negation.

With this result in PCL1 at hand, we shall come back to see and
analyse the notion given by da Costa in C1.

⊢C1 N(A ∧ NA) ≡ ¬(A ∧ NA)TC13

0C1 N(NA ∧ A) ≡ ¬(A ∧ NA)TC14

0C1 N(NA ∧ A) ≡ ¬(NA ∧ A)TC15

As TC13 shows, the same result as TPCL155 holds in C1 but with the
switched version, as is proved in TC14 and TC15, the outer N cannot
be replaced with the strong negation, which is the classical negation in
C1. So, these results seem to be the root of the undesired result for da
Costa’s notion.

7.2. A Characterisation of AI in PCL1C

In this subsection, we shall go on a little further to see the notion of
“behaving classically” in PCL1 and PCL1C and try to give a character-
isation of AI in PCL1C. We shall start by examining AI in PCL1.

TPCL157 ⊢PCL1 (A ∧ NA) ⊃ ¬(AI) TPCL113, (RAS)

TPCL158 0PCL1 ¬(AI) ⊃ (A ∧ NA)
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Proof. Assign ½ to A in Alves’ matrix which we have already men-
tioned. ⊣

From these two results TPCL157 and TPCL158, we can regard ¬(AI) as
expressing “inconsistency” not being “contradictory” in the sense given
by Carnielli, Coniglio and Marcos in their Logics of Formal Inconsistency.
However, what seems to be more interesting to us is the case of PCL1C
as we shall see in the following.

TPCL159 ⊢PCL1C ¬(AI) ⊃ (A ∧ NA) [TPCL134, APCL110]

This TPCL159 is saying that the inverse direction of TPCL157, which was
falsified in PCL1, is a thesis of PCL1C. So, combining this with TPCL157,
we have TPCL160 below which shows that the strong negation of AI is
exactly equivalent to A ∧ NA.

TPCL160 ⊢PCL1C ¬(AI) ≡ (A ∧ NA) TPCL157, TPCL159

With this result in mind, we propose a way of reading AI in PCL1C. For
this purpose, we make some definitions first.

Definition 7. Let L be a logic and Γ be a theory of L. Then,

• A is said to be pre-normal in Γ with respect to ¬ when both Γ 0L A
and Γ 0L ¬A hold.

• A is said to be normal in Γ with respect to ¬ when only one of Γ 0L A
or Γ 0L ¬A holds.

• A is said to be non-normal in Γ with respect to ¬ when both Γ ⊢L A
and Γ ⊢L ¬A hold.

Since we have the following results in PCL1C,

⊢PCL1 AI ≡ ¬(A ∧ NA)TPCL155

⊢PCL1C ¬(AI) ≡ (A ∧ NA)TPCL160

we can give a way of reading of AI in PCL1C as follows:

Theorem 15. Let Γ be a non-trivial theory of PCL1C. Then,

• A is pre-normal or normal in Γ with respect to N, if Γ ⊢PCL1C AI.

• A is non-normal in Γ with respect to N iff Γ ⊢PCL1C ¬(AI).
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Proof. For the former, the proof runs as follows:

Γ ⊢PCL1C AI ⇐⇒ Γ ⊢PCL1C ¬(A ∧ NA) (TPCL155)

=⇒ Γ 0PCL1C (A ∧ NA)

⇐⇒ Γ 0PCL1C A or Γ 0PCL1C NA

⇐⇒ A is pre-normal or normal in Γ with respect to N

And for the latter, we can prove it as follows:

Γ ⊢PCL1C ¬(AI) ⇐⇒ Γ ⊢PCL1C A ∧ NA (TPCL160)

⇐⇒ Γ ⊢PCL1C A & Γ ⊢PCL1C NA

⇐⇒ A is non-normal in Γ with respect to N ⊣

As a matter of fact, we can actually prove a refined result of Theo-
rem 15 by adding some conditions for the non-trivial theory Γ. In order
to acheive this, we make use of the following two lemmas:

Lemma 1. Let Γ be a maximal consistent theory of PCL1C. Then the

following holds:

Γ 0PCL1C A ⇐⇒ Γ ⊢PCL1C ¬A

Proof. From the left to the right follows by the maximality of Γ, and
the other way around follows by the consistency of Γ. ⊣

Lemma 2. Let Γ be a maximal consistent theory of PCL1C. Then, it is

not the case that both Γ 0PCL1C A and Γ 0PCL1C NA hold, i.e. either

Γ ⊢PCL1C A or Γ ⊢PCL1C NA holds.

Proof. 1. Γ 0PCL1C A sup.

2. Γ 0PCL1C NA sup.

3. Γ ⊢PCL1C ¬A 1, Lemma 1

4. Γ ⊢PCL1C A ∨ NA APCL111

5. Γ ⊢PCL1C NA 3, 4

6. Contradiction 2, 5 ⊣

With the help of above two lemmas, we can see that AI in a maximally
consistent theory of PCL1C can be characterised as follows:



156 Toshiharu Waragai, Hitoshi Omori

Theorem 16. Let Γ be a maximally consistent theory of PCL1C. Then

• A is normal in Γ with respect to N iff Γ ⊢PCL1C AI.

• A is non-normal in Γ with respect to N iff Γ ⊢PCL1C ¬(AI).

Proof. For the former, the proof runs as follows:

Γ ⊢PCL1C AI ⇐⇒ Γ ⊢PCL1C ¬(A ∧ NA) (TPCL155)

⇐⇒ Γ 0PCL1C (A ∧ NA) (Lemma 1)

⇐⇒ Γ 0PCL1C A or Γ 0PCL1C NA

⇐⇒ Γ 0PCL1C A or Γ 0PCL1C NA) &

(Γ ⊢PCL1C A or Γ ⊢PCL1C NA) (Lemma 2)

⇐⇒ (Γ 0PCL1C A & Γ ⊢PCL1C NA) or

(Γ ⊢PCL1C A & Γ 0PCL1C NA)

⇐⇒ A is normal in Γ with respect to N

As for the latter, the proof is already given in Theorem 15. ⊣

Note that theorems 15 and 16 still hold even if we replace PCL1C,
AI with C1, A◦ respectively.
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