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INCONSISTENCY-ADAPTIVE MODAL LOGICS

On How to Cope with Modal Inconsistency

Abstract. In this paper, I will characterize a new class of inconsistency-
adaptive logics, namely inconsistency-adaptive modal logics. These log-
ics cope with inconsistencies in a modal context. More specifically, when
faced with inconsistencies, inconsistency-adaptive modal logics avoid ex-
plosion, but still allow the derivation of sufficient consequences to ade-
quately explicate the part of human reasoning they are intended for.
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1. Introduction

Paraconsistent modal logics (pML, see e.g. [12, 14, 22]) are obtained by
adding the modal operators � (necessity) and ♦ (possibility) to a para-
consistent logic. As usual, the modal operators are interpreted as deon-
tic, alethic, doxastic, epistemic, . . . operators, depending on their specific
characteristics. Moreover, as pML are based on paraconsistent logics,
they do not validate Ex Falso Quodlibet (EFQ: A, ∼ A/B). Hence, pML

combine the expressive power of modal logics with the non-explosive
character of paraconsistent logics. As such, they seem well-suited to
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explicate normative reasoning, reasoning about beliefs, reasoning about
knowledge, . . . . In all of these, people frequently come to inconsistent
conclusions, without leaping into triviality (e.g. holding inconsistent be-
liefs isn’t equal to believing everything).

Despite the absence of EFQ, paraconsistent modal logics do not cap-
ture the intended part of human reasoning in a realistic way. For, they
reach paraconsistency by invalidating some of the classical rules of in-
ference, for example modus ponens (A, A ⊃ B/B), disjunctive syllogism
(A ∨ B, ∼ A/B), modus tollens (A ⊃ B, ∼ B/ ∼ A), the de Morgan laws,
. . . . These inference rules are central to human reasoning. They are fre-
quently used and they hardly ever lead to trivial consequences. Hence,
as pML do not validate these inference rules, they do not have sufficient
deductive strength to explicate human reasoning in an adequate way.

The above problem is not specific to pML, but applies to paracon-
sistent logics in general. Notable exceptions are inconsistency-adaptive
logics (iAL, see e.g. [1, 2, 9]). The latter do not invalidate the above infer-
ence rules in general, but only invalidate their problematic applications
(the applications that, if allowed, would lead to trivial consequences).
Hence, when applied to consistent premise sets, iAL validate all applica-
tions, for none of them is problematic in this case. This means that iAL

only invalidate those applications of the classical inference rules that are
problematic for the specific premise set they are applied to. As a con-
sequence, iAL are said to oscillate between a paraconsistent lower limit
logic (allowing no applications of some classical inference rules) and an
explosive upper limit logic (allowing all applications of the classical in-
ference rules). In that way, they combine paraconsistency with sufficient
deductive power to capture human reasoning in a more realistic way.

Up to now, only iAL with a non-modal lower limit logic have been
developed. If modal logics were used within the scope of iAL, this was
solely to characterize (non-modal) paraconsistent inference relations (or
better, inconsistency handling mechanisms) under a (modal) translation,
and not to extend the inconsistency-adaptive approach to modal logics as
such (see e.g. [4, 6, 8, 11, 17, 18, 19, 23]). In this paper, I will show that
the inconsistency-adaptive framework can be extended to modal logics
as well. Basically, I will do so by presenting the inconsistency-adaptive
modal logics iATūNsr

syn and iATūNsr
sem. Both oscillate between the

paraconsistent modal logic TūNs (the lower limit logic) and the explosive
modal logic T (the upper limit logic). Moreover, as other inconsistency-
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adaptive modal logics are characterized equivalently, the result is a new
class of iAL: the class of inconsistency-adaptive modal logics (iAML).

In accordance to their non-modal counterparts, iAML only invali-
date those applications of some inference rules of standard modal logics
that are problematic in view of the particular premise set they are ap-
plied to. Hence, in comparison with other paraconsistent modal logics,
this new class of iAL enables us to explicate more realistically that part
of human reasoning that makes use of modal operators (i.e. reasoning
about beliefs, knowledge, laws, . . . ).

Overview. In Section 2, I will give a short, intuitive characterization of
(non-modal) iAL. In Section 3, I will present the inconsistency-adaptive
modal framework by characterizing the inconsistency-adaptive modal
logics iATūNsr

syn and iATūNsr
sem (sections 3.1–3.3). Moreover, I will

also point out a peculiar feature of those inconsistency-adaptive modal
logics that are characterized semantically by means of a non-reflexive
accessibility relation (Section 3.4). Finally, in Section 4, I will present a
meaningful application of the inconsistency-adaptive modal framework.

2. Inconsistency-Adaptive Logics

As adaptive logics (AL) include, but are not restricted to inconsistency-
adaptive logics (a common misunderstanding about adaptive logics), I
will first give a characterization of AL in general. Next, I will turn to
inconsistency-adaptive logics in particular. The former will be done by
presenting the standard format of AL (see also [3, 5]), the latter by
specifying how inconsistency-adaptive logics fit the standard format of
AL (see also [1, 2, 9]).

The Standard Format. All (standard) adaptive logics are fully charac-
terized by three elements: a lower limit logic (LLL), a set of abnor-
malities Ω (a set of formulas characterized by a logical form F), and an
adaptive strategy.

The LLL is the stable part of an adaptive logic, which comes down
to the fact that all LLL-consequences of a premise set are also AL-
consequences of that premise set. Proof theoretically, this means that in
AL-proofs, all LLL-inference rules may be applied unrestrictedly.
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However, an adaptive logic typically enables to derive more conse-
quences from a premise set than its LLL. The supplementary AL-
consequences are obtained by interpreting a premise set as normally as
possible. This is done by interpreting as false as many elements of Ω (ab-
normalities) as possible. More specifically, this comes down to the fact
that some formulas are conditionally derivable from a premise set: in case
Γ ⊢LLL A ∨ Dab(∆), with Dab(∆) a Dab-formula (a finite disjunction of
abnormalities), then Γ ⊢AL A, unless there are reasons to consider some
elements of ∆ as true (in which case A cannot safely be considered to
be derivable from Γ). Proof theoretically, this means that some condi-
tional inference rules are added to the LLL-proof theory. These may be
applied unless or until there are reasons to consider their consequences
as problematic.

Which of the conditional consequences of a premise set Γ are also
final consequences of Γ (i.e. actual AL-consequences of Γ), depends
on the Dab-consequences of Γ. The latter are the Dab-formulas that
are LLL-derivable from Γ. Obviously, not all abnormalities occurring
in a Dab-consequence can be considered as false. Otherwise, the Dab-
consequence itself cannot possibly be considered as true. Hence, some
of the conditional consequences will have to be rejected (because they
were derived by mistakenly presupposing some of the abnormalities in a
Dab-consequence to be false). Which of them will eventually be rejected,
is determined by the adaptive strategy. Moreover, as different strategies
might reject different conditional consequences, the adaptive strategy can
be regarded as the guideline of how to cope with the Dab-consequences
of a premise set.

Notice that in case no Dab-formulas are LLL-derivable from a
premise set, it is safe to consider all abnormalities as false. As a con-
sequence, the adaptive logic will then yield the same consequence set
as the logic that interprets all abnormalities as false unconditionally (or
equivalently, as the logic that fully validates the inference rules whose
application the adaptive logic only allows conditionally). This logic is
called the upper limit logic (ULL) of an adaptive logic. In general, the
ULL is related to the LLL as set out by the Derivability Adjustment
Theorem (DAT):

Theorem 1 (DAT). Γ ⊢ULL A iff there is some finite ∆ ⊂ Γ such that

Γ ⊢LLL A ∨ Dab(∆).
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How close the AL-consequence set will come to the ULL-consequence
set, depends on the premise set the adaptive logic is applied to. The less
Dab-consequences derivable from the premise set, the closer the AL-
consequence set will come to the ULL-consequence set. This is why
adaptive logicians say that AL adapt themselves to their premise sets.

The Inconsistency-Adaptive Framework. As mentioned in the previous
section, inconsistency-adaptive logics (iAL) are based on a paraconsis-
tent LLL. Hence, all consequences obtained from a premise set by this
paraconsistent logic are also iAL-consequences of that premise set. More
iAL-consequences are obtained by interpreting a premise set as consis-
tently as possible. In fact, this means that iAL presuppose inconsisten-
cies to be false unless there are reasons for not doing so, reasons provided
by those disjunctions of inconsistencies that are LLL-derivable from the
premise set. Obviously, this implies that the set of abnormalities Ω of
an inconsistency-adaptive logic is the set of all inconsistencies (possibly
limited to those of a restricted form). As a consequence, the ULL of an
inconsistency-adaptive logic is a logic that presupposes inconsistencies to
be false unconditionally. In other words, the ULL of an inconsistency-
adaptive logic is an explosive logic (in most cases, it is even classical
logic).

3. Inconsistency-Adaptive Modal Logics

There are two ways to extend the inconsistency-adaptive framework to
modal logics. I have called these respectively the syntactic and the
semantic approach to modal inconsistency. To characterize both ap-
proaches, I will present the inconsistency-adaptive modal logics
iATūNsr

syn and iATūNsr
sem. The former is obtained by means of the

syntactic approach, the latter by means of the semantic approach.

Overview. First, I will characterize the paraconsistent modal logic
TūNs that will serve as the LLL of both iATūNsr

syn and iATūNsr
sem

(in Section 3.1). Next, I will give an intuitive introduction to both the
syntactic as well as the semantic approach to modal inconsistency (in
Section 3.2). After that, I will present both the semantics and the
proof theory of the inconsistency-adaptive modal logics iATūNsr

syn and
iATūNsr

sem, obtained by applying respectively the syntactic and the
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semantic approach to modal inconsistency (in Section 3.3). Finally, I
will point out a peculiar feature of the inconsistency-adaptive modal log-
ics whose LLL is characterized by means of a non-reflexive accessibility
relation (in Section 3.4).

3.1. The Paraconsistent Modal Logic TūNs

The paraconsistent modal logic TūNs is a modal extension of the para-
consistent logic CLūNs (see [7],[16, ch. 4]).1 Moreover, as the logic
TūNs is semantically characterized by means of a reflexive accessibility
relation (see below), it is related to CLūNs in the same way as the (ex-
plosive) modal logic T is related to classical logic. Hence, the logic TūNs

can be considered as the paraconsistent counterpart of the logic T.

Language Schema. Let LM be the standard propositional modal lan-
guage with S, S∼ and WM the sets of sentential letters, negations of
sentential letters, and well-formed formulas respectively. Negation, con-
junction and necessity are taken as primitive, while the other logical
symbols are defined in the usual way.

Semantics. A TūNs-model M for the language LM is a 4-tuple 〈w0,
W, R, v〉, with W a set of worlds, w0 the actual world, R a reflexive
accessibility relation on W , and v : S ∪ S∼ × W −→ {0, 1} an assignment
function.

The valuation function vM : WM × W −→ {0, 1}, determined by the
model M , is defined by means of the following semantic postulates:

SP1 For A ∈ S: vM (A, w) = 1 iff v(A, w) = 1.
SP2 For A ∈ S: vM (∼ A, w) = 1 iff vM (A, w) = 0 or v(∼ A, w) = 1.
SP3 vM (∼ ∼ A, w) = 1 iff vM (A, w) = 1.
SP4 vM (A ∧ B, w) = 1 iff vM (A, w) = 1 and vM (B, w) = 1.
SP5 vM (∼(A ∧ B), w) = 1 iff vM (∼ A, w) = 1 or vM (∼ B, w) = 1.
SP6 vM (�A, w) = 1 iff for all w′ ∈ W , if Rww′ then vM (A, w′) = 1.
SP7 vM (∼�A, w) = 1 iff for some w′ ∈ W , Rww′ and vM (∼ A, w′) = 1.

A model M verifies a formula A ∈ WM iff vM (A, w0) = 1. Also, a
model M is a model of a premise set Γ iff, for all B ∈ Γ, vM (B, w0) = 1.

1In fact, CLūNs is equivalent to Priest’s well-known LP (see [20],[21, ch. 7–8]),
but is characterized quite differently.
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Finally, semantic consequence for the logic TūNs is defined as truth
preservation at the actual world w0:

Definition 1. Γ �TūNs A (A is a TūNs-consequence of Γ) iff A is
verified by all TūNs-models of Γ.

Proof Theory. I will present a Fitch-style natural deduction proof the-
ory for the logic TūNs. Before spelling out the proof theoretic rules,
two important remarks have to be made.2

First of all, the proof theory allows for two kinds of subproofs: clas-
sical subproofs and modal subproofs. The former are the standard kind
of subproofs, well-known from classical logic. The latter are specific for
(paraconsistent) modal logics. They show what would follow from the
hypothesis if it were true in some arbitrary world (see the structural rules
HYP and HYP� below).

Secondly, TūNs-proofs do not only make use of well-formed formulas
(wffs). They also make use of pseudo-formulas:

Definition 2. If A, B ∈ WM then S(A, B) and S�(A, B) are pseudo-
formulas of the modal language LM.

The pseudo-formulas S(A, B) and S�(A, B) express “the formula B
is derivable from the formula A in this world” and “the formula B is
derivable from the formula A in any world” respectively. Hence, they are
used in the proof theory to represent the conclusions that can be drawn
from classical and modal subproofs respectively (see the inference rules
CSP and CSP� below).

Proof Theoretic Rules. First, consider the structural rules of the TūNs-
proof theory.

PREM Premises may be written down at any place in the main proof.
HYP At any place in the proof, one may start a new classical subproof.

This is done by introducing a new hypothesis, together with a
new vertical line on its left.

i A —;HYP
. . . . . . . . .

2The remarks are kept quite intuitive, which will do for the purposes of this paper.
For a full-fledged characterization of this proof theory, see [15].
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HYP� At any place in the proof, one may start a new modal subproof.
This is done by introducing a new hypothesis, together with a
new vertical line on its left. Moreover, to distinguish a modal
subproof from a classical one, a �-symbol is placed next to its
vertical line.

i � A —;HYP�

. . . . . . . . .

REP In the main proof and in both classical and modal subproofs,
formulas (and pseudo-formulas) may be repeated.

REIT Reiteration is restricted to classical subproofs. Hence, formulas
(and pseudo-formulas) may be reiterated in unclosed classical
subproofs, but not in modal subproofs.

Next, consider the TūNs-inference rules. Those presented by means
of a double vertical line (||) allow for derivation in both directions, while
the others only allow for left-right derivation.

CSP If the formula B is the formula on the last line of a classical
subproof that started with the hypothesis A, one may conclude
the pseudo-formula S(A, B).

CSP� If the formula B is the formula on the last line of a modal
subproof that started with the hypothesis A, one may conclude
the pseudo-formula S�(A, B).

CON A, B | A ∧ B CON♦ �A ∧ ♦B | ♦(A ∧ B)
SIM A ∧ B | A; A ∧ B | B CON� �A ∧ �B | �(A ∧ B)
ADD A | A ∨ B; B | A ∨ B DIS� �(A ∨ B) | �A ∨ ♦B
DIL A ∨ B, S(A, C), S(B, C) | C DIS♦ ♦(A ∨ B) | ♦A ∨ ♦B
IMP A ⊃ B || ∼ A ∨ B MP� �A, S�(A, B) | �B
DN ∼ ∼ A || A MP♦ ♦A, S�(A, B) | ♦B
NC ∼(A ∧ B) || ∼ A ∨ ∼ B NEG� ∼�A || ♦∼ A
ND ∼(A ∨ B) || ∼ A ∧ ∼ B NEG♦ ∼♦A || �∼ A
NI ∼(A ⊃ B) || ∼ A ∧ B NEC A ∈ S: A ∨ ∼ A | �(A ∨ ∼ A)
TH A ∈ S: ∅ | A ∨ ∼ A

It is easily verified that the inference rule DIL′ below is a derived rule
of inference of the logic TūNs.

DIL′ A ∨ B, S(A, C) | C ∨ B; A ∨ B, S(B, C) | A ∨ C
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Proof. Consider the generic TūNs-proof below. It not only proves that
DIL′ is a derivable inference rule of TūNs, it also illustrates the proof
theory of TūNs quite nicely.

1 A ∨ B PREM
. . . . . . . . .
i S(A, C) . . .
i+1 B HYP
i+2 C ∨ B i+1;ADD
i+3 S(B, C ∨ B) i+1,i+2;CSP
i+4 A HYP
i+5 A ∨ A i+4;ADD
i+6 S(A, C) i;REIT
i+7 S(A, C) i+6;REP
i+8 C i+5,i+6,i+7;DIL
i+9 C ∨ B i+8;ADD
i+10 S(A, C ∨ B) i+4,i+9;CSP
i+11 C ∨ B 1,i+3,i+10;DIL ⊣

Derivability. A TūNs-proof is defined as a finite sequence of wffs (and
pseudo-wffs), each of which is either a premise or follows from wffs (and
pseudo-wffs) earlier in the list by means of a rule of inference. Moreover,
in order for such a sequence to be a proof, all its subproofs have to be
closed.

Finally, TūNs-derivability is defined as follows:

Definition 3. Γ ⊢TūNs A (A is TūNs-derivable from Γ) iff there is a
proof of the formula A from B1, . . . , Bn ∈ Γ so that A has been derived
on a line i of the main proof.

Soundness and Completeness. Soundness and completeness proofs for
the logic TūNs can be found in [15]. Hence, they will not be repeated
here.

Theorem 2. Γ �TūNs A iff Γ ⊢TūNs A.

Explosion Reconsidered. In TūNs-models, the assignment function as-
signs a truth value to both sentential letters and their negations. Some
valuation functions make use of this feature to assign truth to both a
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sentential letter and its negation (by SP2). The result is a paraconsis-
tent negation. To obtain an explosive negation, SP2 has to be replaced
by SP2c below. The latter characterizes the negation classically, whence
the resulting logic is explosive.

SP2c For A ∈ S: vM (∼ A, w) = 1 iff vM (A, w) = 0.

More specifically, the resulting logic is the normal modal logic T of Feys
(von Wright’s M). Moreover, the proof theory of the logic T is obtained
by adding the following inference rules to the proof theory of the logic
TūNs.

DS For A ∈ S: B ∨ (A ∧ ∼ A) | B
INC For A ∈ S: ♦(A ∧ ∼ A) | A ∧ ∼ A

The soundness and completeness proofs of the logic T are similar to those
of the logic TūNs and can also be found in [15].

To conclude, it is necessary to point out the specific relation between
the paraconsistent logic TūNs and the explosive logic T. First, consider
the set Inc, the set of all possible inconsistencies (more specifically, all
possible inconsistencies that consist of a sentential letter and its nega-
tion).

Definition 4. Inc = {A ∧ ∼ A | A ∈ S} ∪ {♦ . . .♦(A ∧ ∼ A) ∈ WM |
A ∈ S}.

Next, consider Theorem 3. It states that the formula A is derivable
from a premise set by means of the logic T iff a disjunction of A and
some members of Inc is derivable from that premise set by means of the
logic TūNs.

Theorem 3. For a finite ∆ ⊂ Inc, Γ ⊢T A iff Γ ⊢TūNs A ∨
∨

(∆).3

Proof. Right-Left. Obvious in view of the inference rules INC and DS.

Left-Right. Any T-proof of a formula A can be converted into a
TūNs-proof of a formula A ∨

∨
(∆) by making use of the inference rules

DIS�, DIS♦, MP�, MP♦ and the derived rule of inference DIL′. Details
are left to the reader. ⊣

3Obviously,
∨

(∆) represents the disjunction of all members of ∆.
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3.2. How to Cope with Modal Inconsistency?

In order to specify the inconsistency-adaptive modal framework, the
inconsistency-adaptive modal logics iATūNsr

syn and iATūNsr
sem will

be characterized. Both oscillate between the paraconsistent lower limit
logic TūNs and the explosive upper limit logic T. Hence, the lower limit
logic of both logics is the same. Moreover, both logics are also based on
the same adaptive strategy, namely the reliability strategy.4 As a conse-
quence, the difference between both logics solely has to do with the way
the abnormalities are defined. For iATūNsr

syn, they are defined by syn-
tactic means (the syntactic approach to modal inconsistency), while for
iATūNsr

sem, they are defined by semantic means (the semantic approach
to modal inconsistency).

Before focussing on each approach separately, it is necessary to stress
that, as the resulting logics fall within the inconsistency-adaptive frame-
work, the general aim of both approaches is to interpret a premise set
as consistently as possible. This means that the abnormalities defined
by the approaches are inconsistencies. More specifically, they are modal
inconsistencies. Hence, because both approaches are based on different
sets of abnormalities, they not only represent two distinct ways to cope
with modal inconsistency, they also represent two distinct ways to define
what it is for a modal premise set to be inconsistent.

The Syntactic Approach. Because of the equivalence between Theo-
rem 3 (see Section 3.1) and the Derivability Adjustment Theorem of
adaptive logics (see Section 2), it seems quite natural to define the set of
abnormalities of inconsistency-adaptive modal logics as identical to the
set Inc (see Definition 4, Section 3.1). This is exactly what is done by
the syntactic approach.

Definition 5. Ωsyn = {A ∧ ∼ A | A ∈ S} ∪ {♦ . . .♦(A ∧ ∼ A) ∈ WM |
A ∈ S}.

Remember that the elements of Ωsyn (henceforth, abnormalitiessyn)
are taken to be modal inconsistencies. Hence, the possibility opera-

4Because of space limitations, only the reliability strategy is considered in this pa-
per. However, inconsistency-adaptive modal logics can also be based on other strate-
gies, such as for example minimal abnormality, normal selections, counting, . . . . For
more information on those strategies, consult (among others) [5, 10, 23].
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tors that might occur in them cannot be interpreted as operators that
point to an inconsistency (or to an inconsistent world). They have to
be considered an integral part of the inconsistency itself. Obviously,
this is quite counterintuitive, for it is a longstanding tradition to iden-
tify inconsistencies with formulas of the form B ∧ ∼ B. Of course, the
counterintuitive result is due to the fact that the set of abnormalities
is determined purely on syntactic grounds. Nevertheless, this is not the
only reason. It is also due to the fact that (explosive) modal logics yield
the trivial consequence set for premise sets from which formulas of the
form ♦ . . .♦(B ∧ ∼ B) are derivable. This is at least as counterintuitive,
for why should triviality be the result of inconsistencies that are merely
possible, and not actual? Hence, it might be better to call the elements
of Ωsyn triviality-generating formulas instead of inconsistencies. If this is
done, the syntactic approach to modal inconsistency makes perfect sense:
it interprets as many triviality-generating formulas as possible as false.
Hence, the syntactic approach to modal inconsistency (I will keep the
name!) interprets a premise set as free of triviality-generating formulas
as possible.5

The Semantic Approach. Instead of focussing on triviality-generating
formulas (as does the syntactic approach), the semantic approach to
modal inconsistency focusses on standard inconsistencies, whence on
formulas of the form B ∧ ∼ B. Hence, the set of abnormalities of in-
consistency-adaptive modal logics obtained by means of the semantic
approach is defined as follows:

Definition 6. Ωsem = {A ∧ ∼ A | A ∈ S}.

However, because of the modal (hence, possible world) context, more
needs to be said. For, the semantic approach does not focuss on incon-
sistencies as such. It focusses on reachable inconsistencies, which are
inconsistencies (elements of Ωsem) that are true in a reachable world. A
reachable world is a world that is somehow connected with the actual
world w0. More specifically, a world wn is considered as reachable, when-

5I am aware of the fact that the term “triviality-generating formula” might not be
the best one around to refer to elements of Ωsyn. For, in paraconsistent modal logics,
they do not generate triviality at all (on the contrary, an inconsistency remains an
inconsistency, whether it generates triviality or not). However, it is the best term I
could come up with. Hence, it has to do, at least for this paper.
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ever it is possible to go from w0 to wn in a finite number of steps, by
jumping from one accessible world to another. Hence, the semantic ap-
proach to modal inconsistency interprets a premise set as consistently
as possible by interpreting the set of all reachable worlds as consistently
as possible. In other words, the approach interprets as many reachable
inconsistencies as possible as false.

Obviously, reachable inconsistencies are syntactically represented by
the elements of the set Inc (see Definition 4, Section 3.1). Hence, from
a syntactic point of view, the semantic approach will falsify as many
elements of the set Inc as possible. So, from this point of view, the
semantic approach to modal inconsistency looks exactly the same as the
syntactic approach. The only difference seems to be that in the semantic
approach, the possibility operators that might occur in the elements of
the set Inc are not considered an integral part of the inconsistency (as
in the syntactic approach), but are taken to point to the fact that some
inconsistency is true in a reachable world (or, that some reachable world
is inconsistent). However, this is not merely a difference in interpre-
tation, because for some premise sets the approaches do yield different
consequence sets (see below).

Comparing the Approaches I. To compare both approaches, I will point
out the differences and correspondences between the logics iATūNsr

syn

and iATūNsr
sem, obtained by application of respectively the syntactic

and the semantic approach to modal inconsistency.

First of all, inconsistency-adaptive modal logics have the same upper
limit logic in case they are characterized by the same lower limit logic,
even if they are obtained by application of a different approach to modal
inconsistency. This is due to the fact that both approaches falsify as
many elements of the set Inc as possible. Hence, for both approaches
the upper limit logic is the logic that interprets the elements of the set
Inc as false unconditionally. Obviously, this logic will only be different
in case the lower limit logic is different. As a consequence, the upper
limit logic of iATūNsr

syn and iATūNsr
sem, both based on the lower

limit logic TūNs, is the logic T (because of Theorem 3).

Secondly, for some premise sets, these approaches yield different con-
sequence sets. As this is best illustrated by means of an example, con-
sider the premise set Γ = {q ∨ ♦(p ∧ ∼ p),♦♦(p ∧ ∼ p)}. For the logic
iATūNsr

syn, the formula q is derivable from Γ in case it is safe to in-
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terpret the triviality-generating formula ♦(p ∧ ∼ p) as false. This is the
case, for the formula ♦(p ∧ ∼ p) is not derivable from Γ by means of the
lower limit logic TūNs. Hence, the formula q is iATūNsr

syn-derivable
from Γ. On the other hand, for the logic iATūNsr

sem, the formula q is
derivable from Γ in case it is safe to state that p ∧ ∼ p is not a reachable
inconsistency. For, if p ∧ ∼ p is not a reachable inconsistency, then the
formula ♦(p ∧ ∼ p) has to be false (as it expresses that p ∧ ∼ p is a reach-
able inconsistency). Because of this, the formula q becomes derivable
from Γ. However, the formula ♦♦(p ∧ ∼ p) also expresses that p ∧ ∼ p
is a reachable inconsistency. Hence, as the latter is derivable from Γ by
means of the lower limit logic TūNs, it is not safe to state that p ∧ ∼ p
is not a reachable inconsistency. As a consequence, the formula q is not
an iATūNsr

sem-consequence of Γ.

Finally, the choice for a particular approach to modal inconsistency
is a fundamental one, for for some premise sets the approaches yield in-
comparable consequence sets. By this, I mean that neither of these conse-
quence sets is a subset of the other. (Of course, for some premise sets, the
respective consequence sets will be comparable, sometimes even identi-
cal). Moreover, irrespective of the specific constraints on the accessibility
relation of the modal lower limit logic, there will always be premise sets
for which the consequence set yielded by an inconsistency-adaptive modal
logic based on the syntactic approach is incomparable with the conse-
quence set yielded by the corresponding inconsistency-adaptive modal
logic based on the semantic approach. This will be proven later on (in
Section 3.3.3).

3.3. The inconsistency-adaptive modal logics

iATūNsr
syn and iATūNsr

sem

In this section, I will characterize both the semantics and proof theory of
the inconsistency-adaptive modal logics iATūNsr

syn and iATūNsr
sem.

Although both logics are characterized differently, some parts of their
characterization are equivalent. For those parts, I will use iATūNsr in
order to refer to both iATūNsr

sem and iATūNsr
syn simultaneously.

3.3.1. Semantics

Intuitively, the logic iATūNsr interprets a premise set as consistently
as possible (see Section 3.2). Semantically, this is expressed by the fact
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that the iATūNsr-models of a premise set are those TūNs-models of
a premise set that verify the fewest abnormalities. In other words, the
semantics of the logic iATūNsr is a so-called preferential semantics,
meaning that some models of a premise set are preferred over others. As
a consequence, the iATūNsr-consequences of a premise set are defined
by reference to the set of preferred TūNs-models of that premise set.
Because the logic iATūNsr is based on the reliable strategy, this set is
the set of the reliable TūNs-models of that premise set.

Definition 7. Γ �iATūNsr A (A is an iATūNsr-consequence of Γ) iff
A is verified by all reliable TūNs-models of Γ.

As the reliable models of a premise set Γ are determined differently
for the logics iATūNsr

syn and iATūNsr
sem, they will be characterized

separately.

The Syntactic Approach. Whether a particular TūNs-model M of a
premise set Γ is also an iATūNsr

syn-model of Γ (henceforth, a reliablesyn

model of Γ), depends on its abnormal partsyn . The latter is the set of
abnormalitiessyn that are verified by the model.

Definition 8. Where M is a TūNs-model, the abnormal partsyn of M
is the set Ab(M)syn = {A ∈ Ωsyn | vM (A, w0) = 1}.

More specifically, in order for a TūNs-model of a premise set Γ to
be a reliablesyn model of Γ, its abnormal partsyn should not contain
any abnormalitiessyn that are not also in the set U(Γ)syn , the set of
unreliablesyn formulas of Γ.

Definition 9. A TūNs-model M of Γ is reliablesyn iff Ab(M)syn ⊆
U(Γ)syn .

The set of unreliablesyn formulas of a premise set Γ is the set of all
abnormalitiessyn that occur in a minimal Dabsyn-consequence of Γ. A
Dabsyn-consequence of Γ, is a Dabsyn-formula (a disjunction of abnormali-
tiessyn) that is TūNs-derivable from Γ. Moreover, a minimal Dabsyn-
consequence of a premise set Γ is a Dabsyn-consequence of Γ for which
none of its subformula-disjunctions is also a Dabsyn-consequence of Γ.

Notational Convention 1. Dab(∆) =
∨

(∆), for ∆ ⊂ Ωsyn .
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Definition 10. Dab(∆) is a minimal Dabsyn-consequence of Γ iff
Γ �TūNs Dab(∆) and there is no ∆′ ⊂ ∆ such that Γ �TūNs Dab(∆′).

Definition 11. U(Γ)syn = ∆1 ∪ ∆2 ∪ . . . for Dab(∆1), Dab(∆2), . . . the
minimal Dabsyn-consequences of Γ.

The Semantic Approach. The iATūNsr
sem-models of a premise set

(henceforth, the reliablesem models of a premise set) are determined more
or less in the same way as the reliablesyn models. First of all, whether a
TūNs-model of a premise set is also a reliablesem model of that premise
set, depends heavily on the abnormal partsem of the model, which is the
set of all reachable inconsistencies it verifies.

Definition 12. Where M is a TūNs-model, the set of reachable worlds
of M is the set Reach(M) = {wn ∈ W | wn = w0, or Rw0wn is the case in
M , or ∃wi1

, . . . , win−1
∈ W such that Rw0wi1

, Rwi1
wi2

, . . . , Rwin−1
wn

are the case in M}.

Definition 13. Where M is a TūNs-model, the abnormal partsem of
M is the set Ab(M)sem = {A ∈ Ωsem | ∃w ∈ Reach(M): vM (A, w) = 1}.

More specifically, a TūNs-model of a premise set Γ is a reliablesem

model of Γ in case its abnormal partsem doesn’t contain any abnor-
malitiessem (elements of Ωsem) that are not also in the set U(Γ)sem , the
set of unreliablesem formulas of Γ.

Definition 14. A TūNs-model M of Γ is reliablesem iff Absem(M) ⊆
U(Γ)sem .

The set Usem(Γ) is the set of all abnormalitiessem that occur in a
minimal Dabsem-consequence of Γ.

Notational Convention 2. DabΘ(∆) =
∨

(Θ), for Θ ⊂ Inc and ∆ =
{A ∈ Ωsem | A occurs in

∨
(Θ)}.

Definition 15. U(Γ)sem = ∆1 ∪ ∆2 ∪ . . . for DabΘ1(∆1), DabΘ2(∆2),
. . . the minimal Dabsem-consequences of Γ.

A Dabsem-consequence of Γ is a Dabsem-formula (a disjunction of
elements of the set Inc!) that is TūNs-derivable from Γ. Moreover, a
minimal Dabsem-consequence DabΘ(∆) of Γ is a Dabsem-consequence of
Γ for which there is no other Dabsem-consequence DabΘ′

(∆′) of Γ such
that ∆′ ⊂ ∆.
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q ∨ ♦(p ∧ ∼ p)

♦(p ∧ ∼ p)•
w0

•
w1

?

Rw0w1

Rw1w1

♦♦(p ∧ ∼ p)

p ∧ ∼ p

Table 1. A TūNs-model of Γ.

Definition 16. DabΘ(∆) is a minimal Dabsem-consequence of Γ iff
Γ �TūNs DabΘ(∆) and there is no Θ′ ⊂ Inc and no ∆′ ⊂ ∆ such
that also Γ �TūNs DabΘ′

(∆′).

Comparing the Approaches II. The difference between the syntactic
and the semantic approach to modal inconsistency can now be stated
more clearly. Consider again the premise set Γ = {q ∨♦(p ∧ ∼p),♦♦(p ∧
∼ p)} from Section 3.2. Now, consider both the set of unreliablesyn for-
mulas and the set of unreliablesem formulas of Γ.

1. U(Γ)syn = {♦♦(p ∧ ∼ p),♦♦♦(p ∧ ∼ p),♦♦♦♦(p ∧ ∼ p), . . .}
2. U(Γ)sem = {p ∧ ∼ p}

As a consequence, all reliablesyn models of Γ falsify the formula ♦(p ∧
∼ p) (as it is not an element of U(Γ)syn). Hence, the formula q is an
iATūNsr

syn-consequence of Γ (for it is verified by all reliablesyn models
of Γ). On the other hand, some reliablesem models of Γ do verify the
formula ♦(p ∧ ∼ p) (for example, see table 1). As some of these models
also falsify the formula q, q is not an iATūNsr

sem-consequence of Γ.

3.3.2. Proof Theory

As iATūNsr is an adaptive logic, its proof theory has some charac-
teristic features that are shared by all adaptive logics. First of all, an
iATūNsr-proof is a succession of stages, each consisting of a sequence of
lines. Adding a line to a proof means to move on to a next stage of the
proof. Secondly, the lines of an iATūNsr-proof consist of four elements
(instead of the usual three): a line number, a formula, a justification,
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and an adaptive condition. The latter is a finite subset of Ω (the set of
abnormalities). Thirdly, as long as all elements of the adaptive condition
of a line i can be considered as false, the formula of line i is considered as
derivable from the premise set. In order to indicate that not all elements
of the adaptive condition of line i can be considered as false anymore,
line i is marked (formally, this is done by placing the symbol X next to
the adaptive condition). Obviously, when a line is marked, the formula
on that line is not considered as derivable anymore. Finally, the mark-
ings of an iATūNsr-proof are dynamic. At some stage of the proof, a
line might be marked (resp. unmarked), while at a later stage, it might
become unmarked (resp. marked) again.

General Characterization. The iATūNsr-proof theory consists of both
deduction rules and a marking criterion. The deduction rules determine
how new lines may be added to a proof, while the marking criterion de-
termines at every stage of the proof which lines have to be marked.

As the deduction rules and the marking criterion are different for the
logics iATūNsr

syn and iATūNsr
sem, they will be characterized sepa-

rately.

The Syntactic Approach. The deduction rules of the logic iATūNsr
syn

are listed in shorthand notation, with

A ∆

expressing that A occurs in the proof on the condition ∆.

PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An ⊢TūNs B: A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪ ∆n

RCsyn If A1, . . . , An ⊢TūNs B ∨ Dab(Θ) A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Θ
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Notice that the deduction rules are fully determined by the logic TūNs

(the lower limit logic of iATūNsr
syn) and by the set of abnormalities

Ωsyn. Hence, the deduction rules are completely independent of the
adaptive strategy. On the other hand, the marking criterion is completely
determined by the adaptive strategy, in this case the reliability strategy.

Whether a line i is marked at a stage s of an iATūNsr
syn-proof,

depends on the set Us(Γ)syn , the set of unreliablesyn formulas at stage
s of the proof. The latter are the abnormalitiessyn that occur in the
minimal Dabsyn-consequences that have been derived at stage s.

Definition 17. Dab(∆) is a minimal Dabsyn-consequence of Γ at stage
s of the proof iff Dab(∆) is derived at stage s on the condition ∅ and
there is no ∆′ ⊂ ∆ such that Dab(∆′) is also derived at stage s on the
condition ∅.

Definition 18. Us(Γ)syn = ∆1 ∪ ∆2 ∪ . . . for Dab(∆1), Dab(∆2), . . .
the minimal Dabsyn-consequences of Γ at stage s of the proof.

Marking now proceeds as follows: at a stage s, a line is marked
in case its condition shares some abnormalities with the set Us(Γ)syn .
Hence, consider the actual marking definition of the logic iATūNsr

syn:

Definition 19. Line i is marked at stage s iff, where ∆ is its condition,
∆ ∩ Us(Γ)syn 6= ∅.

The Semantic Approach. The logic iATūNsr
sem also has three deduction

rules: PREM, RU, and RCsem . The rules PREM and RU are as for
the logic iATūNsr

syn (see above). Hence, only the rule RCsem is new.
Consider it below.

RCsem If A1, . . . , An ⊢TūNs B ∨ DabΘ(Σ) A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Σ

Not only the deduction rules of the logic iATūNsr
sem are quite sim-

ilar to those of the logic iATūNsr
syn, also the marking criterion is.

More specifically, marking for iATūNsr
sem is defined by reference to the

set Us(Γ)sem , the set of unreliablesem formulas at stage s of the proof.
The latter are the abnormalitiessem that occur in the minimal Dabsem-
consequences that have been derived at stage s.
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Definition 20. DabΘ(∆) is a minimal Dabsem-consequence of Γ at stage
s of the proof iff DabΘ(∆) has been derived at stage s on the condition
∅, and there is no Θ′ ⊂ Inc and no ∆′ ⊂ ∆ such that DabΘ′

(∆′) is also
derived at stage s on condition ∅.

Definition 21. Us(Γ)sem = ∆1 ∪ ∆2 ∪ . . . for DabΘ1(∆1), DabΘ2(∆2),
. . . the minimal Dabsem-consequences of Γ at stage s of the proof.

Marking for the logic iATūNsr
sem now proceeds as follows: at stage

s, a line is marked in case its condition shares some abnormalitiessem

with the set Us(Γ)sem . Hence, consider the actual marking definition:

Definition 22. Line i is marked at stage s iff, where ∆ is its condition,
∆ ∩ Us(Γ)sem 6= ∅.

Defining Derivability. At every stage of an iATūNsr-proof from a
premise set Γ, all formulas that occur as the second element of an un-
marked line are considered as derivable from Γ.

Definition 23. A is derived from Γ at stage s of an iATūNsr-proof iff
A is the second element of an unmarked line at stage s.

However, because of the dynamic nature of iATūNsr-proofs, this
definition of derivability is rather problematic. Markings may change
at every stage of the proof, so that for every new stage, it has to be
reconsidered whether or not a formula is derivable from the premise set.
Luckily, it is also possible to define a stable notion of derivability, called
final derivability.

Definition 24. A is finally derived from Γ on line i of a proof at stage
s iff (i) A is the second element of line i, (ii) line i is not marked at stage
s, and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked.

Because of its stability, the notion of final derivability is used to define
iATūNsr-derivability.

Definition 25. Γ ⊢iATūNsr A (A is iATūNsr-derivable from Γ) iff A is
finally derived on a line of a proof from Γ.
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Example. In order to illustrate the proof theory of both iATūNsr
syn

and iATūNsr
sem, consider the proof below. It is based on the premise

set Γ = {�(q ∨ p),♦�∼ p,�(p ∨ r),��∼ r,♦r,�♦p}. In order to use
the same example for both logics, each line of the proof below has two
adaptive conditions. The left one is the iATūNsr

syn-condition, while the
right one is the iATūNsr

sem-condition. A line is marked for the logic
iATūNsr

syn (resp. iATūNsr
sem) in case a X-symbol is placed next to

the corresponding condition.

1 �(q ∨ p) –;PREM ∅ ∅
2 ♦�∼ p –;PREM ∅ ∅
3 �(p ∨ r) –;PREM ∅ ∅
4 ��∼ r –;PREM ∅ ∅
5 ♦r –;PREM ∅ ∅
6 �♦p –;PREM ∅ ∅
7 ♦q ∨ ♦(p ∧ ∼ p) 1,2;RU ∅ ∅
8 ♦q 7;RCsyn/RCsem {♦(p ∧ ∼ p)} {p ∧ ∼ p}

At stage 8 of the proof, no Dab-consequences have been derived yet. As
a consequence, both U8(Γ)syn and U8(Γ)sem are empty. Accordingly, no
lines are marked, so that the formula ♦q (on line 8) is considered as
derivable from Γ by both iATūNsr

syn and iATūNsr
sem.

8 ♦q 7;RCsyn/RCsem {♦(p ∧ ∼ p)} X {p ∧ ∼ p} X

9 ♦(p ∧ ∼ p) ∨ ♦(r ∧ ∼ r) 2,3,4;RU ∅ ∅

At stage 9 of the proof, a Dab-consequence has been derived on line 9. As
a consequence, U9(Γ)syn = {♦(p ∧ ∼ p),♦(r ∧ ∼ r)} and U9(Γ)sem = {p ∧
∼ p, r ∧ ∼ r}, which results in the marking of line 8 for both iATūNsr

syn

and iATūNsr
sem. Hence, at stage 9 of the proof, the formula ♦q is not

considered as derivable anymore.

8 ♦q 7;RCsyn/RCsem {♦(p ∧ ∼ p)} {p ∧ ∼ p}
9 ♦(p ∧ ∼ p) ∨ ♦(r ∧ ∼ r) 2,3,4;RU ∅ ∅
10 ♦(r ∧ ∼ r) 4,5;RU ∅ ∅

At stage 10 of the proof, the Dab-consequence on line 9 is not a minimal
Dab-consequence anymore. For, on line 10 a smaller Dab-consequence
has been derived. As a consequence, U10(Γ)syn = {♦(r ∧ ∼ r)} and
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U10(Γ)sem = {r ∧ ∼ r}. Hence, line 8 becomes unmarked again, so that
the formula ♦q is again considered as derivable from Γ.

8 ♦q 7;RCsyn/RCsem {♦(p ∧ ∼ p)} {p ∧ ∼ p} X

9 ♦(p ∧ ∼ p) ∨ ♦(r ∧ ∼ r) 2,3,4;RU ∅ ∅
10 ♦(r ∧ ∼ r) 4,5;RU ∅ ∅
11 ♦♦(p ∧ ∼ p) 2,6;RU ∅ ∅

Finally, at stage 11 of the proof, another Dab-consequence has been
derived. As a consequence, U11(Γ)syn = {♦(r ∧ ∼ r),♦♦(p ∧ ∼ p)} and
U11(Γ)sem = {r ∧ ∼ r, p ∧ ∼ p}. Line 8 becomes marked again, but only
for the logic iATūNsr

sem. Hence, the formula ♦q is now considered as
derivable from Γ by means of the logic iATūNsr

syn, but not by means of
the logic iATūNsr

sem. Moreover, given the premise set Γ, this will also
be the case at the final stage of the proof.

3.3.3. Metatheory

First, I will prove soundness and completeness for both iATūNsr
syn

and iATūNsr
sem. Next, I will prove that for some premise sets the

approaches to modal inconsistency yield incomparable consequence sets
(as was stated in Section 3.2).

Soundness and Completeness. The logic iATūNsr
syn is characterized

according to the standard format of adaptive logics (see Section 2).
Hence, as soundness and completeness were proven for all adaptive logics
that are characterized accordingly (see [5]), soundness and completeness
for the logic iATūNsr

syn are given.

Theorem 4. Γ ⊢iATūNsr
syn

A iff Γ �iATūNsr
syn

A.

The logic iATūNsr
sem is not characterized according to the standard

format. At least, not completely. Hence, soundness and completeness of
iATūNsr

sem are proven below. First, consider the theorem below.

Theorem 5. Γ ⊢iATūNsr
sem

A iff for some finite Θ ⊂ Inc and ∆ ⊂ Ωsem ,

Γ ⊢TūNs A ∨ DabΘ(∆) and ∆ ∩ U(Γ)sem = ∅.

Proof. The proof is completely equivalent to the proof of Theorem 6
in [5, p. 233]. Hence, it is left to the reader. ⊣
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Next, some preliminary remarks are necessary. First, for each set
∆ ⊆ W, there is a set ∆♦ that is defined as follows:

Definition 26. ∆♦ = ∆ ∪ {♦ . . .♦(A) ∈ WM | A ∈ ∆}.

Second, in the proofs below, I will make use of the classical negation
¬. The latter will be used in a metatheoretic way, to express that a
formula is interpreted as false in the classical sense (hence, the formula
cannot be both true and false at the same time). As a consequence, it is
possible for each set ∆ to define a set ∆¬.

Definition 27. ∆¬ = {¬A | A ∈ ∆}.

Now, the following preliminary lemmas can easily be proven by rely-
ing on Definition 26.

Lemma 1. For all TūNs-models M , Ab(M)syn ⊆ (Ab(M)sem)♦.

Proof. Suppose that A ∈ Ab(M)syn . Hence, M verifies A. Moreover,
as A is of the form B ∧ ∼ B or ♦ . . .♦(B ∧ ∼ B) (for B ∈ S), B ∧ ∼ B
is true at some world w ∈ Reach(M) (by Definition 12 and the semantic
characterization of TūNs). As a consequence, B ∧ ∼ B ∈ Ab(M)sem

(by Definition 13). Of course, this implies that A ∈ (Ab(M)sem)♦ (by
Definition 26). ⊣

Lemma 2. For all TūNs-models M of a premise set Γ, if Ab(M)sem ⊆
U(Γ)sem then (Ab(M)sem)♦ ⊆ (U(Γ)sem)♦.

Proof. Suppose that Ab(M)sem ⊆ U(Γ)sem and that A ∈ (Ab(M)sem)♦.
Hence, A is of the form B ∧ ∼ B or ♦ . . .♦(B ∧ ∼ B), for B ∈ S (by
definitions 13 and 26). As a consequence, B ∧ ∼ B ∈ Ab(M)sem (by
Definition 26). In view of the main supposition, this implies that B ∧
∼ B ∈ U(Γ)sem . Hence, A ∈ (U(Γ)sem)♦ (by Definition 26). ⊣

Lemma 3. For all TūNs-models M , if A ∈ Ab(M)sem then there is some

B ∈ ({A})♦ such that B ∈ Ab(M)syn .

Proof. Suppose that A ∈ Ab(M)sem . In view of the semantic charac-
terization of TūNs, and definitions 12 and 13, this implies that some
B ∈ ({A})♦ is verified by M . As a consequence, B ∈ Ab(M)syn (by
Definition 8). ⊣
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Lemma 4. For all TūNs-models M of a premise set Γ, Ab(M)sem ⊆
U(Γ)sem iff Ab(M)syn ⊆ (U(Γ)sem)♦.

Proof. Left-Right. Suppose that Ab(M)sem ⊆ U(Γ)sem and that A ∈
Ab(M)syn . In view of the lemmas 1 and 2, these suppositions imply that
A ∈ (U(Γ)sem)♦.

Right-Left. Suppose that Ab(M)syn ⊆ (U(Γ)sem)♦ and that A ∈
Ab(M)sem . In view of Lemma 3, these suppositions imply that there is
some B ∈ ({A})♦ such that B ∈ (U(Γ)sem)♦. Well now, suppose that
A /∈ U(Γ)sem . Hence, no B ∈ ({A})♦ can be such that B ∈ (U(Γ)sem)♦

(by Definition 26). As this contradicts the foregoing, A ∈ U(Γ)sem . ⊣

By relying on the lemmas above, the following theorems can now be
proven.

Theorem 6. If Γ has TūNs-models, Γ has iATūNsr
sem-models as well.

Proof. Suppose the set of TūNs-models of Γ is non-empty. Well now,
the reliablesem models of Γ are the TūNs-models M of Γ for which
Ab(M)sem ⊆ U(Γ)sem (see Definition 14). Hence, the reliablesem models
of Γ are the TūNs-models M of Γ for which Ab(M)syn ⊆ (U(Γ)sem)♦

(because of Lemma 4). Hence, the reliablesem models of Γ are the TūNs-
models of Γ that falsify all elements of the set ((Ωsem)♦ − (U(Γ)sem)♦).
Differently put, the reliablesem models of Γ are the TūNs-models of
Γ∪((Ωsem)♦−(U(Γ)sem)♦)¬. As a consequence, Γ has reliablesem models
in case Γ ∪ ((Ωsem)♦ − (U(Γ)sem)♦)¬ has TūNs-models. Suppose the
latter is not the case. Because Γ has TūNs-models, this is only possible
in case there is a finite Θ ⊂ ((Ωsem)♦ − (U(Γ)sem)♦) such that Γ �TūNs

DabΘ(∆) and for which there are no Θ′ ⊂ (Ωsem)♦, ∆′ ⊂ ∆ such that
also Γ �TūNs DabΘ′

(∆′). In fact, this means that DabΘ(∆) is a minimal
Dabsem-consequence of Γ (by Definition 16). Hence, ∆ ⊆ U(Γ)sem and
Θ ⊂ (U(Γ)sem)♦. However, because of the construction of Θ, the latter
is impossible. As a consequence, Γ has reliablesem models. ⊣

Theorem 7. Γ �iATūNsr
sem

A iff some finite Θ ⊂ Inc and ∆ ⊂ Ωsem ,

Γ �TūNs A ∨ DabΘ(∆) and ∆ ∩ U(Γ)sem = ∅.

Proof. Left-Right. Suppose Γ �iATūNsr
sem

A. Hence, A is verified
by all reliablesem models of Γ (by Definition 7). For all reliablesem

models of Γ, Ab(M)sem ⊆ U(Γ)sem (by Definition 14). However, this
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also means that all reliablesem models of Γ falsify all elements of the
set ((Ωsem)♦ − (U(Γ)sem)♦) (by the same reasoning as in the proof of
Theorem 6). Differently put, Γ ∪ ((Ωsem)♦ − (U(Γ)sem)♦)¬ �TūNs A.
Moreover, as TūNs is compact (easily verified by relying on Defini-
tion 3), this implies that there is a finite Γ′ ⊆ Γ and a finite Θ ⊂
((Ωsem)♦ − (U(Γ)sem)♦) such that Γ′ ∪ Θ¬ �TūNs A. But, then also
Γ′ �TūNs A∨

∨
(Θ) (by the characterization of classical negation). Hence,

as the logic TūNs is monotonic, Γ �TūNs A∨
∨

(Θ), which actually comes
down to the following: Γ �TūNs A ∨ DabΘ(∆) for a finite Θ ⊂ Inc and
∆ ⊂ Ωsem . Moreover, ∆ ∩ U(Γ)sem = ∅ (otherwise, it is impossible that
Θ ⊂ ((Ωsem)♦ − (U(Γ)sem)♦)).

Right-Left. Suppose there is a finite Θ ⊂ Inc and ∆ ⊂ Ωsem such that
Γ �TūNs A∨DabΘ(∆) and ∆∩U(Γ)sem = ∅. First of all, Γ �iATūNsr

sem
A

holds vacuously if the set of TūNs-models is empty. So, suppose it
is not empty and that all its members verify A ∨ DabΘ(∆). Hence,
the set of reliablesem models of Γ is not empty (by Theorem 6). As
∆ ∩ U(Γ)sem = ∅, all reliablesem models falsify DabΘ(∆) (otherwise,
Ab(M)sem * U(Γ)sem). So, all reliablesem models verify A. Hence,
Γ �iATūNsr A (by Definition 7). ⊣

Finally, soundness and completeness for the logic iATūNsr
sem can

now be proven.

Corollary 1. Γ ⊢iATūNsr
sem

A iff Γ �iATūNsr
sem

A.

Proof. Immediate from Theorem 5, Theorem 7, and the soundness and
completeness of the Logic TūNs (Theorem 2). ⊣

Comparing the Approaches III. In Section 3.2, I claimed that for some
premise sets the syntactic and semantic approach to modal inconsistency
yield incomparable consequence sets. Moreover, I claimed they do so ir-
respective of the specific constrains on the accessibility relation. I will
now prove this. First, consider Lemma 5 stating that for some premise
sets, the consequence set yielded by inconsistency-adaptive modal logics
based on the syntactic approach (iAMLsyn) is not a subset of the con-
sequence set yielded by the corresponding inconsistency-adaptive modal
logics based on the semantic approach (iAMLsem).

Lemma 5. For some Γ ⊂ WM and some A ∈ WM, Γ ⊢iAMLsyn
A and

Γ 0iAMLsem
A.
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Proof. Consider the premise set Γ = {q ∨ (p ∧ ∼ p),♦(p ∧ ∼ p)}. It
is easily verified that p ∧ ∼ p /∈ U(Γ)syn , while p ∧ ∼ p ∈ U(Γ)sem —
moreover, remark that this is the case irrespective of the constraints on
the accessibility relation of the modal lower limit logic. As a consequence,
the formula q is finally derivable from Γ by all iAMLsyn, but not by any
of the corresponding iAMLsem . ⊣

Also consider Lemma 6. This lemma states that for some premise
sets, the consequence set yielded by iAMLsem is not a subset of the
consequence set yielded by the corresponding iAMLsyn .

Lemma 6. For some Γ ⊂ WM and some A ∈ WM, Γ ⊢iAMLsem
A and

Γ 0iAMLsyn
A.

Proof. Consider the premise set Γ = {r ∨ (q ∧ ∼ q), (p ∧ ∼ p) ∨ (q ∧
∼ q), ♦(p ∧ ∼ p)}. It is easily verified that q ∧ ∼ q /∈ U(Γ)sem , while
q ∧ ∼ q ∈ U(Γ)syn — again, remark that this is the case irrespective of
the constraints on the accessibility relation of the modal lower limit logic.
Consequently, the formula r is finally derivable from Γ by all iAMLsem ,
but not by any of the corresponding iAMLsyn . ⊣

Finally, from lemmas 5 and 6 immediately follows that, for some
premise sets, iAMLsyn and iAMLsem yield incomparable consequence
sets.

Theorem 8. For some Γ ⊂ WM, CniAMLsyn
(Γ) * CniAMLsem

(Γ) and

CniAMLsem
(Γ) * CniAMLsyn

(Γ).

3.4. A Peculiar Feature: Semi-Explosion

Despite the many nice features of the inconsistency-adaptive modal
framework presented in this paper, some of the inconsistency-adaptive
modal logics (iaML) that fall within the framework, do not avoid explo-
sion completely. I am referring to the iAML of which the lower limit
logic (LLL) is characterized by means of a non-reflexive accessibility
relation. Henceforth, I will call these logics non-reflexive iAML.

Example. Consider the iAML-proof below, based on the premise set
Γ = {�(q ∧ ∼ q)}. This proof shows that it is possible to derive from Γ
the formula �⊥ (with ⊥ meaning triviality) on the condition {♦(q∧∼ q)}.
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1 �(q ∧ ∼ q) PREM ∅ ∅
2 �⊥ 1;RCsyn/RCsem {♦(q ∧ ∼ q)} {q ∧ ∼ q}

As �⊥ is a trivial consequence, line 2 should get marked at some stage
of the proof. And indeed, when the accessibility relation of the LLL is
reflexive, the proof can always be extended in such a way that line 2 gets
marked.

2 �⊥ 1;RCsyn/RCsem {♦(q ∧ ∼ q)} X {q ∧ ∼ q} X

3 ♦(q ∧ ∼ q) 1;RU ∅ ∅

However, when the accessibility relation of the LLL isn’t reflexive, the
proof cannot be extended in the way shown above (as ♦(q ∧ ∼ q) is not
derivable from �(q ∧ ∼ q)). Hence, line 2 will remain unmarked, so that
the formula on line 2 is considered as finally derivable from the premise
set Γ.

The example clearly shows that when non-reflexive iAML are applied
to premise sets such as Γ, they allow the derivation of all consequences
of the form �A. Nevertheless, they do not yield the trivial consequence
set. Hence, I have called this feature semi-explosion.

In order to grasp what actually happens in the example (and in
equivalent cases), consider things semantically. First, remember that
the iAML-models of a premise set are those LLL-models of a premise
set that verify the fewest abnormalities. Hence, when the LLL-models
verify some necessary inconsistencies (in the example: �(q ∧ ∼ q)), the
LLL-models that verify the fewest abnormalities are the LLL-models
for which the set of accessible worlds is empty.6 Because of the semantic
characterization of necessity, this results in semi-explosion. Moreover,
the reason why semi-explosion doesn’t occur for reflexive iAML, is also
obvious: the set of accessible worlds for reflexive LLL-models is always
a non-empty set.

For obvious reasons, the iAML that validate semi-explosion, suf-
fer from the same problems as explosive modal logics (see Section 1).

6Obviously, I presuppose that the models do not verify any possibilities, in which
case the problem of semi-explosion evaporates.
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Luckily, it is possible to make some changes to the iAML-framework in
order to avoid semi-explosion. But, as this requires some extra work, its
characterization is postponed to a follow-up paper.

4. Application: Paraconsistent Intuitionistic Logic

To concretize the inconsistency-adaptive modal framework characterized
in the previous sections, I will now present a useful application. Speci-
fically, I will show how the framework can be applied to characterize a
meaningful paraconsistent version of intuitionistic logic (Int).

Intuitionistic Logic. In [13, pp. 210–211], Epstein showed that the logic
Int can be interpreted in the (explosive) modal logic S4. First, consider
the following mapping from the intuitionistic language L (the standard
propositional language) to the modal language LM:

A∗ = �A (for A ∈ S)
(A ∧ B)∗ = A∗ ∧ B∗

(A ∨ B)∗ = A∗ ∨ B∗

(A ⊃ B)∗ = �(A∗ ⊃ B∗)
(∼ A)∗ = �∼(A∗)

and

Definition 28. Γ∗ = {A∗ | A ∈ Γ}.

Next, consider Theorem 9 below. It spells out how to interpret the
logic Int in the logic S4.

Theorem 9. Γ ⊢Int A iff Γ∗ ⊢S4 A∗.

Paraconsistent Intuitionistic Logic. In order to characterize a meaning-
ful paraconsistent version of intuitionistic logic (let’s call it pInt), the
logic S4 in Theorem 9 can be replaced by the inconsistency-adaptive
modal logic iAS4ūNsr

syn
that is characterized by the lower limit logic

S4ūNs,7 the set of abnormalities Ωsyn and the reliability strategy.8

7The logic S4ūNs is completely equivalent to the logic TūNs with the exception of
its accessibility relation. While the accessibility relation of TūNs is merely reflexive,
the accessibility relation of S4ūNs is both reflexive and transitive.

8I have opted for the syntactic approach, but the semantic approach will obviously
do as well.
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Theorem 10. Γ ⊢pInt A iff Γ∗ ⊢iAS4ūNsr
syn

A∗.

The main advantage of the logic pInt consists in the fact that for
consistent premise sets, it yields the same consequences as the logic Int,
while for inconsistent premise sets, it only yields those consequences that
can be derived by interpreting the premise set as consistently as possible.
As this is most clearly illustrated by means of an example, let’s have a
look at the one below.

Example. Consider the premise set Γ = {p ⊃ q, p ⊃ ∼ q, p, r ⊃ s,
r}, which is mapped to the premise set Γ∗ = {�(�p ⊃ �q),�(�p ⊃
�(∼(�q))),�p, �(�r ⊃ �s),�r}. The iAS4ūNsr

syn
-proof now proceeds

as follows.

1 �(�p ⊃ �q) –;PREM ∅
2 �(�p ⊃ �(∼(�q))) –;PREM ∅
3 �(�r ⊃ �s) –;PREM ∅
4 �r –;PREM ∅
5 �(∼(�p)) 1,2;RCsyn {♦(q ∧ ∼ q)}
6 �s 3,4;RCsyn {♦(r ∧ ∼ r)}
7 �p –;PREM ∅
8 �t 5,7;RCsyn {♦(q ∧ ∼ q),♦(p ∧ ∼ p)}

At stage 8 of the proof, all lines are unmarked. However, line 5 and line
8 get marked when the proof is extended in the following way.

5 �(∼(�p)) 1,2;RCsyn {♦(q ∧ ∼ q)} X

. . . . . . . . . . . .
8 �t 5,7;RCsyn {♦(q ∧ ∼ q),♦(p ∧ ∼ p)} X

9 ♦(p ∧ ∼ p) ∨ ♦(q ∧ ∼ q) 1,2,7;RU ∅

Moreover, as lines 5 and 8 cannot become unmarked again, the for-
mulas on those lines are not finally derivable from the premise set Γ∗.
On the other hand, the conditionally derived formula on line 6 is finally
derivable from Γ∗, as the proof cannot be extended in such a way that
line 6 will be marked.

5. Conclusion

In this paper, I have characterized a new class of inconsistency-adaptive
logics, namely inconsistency-adaptive modal logics. In general, these
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combine the paraconsistency of their lower limit logic (a paraconsistent
modal logic) with the deductive strength of their upper limit logic (an
explosive modal logic). Hence, in case of inconsistent premise sets, they
avoid explosion, but still allow the derivation of sufficient consequences
to explicate human reasoning in a realistic way.9
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