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DECIDABILITY OF

MEREOLOGICAL THEORIES

Abstract. Mereological theories are theories based on a binary predicate
‘being a part of’. It is believed that such a predicate must at least define
a partial ordering. A mereological theory can be obtained by adding on
top of the basic axioms of partial orderings some of the other axioms posited
based on pertinent philosophical insights. Though mereological theories have
aroused quite a few philosophers’ interest recently, not much has been said
about their meta-logical properties. In this paper, I will look into whether
those theories are decidable or not. Besides, since theories of Boolean al-
gebras are in some sense upper bounds of mereological theories which can
be found in the literature, I shall also make some observations about the
possibility of getting mereological theories beyond Boolean algebras.
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1. Introduction

A mereological theory is formed with axioms based on a binary relation “be-
ing a part of”; hence the formal language of such a theory will then have
only one non-logical symbol, a binary predicate ‘P’, which stands for the
aforementioned relation. It is known that the origin of this kind of theory is
due to Leśniewski1. However, recently there have been other authors, such

1It is said that Leśniewski was shocked by Russell’s paradox and thought that mereology
could offer a way out: in his view the term ‘class’ is ambiguous and if it is interpreted
as ‘mereological sum’ then Russell’s paradox will be solved right away, for everything is a
part of itself and hence there is no class which is the sum of things each of which is not a
part of itself (see Simons [1987, p. 102] for this story).
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as Simons [1987] or Casati and Varzi [1999], who have tried to reformulate
mereological axioms using the formal language with which most logicians
nowadays are familiar. In this paper, I shall follow Casati and Varzi’s for-
mulation when making my inquiries.

Let’s look at those mereological axioms and mereological theories now.
As mentioned above, the binary predicate ‘P’ is the only non-logical symbol
in the formal language with which we are concerned. But for the convenience
of our saying some complicated things, we shall define the following three
predicates:

PPxy
df
= Pxy ∧ x 6= y ,(Proper Part:)

Oxy
df
= ∃z(Pzx ∧ Pzy) ,(Overlap:)

Uxy
df
= ∃z(Pxz ∧ Pyz) .(Underlap:)

It would be fair to say that most philosophers believe that ‘P’ must at least
define a partial ordering, that is, it is reflexive, antisymmetric and transitive.
Thus we have the following three basic axioms.

∀xPxx ,(P1)

∀x∀y((Pxy ∧ Pyx) → x = y),(P2)

∀x∀y∀z((Pxy ∧ Pyz) → Pxz).(P3)

The theory axiomatized by these three basic axioms is called ground mere-

ology GM (this can be conveniently expressed by putting GM := (P1) +
(P2) + (P3) and henceforth we shall use this kind of notation when defin-
ing a theory). There are some other mereological axioms which are arguably
still philosophically motivated, such as: Extensionality Principle (EP), Weak

Supplementation Principle (WSP), Strong Supplementation Principle (SSP),
Finite Sum (FS) and Finite Product (FP)

∀x∀y(∃zPPzx → (∀z(PPzx ↔ PPzy) → x = y)), 2(EP)

∀x∀y(PPxy → ∃z(PPzy ∧ ¬Ozx)), 3(WSP)

2Intuitively the mereological counterpart of the extensionality of set theory should be
the formula ‘∀x∀y(∀z(Pzx ↔ Pzy) → x = y)’. But this is provable from (P1) and (P2),
and hence is uninteresting. The proof is easy: from (P1) we have ‘∀x∀y(∀z(Pzx → Pzy) →

Pxy)’, and we use (P2). By the way, it might be worthwhile to note that (P1) and (P3)
are jointly equivalent to the formula ‘∀x∀y(∀z(Pzx → Pzy) ↔ Pxy)’.

3This is Simons’ version of (WSP) [1987, p. 28]. In Casati and Varzi’s book [1999, p. 39],
(WSP) is ‘∀x∀y(PPxy → ∃z(Pzy ∧ ¬Ozx))’. These two versions are actually equivalent
under (P1). But here we shall follow Simons since the term ‘supplementation’ is due to him.
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∀x∀y(¬Pyx → ∃z(Pzy ∧ ¬Ozx)), 4(SSP)

∀x∀y(Uxy → ∃z∀w(Owz ↔ (Owx ∨ Owy))),(FS)

∀x∀y(Oxy → ∃z∀w(Pwz ↔ (Pwx ∧ Pwy))),(FP)

(FS) and (FP) are called closure principles. Variants of mereological theories
can be formed by adding one or more of the foregoing principles on top of
GM. For example, Casati and Varzi have classified the following mereological
theories: Minimal Mereology MM := GM + (WSP), Extensional Mereology
EM = GM+(SSP),5 Closure Mereology CM := GM+(FS)+(FP), Minimal
Closure Mereology CMM := MM + (FS) + (FP) and Extensional Closure
Mereology CEM := EM + (FS) + (FP).

It is not difficult to see that

GM < MM < EM < CMM = CEM ,

where ‘S < T ’ means that T is a strictly stronger theory than S. How
about GM + (EP)? It can be easily shown that GM + (EP) < EM but
GM + (EP) and MM are independent, that is, GM + (EP) 6= MM and
neither is stronger than the other. Furthermore, it is also not difficult to see
that CM is independent of any of EM, MM and GM + (EP).

We shall also see in the following that the aforementioned mereological
theories are actually in some sense subtheories of the elementary theory of
Boolean algebras (henceforth we will abbreviate such a theory as ETB).6

An algebra of sets is a structure of the form 〈S, ∪, ∩, −, ∅, X〉, where S is
a set of subsets of a nonempty set X such that ∅ ∈ S, X ∈ S and S is closed
under ∪, ∩ and − (complement with respect to X). Now we’ll show how
to define a mereological structure inside an algebra of sets. Let’s interpret
‘P’ as set inclusion (this is arguably the most natural interpretation we can
come up with for ‘P’). It is easy to see that (P1), (P2), (P3) and (EP) are
true in any algebra of sets. But (WSP) will be false, for if x is the empty

4Though what this principle says looks quite intuitive, Simons thinks that it should be
rejected in order to resolve the difficulty which is caused by identifying an object with the
sum of its parts: an object could survive the loss of some parts but the sum couldn’t (see
Simons [1987, pp. 115–116]). However, I shall leave relevant philosophical debates aside
here.

5Actually, (P1) is redundant. That is to say, (P2), (P3) and (SSP) suffice to axiomatize
EM, for it can be shown that (P3) and (SSP) entail (P1)(see Pietruszczak [2005, p. 217]).

6Indeed, logicians in the past few decades have already discovered the similarity between
mereological structures and Boolean algebras (see Grzegorczyk [1955], Tarski [1956] and
Clay [1974]). But here I will deal with the matter with a different approach.
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set and y is nonempty, then PPxy is the case, but since x is a part of any
member in the domain, there is no part of y which does not overlap x. For
the same reason, (SSP) will be false in any algebra of sets, and (FS) will be
satisfied in a way not welcomed by us: the sum of the empty set and any
set will be the whole X or the empty set. So the empty set causes serious
problems and this urges us to remove it from the domain. It is not difficult
to see that all the axioms listed above are true in any algebra of sets with
the empty set removed. By Stone representation theorem, they (actually the
translations of those axioms into the language of Boolean algebra) are also
true in any Boolean algebra with 0 removed. Hence any theory axiomatized
by some of the axioms listed above is in this sense a subtheory of ETB.
Based on this kind of mereological structures, the strongest theory which we
can get is the one which is satisfied by any Boolean algebra with 0 removed,
and as we shall see later on, such a theory is axiomatized by exactly all the
axioms listed above plus the following two additional axioms:

(C) ∀x(¬∀y Pyx → ∃z∀y(Pyz ↔ ¬Oyx)),

which says that everything which is not the greatest member has a comple-
ment, and

(G) ∃x∀y Pyx,

which says that there exists the greatest member. We will label this theory
as CEM+(C)+(G).

Observe that for any algebra of sets 〈S, ∪, ∩, −, ∅, X〉, we can define a
structure 〈S \{∅}, ∪, ∩∗, −∗, X〉, where ∩∗ and −∗ are partial operators such
that for any a, b ∈ S \ {∅}: a ∩∗ b = a ∩ b if a ∩ b 6= ∅, and −∗a = −a

if a 6= X; and it is easy to see that CEM+(C)+(G) is satisfied by any
structure of the aforementioned form if ‘Pxy’ is interpreted by ‘x ∪ y =
y’. Furthermore, any model of CEM+(C)+(G) has a definitional expansion
(which must be unique) isomorphic to a structure of the aforementioned
form (see Theorem 3 below). Hence CEM+(C)+(G) can be viewed as the
theory which characterizes the class of the structures of the aforementioned
form.

Now it is known that GM is undecidable but ETB is decidable (see next
section). Then from the viewpoint of logic, it seems natural that it will
be an interesting job to look into whether each mereological theory located
in between is decidable or not. My results below will cover a little bit
more: some other interesting extensions of CEM, for instance, CEM+(¬C)
or CEM+(¬G) and so on, will also be considered.
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Remark 1. (i) I have left out an axiom schema which is called by Casati and
Varzi fusion [1999, p. 46]: for any formula φ,

(Fusion) ∃x φ → ∃z∀y(Oyz ↔ ∃x(φ ∧ Oyx)).

Fusion will cause some complications with which I have not yet figured out
a way to deal. Therefore in this paper I shall confine my research to theories
which can be generated by the axioms without fusion. Nonetheless, it is still
worthwhile to say something about this axiom schema here. Strictly speak-
ing, in the schema above, φ cannot be arbitrary: it should be required that
the variables ‘z’ and ‘y’ cannot occur free in φ. Without loss of generality,
we can assume that the variable ‘x’ occurs free in φ (if not, replace φ by the
equivalent φ′ which is pφ ∧ x = xq).

Now—assuming the above restrictions on ‘y and ‘z’—let pz Fux φq ab-
breviate p∀y(Oyz ↔ ∃x(φ ∧ Oyx))q, which means that z is a fusion of all
x such that φ. Hence the fusion schema says that if φ is fulfilled, then the
fusion of all x such that φ exists:

∃x φ → ∃z z Fux φ .

But by (P1), it is easy to see that the converse p∃z z Fux φ → ∃x φq is also
the case. Moreover, in all EM-theories, if the variable ‘u’ is not free in φ

then we obtain:

(z Fux φ ∧ u Fux φ) → z = u ,

since in these theories we have the following theses:

Pxy ↔ ∀z(Ozx → Ozy),(SSP′)

∀z(Ozx ↔ Ozy) → x = y .(EO)

(ii) For φ = ‘x = x’ in (Fusion), by (P1), we obtain ‘∃z∀y Oyz’. But from
(SSP) we have ‘∀y Oyz → ∀y Pyz’. Hence (G) and ‘∀x∀y Uxy’ are theses of
EM + (Fusion), i.e. EM together with the fusion schema.

(iii) Some variables other than ‘x’ might also occur free in φ and this
allows us to have new axioms which fall under the schema (Fusion).7

For φ = ‘x = u ∨ x = v’ we have:

∃x(x = u ∨ x = v) → ∃z∀y(Oyz ↔ ∃x((x = u ∨ x = v) ∧ Oyx)),

7Notice that we have ‘∀y(Oyu ↔ ∃x(x = u ∧ Oyx))’, ‘∀y(Oyu ↔ ∃x(Pxu ∧ Oyx))’,
and ‘∃x PPxu ↔ ∀y(Oyu ↔ ∃x(PPxu ∧ Oyx))’ (the latter two by (P1) and (P3)). Hence:
u Fux x = u; u Fux Pxu; and u Fux Pxu iff u has a proper part. Thus, there is no need to
use the schema (Fusion) for formulas: ‘x = u’, ‘Pxu’ and ‘PPxu’.
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which is logically equivalent to

(FS′) ∃z∀y(Oyz ↔ (Oyu ∨ Oyv)).

So (FS) is a thesis of EM + (Fusion) (notice that ‘Uuv’ is a thesis of this
theory; see (ii)).

For φ = ‘Pxu ∧ Pxv’ we have:

(FP′) Ouv → ∃z∀y(Oyz ↔ ∃x(Pxu ∧ Pxv ∧ Oyx)).

Notice that

∀y(Pyz ↔ (Pyu ∧ Pyv)) ↔ ∀y(Oyz ↔ ∃x(Pxu ∧ Pxv ∧ Oyx))

is a thesis of EM.8 Thus, (FP) and (FP′) are equivalent in EM.
Now in (Fusion) we put φ = ‘¬Oxu’. We obtain:

(C′) ∃x ¬Oxu → ∃z∀y(Oyz ↔ ∃x(¬Oxu ∧ Oyx)).

Notice that

∀y(Pyz ↔ ¬Oyu) ↔ ∀y(Oyz ↔ ∃x(¬Oxu ∧ Oyx)).

is a thesis of EM.9 Thus, formulas (C) and (C′) are equivalent in EM, since
‘∃x ¬Oxu ↔ ¬∀x Pxu’ is a thesis of this theory.

Thus, CEM+(C)+(G) ≤ EM+(Fusion), since EM+(Fusion) entails (FS),
(FP), (C) and (G).

(iv) Now—keeping mentioned restrictions on variables ‘y and ‘z’—let
pz CSetx φq abbreviate p∀x(φ → Pxz) ∧ ∀y(Pyz → ∃x(φ ∧ Oxy)q, which
means that z is a “collective set” of all x such that φ. The term ‘collective
set’ is due to Leśniewski; he once used the following schema to express the
existence of a collective set of all x such that φ (see Leśniewski [1992, p. 230]):

∃x φ → ∃z z CSetx φ .

In GM we obtain the thesis ‘∀z(z CSetx φ → z Fux φ)’. However, it can be
shown that in EM we obtain the following thesis (see Pietruszczak [2005,
pp. 216 and 218])

∀z(z CSetx φ ↔ z Fux φ).

Hence, in EM Leśniewski’s schema is equivalent to the aforementioned fusion
schema.

8In the proof of this fact we use (P1), (P3), (SSP), (SSP′) and ‘Pzu ↔ ∀y(Pyz → Pyu)’
(see Footnote 2).

9We can obtain the proof of this fact by (P1), (P3), (SSP) and (SSP′).



Decidability of mereological theories 51

2. Some Useful Meta-logical Theorems

It is worthwhile to note that all the mereological theories from GM up to
CEM+(C)+(G) are recursively axiomatized, but are not complete, for they
can be satisfied in finite as well as in infinite Boolean algebras with 0 re-
moved. Therefore, though it is known that a recursively axiomatized com-
plete theory must be decidable, we cannot make use of this fact.

Before introducing the theorems which I will count on, let’s first give the
definitions needed here.

Two sets A and B of natural numbers are effectively inseparable if and
only if A ∩ B = ∅ and for all recursively enumerable sets C and D such that
A ⊆ C, B ⊆ D and C ∩ D = ∅, there is an effective procedure via which we
can find a natural number which does not belong to C ∪ D.

A theory T based on a language L is inseparable if and only if {#α :
α is a theorem of T } and {#α : α is a sentence whose negation is a theorem
of T } are effectively inseparable, where #α stands for the Gödel number
of α.

A theory T based on a language L is finitely inseparable if and only if
{#α : α is a sentence and is true in every structure of L} and {#α : α is
a sentence whose negation is true in some finite model of T } are effectively
inseparable.

An interpretation of a language L into a theory T ′ of a language L′ is a
function I whose domain is {∀} ∪ {δ : δ is a non-logical symbol of L} such
that

(i) I(∀) = α∀, a formula of L′ with at most one free variable, and T ′ |=
∃x α∀,

(ii) for any n-placed predicate R of L, I(R) = αR, a formula of L′ with at
most n free variables, and

(iii) for any n-placed function symbol F of L, I(F ) = αF , a formula with
at most n + 1 free variables, and

T ′ |= ∀x1x2 . . . xn+1((α∀(x1) ∧ · · · ∧ α∀(xn)) →

∃y(α∀(y) ∧ ∀xn+1(αF (x1, x2 . . . xn+1) ↔ xn+1 = y))).

It is easy to see that for each model A of T ′, we can construct a structure AI

of L: the domain of AI is the set defined on A by I(∀), the interpretation
of an n-placed predicate R is the relation defined in A by I(R) restricted to
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the domain of AI and the interpretation of an n-placed function symbol F is
the function f such that for all a1, . . . , an in the domain of AI , f(a1, . . . , an)
is the unique b such that A |= I(F )[a1, . . . , an, b]. Now an L-theory T can be
interpreted into T ′ if and only if L can be interpreted into T ′ and T ⊆ {α : α

is a sentence which is true in every AI , where A is a model of T ′} and the
interpretation is faithful if and only if T = {α : α is a sentence which is true
in every AI , where A is a model of T ′}.

A structure of a language L is strongly undecidable if and only if any
L-theory which has that structure as a model is undecidable.

Structure A is a definable substructure of structure B if and only if
Dom(A) (the domain of A) is a subset of Dom(B) which is definable in
B and each function or predicate of A is the restriction to Dom(A) of a
function or predicate definable in B. Structure A is definable in structure
B (not necessarily in the same language) if and only if there is a definable
substructure of B which is isomorphic to A.10

It turns out that the following known theorems are very useful for my
purpose.

(1) GM is finitely inseparable.

(2) If a theory is finitely inseparable, it is undecidable.

(3) ETB is decidable.

(4) Let T and T ′ be two theories of languages L and L′ respectively. If T can
be interpreted faithfully into T ′ and T ′ is decidable, then T is decidable.

(5) Let T and T ′ be two theories of languages L and L′ respectively. Assume
that L has only finitely many function symbols. Suppose L can be
interpreted into a finitely axiomatized L′-theory S′. If for each finite
model A of T there is a finite model B of T ′ ∪ S′ such that A = BI and
T is finitely inseparable, then T ′ is finitely inseparable.

(6) There is a strongly undecidable model of irreflexive symmetric ordering.
Without loss of generality, we can assume that the language has only
one non-logical symbol, a binary predicate ‘P’. Then the theorem says
that there is a strongly undecidable structure of this language which
satisfies ‘¬Pxx’ and ‘Pxy → Pyx’.

10All the definitions given here are standard and readers can find them in many presti-
gious textbooks. But here the formulation of the first three follows Monk [1976, pp. 100
and 266] and I have rephrased them a little bit. The definition of “interpretation” mainly
follows Enderton [1972, S. 2.7].



Decidability of mereological theories 53

(7) Suppose L(A) (the language of A) has only finitely many non-logical
symbols. If A is strongly undecidable and is definable in B, B is strongly
undecidable too.

(8) The theory of distributive lattices is finitely inseparable.

(9) If T and S are theories of the same language, T is an extension of S and
T is finitely inseparable, then S is finitely inseparable too.

For (1), (8), (5) and (9), see Monk [1976, pp. 280, 272 and 269]. For (3), see
Koppelberg [1989, Chapter 7]. For (6) and (7), see Shoenfield [1967, pp. 142
and 136]. (2) and (4) are easy to prove.

3. Results concerning Decidability of Mereological Theories

In the following proofs, I will rely heavily on the fact that models of mere-
ological theories are closely related to partial orderings, lattices or Boolean
algebras, depending on how complicated the theory in question is. By
the way, both “inseparable” and “finitely inseparable” mentioned above are
stronger properties than “undecidable”. Naturally, I shall always try to prove
a stronger result unless I cannot find a way to carrying it out.

Theorem 1. EM is finitely inseparable and hence undecidable.

Proof. The idea is to use the aforementioned (1), (2) and (5) to show
that EM is finitely inseparable and hence undecidable. First we set up an
interpretation I of GM into some finitely axiomatized theory. Obviously we
only have to take care of I(∀), for I(P) is just ‘Pxy’. Let I(∀) be ‘∃y PPyx ∨
∀y(¬PPyx ∧ ¬PPxy)’ and S be the theory axiomatized by {∃x(∃y PPyx ∨
∀y(¬PPyx ∧ ¬PPxy))}. It is easy to check that I is an interpretation of L

into S. Now we must show that for any finite model A of GM, we can find
a finite model B of EM ∪ S such that A = BI . Suppose A is a finite model
of GM. There are four possibilities for any a ∈ Dom(A) (the domain of A):

(i) ∀x ∈ Dom(A)(¬PPax ∧ ¬PPxa);

(ii) (∃x ∈ Dom(A) PPax) ∧ (∀x ∈ Dom(A) ¬PPxa);

(iii) (∃x ∈ Dom(A) PPax) ∧ (∃x ∈ Dom(A) PPxa);

(iv) (∃x ∈ Dom(A) PPxa) ∧ (∀x ∈ Dom(A) ¬PPax).

We shall show how to build from A a model B of EM ∪ S. For each member
of Dom(A) which meets the condition (ii), we add two new distinct proper
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parts to it and for each member of Dom(A) which meets the condition (iii)
or (iv), we add one new proper part to it. Such a construction must be
such that: if a and b are two distinct members of Dom(A) which meet
the condition (ii) or (iii) or (iv), the new proper parts added to them are
also distinct and if a and b are two distinct newly added members, then
¬PPab, ¬PPba and finally for any newly added member a, ¬Pxa for any
x ∈ Dom(A). Since Dom(A) is finite, the resultant set after extension is still
finite. This set will be Dom(B). For the interpretation of ‘P’ in B, P B , we
extend the interpretation of ‘P’ in A, P A, by adding new pairs according
to reflexivity and transitivity, that is, if a is a newly added member, (a, a)
will be added to P A and if in addition PPax, for some x ∈ Dom(A), then
besides (a, x), (a, y) will also be added to P A, for any y such that Pxy.
The extended set of pairs is the P B we need. Next we show that such a
B is a model of EM ∪ S. It is easy to see that B is a model of GM and
obviously B |= ∃x(∃yPPyx ∨ ∀y(¬PPyx ∧ ¬PPxy)). It remains to show that
B |= (SSP). For any a, b ∈ Dom(B), if ¬Pab, then there are two possibilities:
(1) either a ∈ Dom(A) and meets the condition (i) or a is a newly added
member, and in either case a itself witnesses ∃z(Pza∧¬Ozb); (2) a ∈ Dom(A)
and meets the condition (ii) or (iii) or (iv), in which case a must have a new
proper part which witnesses ∃z(Pza∧¬Ozb). Hence B |= (SSP). This shows
that B is a model of EM∪S. Now it is easy to see that Dom(BI) by definition
is {x ∈ Dom(B) : ∃yPPyx ∨ ∀y(¬PPyx ∧ ¬PPxy)} and is just Dom(A) and
P B|Dom(A) (the restriction of P B to Dom(A)) = P A. Therefore any finite
model A of GM is a BI , for some finite model B of EM ∪ S. This completes
the proof. ⊣

Corollary. MM and GM + (EP) are finitely inseparable and hence unde-

cidable.

Proof. This follows from the fact that EM is stronger than MM and GM+
(EP). Hence B constructed in the proof of Theorem 1 is also a model of
MM ∪ S and GM + (EP) ∪ S. ⊣

Theorem 2. CM is finitely inseparable and hence undecidable.

Proof. First observe that CM does not imply that there is no least member
even when the domain has more than one member. Then it is easy to see that
every finite distributive lattice is a model of CM if we interpret Pxy as x∨y =
y. For under this interpretation, obviously the finite product of x and y is just
x∧y, and anything can be ‘a’ finite sum of x and y (since a finite lattice must
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have the least member which is a part of and hence overlaps every member in
the domain). Now let S = {∀x∀y∃z(Pxz ∧ Pyz ∧ ∀u((Pxu ∧ Pyu) → Pzu)),
∀x∀y∃z∀w(Pwz ↔ (Pwx ∧ Pwy))}. Then the language of lattice can be
interpreted into CM ∪ S in the following way. Let I(∀) be x = x, I(∧) be
∀w(Pwz ↔ (Pwx∧Pwy)) and I(∨) be Pxz ∧Pyz ∧∀u((Pxu∧Pyu) → Pzu).
Since every finite distributive lattice is a model of CM ∪ S, it is trivial that
every finite distributive lattice is some AI , where A is a finite model of
CM ∪ S. By (5), CM is finitely inseparable. ⊣

Corollary. GM + (FS) and GM + (FP) are finitely inseparable and hence

undecidable.

Proof. CM is their extension. Hence by (9), they are finitely inseparable.
⊣

Theorem 3. CEM+(C)+(G) is decidable.

Proof. This is owing to the fact that CEM+(C)+(G) can be faithfully
interpreted into ETB. As mentioned earlier, any Boolean algebra with 0
removed will be a model of CEM+(C)+(G). Hence we can let I(∀) be ‘x 6=
0’ and let I(P) be x ≤ y (that is, x + y = y). Then AI is a model of
CEM+(C)+(G). Conversely, if +, × and ∼ are interpreted by finite sum,
finite product and complement respectively, then it is not difficult to see
that any model of CEM+(C)+(G) can be extended to a Boolean algebra by
adding a least member to it. (Note that CEM+(C)+(G) does imply that, for
the sake of (SSP), there is no least member if the domain contains at least
two members; by the way, the only case worth checking is distributivity,
but the proof is long and not very challenging, so I shall skip it here).
Therefore the interpretation defined above is faithful. Then by (3) and (4),
CEM+(C)+(G) is decidable. ⊣

Corollary. All the theories from GM up to CEM+(C)+(G) are not in-

separable.

Proof. This is owing to the fact that all of them are subtheories of CEM+
(C) + (G) and we have just shown that CEM+(C)+(G) is decidable. ⊣

Corollary. CEM+(C)+(¬G) is decidable.

Proof. Let ∼ x stand for the complement of x. First we show that CEM+
(C)+(¬G) has ∀x∀y(¬P ∼ xy → ∃z∀w(Owz ↔ (Owx∨Owy))) as a theorem,
that is, CEM+(C)+(¬G) guarantees the existence of the finite sum of any
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two distinct members one of which does not contain the complement of
the other (so that their sum will not be the greatest member). This is
vacuously true if the domain contains only two members (any model of
CEM+(C)+(¬G) must contain at least two members). So let’s assume that
there are more than two members in the domain. Consider any two distinct
x and y (x = y is a trivial case) in the domain such that ¬P ∼ xy. Since
¬P ∼ xy, by (SSP) there is some u such that Pu ∼ x ∧ ¬Ouy. So u does not
overlap either x or y (this also shows ¬P ∼ yx). Therefore both x and y are
parts of ∼ u, that is, Uxy, and hence by (FS) ∃z∀w(Owz ↔ (Owx ∨ Owy)).
Utilizing the fact just proved, we can easily show that CEM+(C)+(¬G)
is the mereological theory which is satisfied by any Boolean algebra which
has at least three members with 0 and 1 removed, that is to say, following
the argument given in Theorem 3, we can show that CEM+(C)+(¬G) can
be faithfully interpreted into ETB plus the axiom saying that there are at
least three members. But any finite extension of a decidable theory is also
decidable. ⊣

Corollary. CEM + (C) is decidable.

Proof. Both CEM+(C)+(G) and CEM+(C)+(¬G) are decidable. Hence
CEM+(C) must be decidable too, since in general, for any theory T and any
sentence α in the language of T, if both T ∪{α} and T ∪{¬α} are decidable,
T will be decidable too. ⊣

Corollary. CEM + (G) is not finitely inseparable.

Proof. Observe that every finite model of CEM + (G) is also a model of
CEM + (C). So if CEM + (G) is finitely inseparable, CEM + (C) will be
finitely inseparable too. But CEM + (C) is decidable and hence cannot be
finitely inseparable. ⊣

Theorem 4. CEM is undecidable.

Proof. Let A be a strongly undecidable structure of the irreflexive symmet-
ric ordering. Let Dom(B) = {S ∈ P(Dom(A)) (the Power set of Dom(A)) :
S is a singleton or S has exactly two members a and b such that (a, b) ∈ P A}.
Let P B = {(c, d) ∈ Dom(B) × Dom(B) : c ⊆ d}. Obviously, (P1), (P2) and
(P3) are valid in B. Let’s check whether (FS) is valid in B. Consider any
two members x and y in Dom(B). If x = y then (FS) is obviously true.
Suppose x 6= y. There are three possibilities:
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• x and y are two distinct pairs. Then Uxy is false in B, for there is no
member in Dom(B) which has more than two members.

• x and y are two distinct singletons. If (∪x, ∪y) ∈ P A, then {∪x, ∪y} ∈
Dom(B) and it is the least upper bound of x and y. Otherwise, Uxy is
false in B.

• x is a pair and y is a singleton. If y is not a subset of x, then Uxy is false
in B. Otherwise, their least upper bound is just x.

Hence (FS) is valid in B. It is easy to see that (FP) and (WSP) are also
valid in B. So B is a model of CEM. Now we’ll show that A is definable
in B. Obviously, we can use {{a} : a ∈ Dom(A)} to stand for Dom(A),
and this set of singletons is definable in B by ¬∃yPPyx. As for P A, we can
define it by x 6= y ∧ ∃z(PPxz ∧ PPyz). Since A is strongly undecidable, B

is strongly undecidable too, and this shows that CEM is undecidable. ⊣

Corollary. All the mereological theories from GM to CEM are undecid-

able11.

Proof. The structure B constructed in the proof of Theorem 4 is a model
of those theories and B is strongly undecidable. ⊣

Corollary. CEM+(¬C) is undecidable and hence incomplete.

Proof. CEM + (C) is decidable, so CEM+(¬C) cannot be decidable, oth-
erwise CEM will be decidable. As mentioned earlier, a recursively axiom-
atizable complete theory will be decidable. Hence CEM+(¬C) cannot be
complete. ⊣

Corollary. CEM+(¬G) and CEM + (¬C) + (¬G) are undecidable and

hence incomplete.

Proof. It can actually be shown that there are at least four distinct single-
tons in the domain of the model B constructed in the proof of Theorem 4
(see Shoenfield [1967, pp. 141–142]). With this additional information about
B, we can easily see that B satisfies CEM + (¬C) + (¬G). However, since
B is strongly undecidable, CEM + (¬C) + (¬G) and CEM+(¬G) must be
undecidable. ⊣

11Though we have known that most of them are undecidable owing to the stronger
results proved earlier, it is still good to know that just one model is enough to show this
fact.



58 Hsing-chien Tsai

Corollary. CEM+(G) and CEM+(¬C)+(G) are undecidable and hence

incomplete.

Proof. Consider the strongly undecidable model A in Theorem 4. It can
also be requested that the cardinality of the domain of A is exactly ω (see
Shoenfield [1967]). Hence there is an isomorphic copy of A on ω and let’s
label it as A′. A′ as a structure of L(A) is of course strongly undecidable.
Now we construct a model of CEM+ (¬C) + (G) and then show that A′ can
be defined in this model. Since P A′

is also countable, let f be a one-to-one
function from P A′

to ω. Define C = {S ⊆ ω ∪ ω × ω : S = {m, n} ∪ ω × {k}
if (m, n) ∈ P A′

and f((m, n)) = k, or S is a nonempty finite subset either of
ω or of ω × ω, or S = ω, or S = ω ∪ ω × ω, or S = ω ∪ ω × ω \ {(m, n)}, for
m, n ∈ ω}. Suppose D is the smallest set including C and closed under finite
union and finite nonempty intersection. Consider the structure M = (D, ⊆)
and we interpret Pxy as x ⊆ y. Naturally, ∪ and ∩ will be the interpretations
of finite sum and finite product (if x∩y 6= ∅). Then it is easy to see that (FS)
and (FP) are valid in M . Obviously, ⊆ is a partial ordering, so (P1), (P2)
and (P3) are valid in M . G is valid in M since every member in D is a subset
of ω ∪ ω × ω. (¬C) is also valid in M , for in M every nonempty finite subset
of natural numbers has no complement. As for (SSP), if x, y ∈ D and x is
not a subset of y, then there must be some natural number or some ordered
pair of natural numbers which belongs to x but not to y, and the singleton of
such a number or pair witnesses ∃z(Pzx∧¬Ozy). Therefore, M is a model of
CEM+(¬C)+(G). Now we want to use the set {{0}, {1}, {2}, . . . }, i.e., the
set of singletons of natural numbers, to stand for the set of natural numbers,
and it can be defined in M by ¬∃yPPyx ∧ ¬∃z∀w(Pwz ↔ ¬Oxw), that is,
x is an atomic member which has no complement. Abbreviate the foregoing
formula as ϕ(x). Then P A′

can be defined in M by ϕ(x) ∧ ϕ(y) ∧ x 6= y

∧ ∃z(PPxz ∧ PPyz ∧ ∀u((PPuz ∧ ϕ(u)) → (u = x ∨ u = y)) ∧ ∃u(PPuz ∧
¬∃y(Pyu ∧ ϕ(y))) ∧ ∀u((PPuz ∧ ¬∃y(Pyu ∧ φ(y))) → ∃t(PPtz ∧ ¬∃y(Pyt ∧
ϕ(y)) ∧ PPut))), for in D if an infinite set is of the form {m, n, (k, j), . . . },
that is, it has exactly two distinct natural numbers m and n and infinitely
many ordered pairs, then (m, n) ∈ P A′

. This shows that A′ is definable in M ,
so M is strongly undecidable and hence CEM + (G) and CEM + (¬C) + (G)
are undecidable. ⊣

To squeeze more information, also observe that CEM + (¬C) + (G) has
no finite models, hence it is finitely separable. I shall summarize in the
following chart the foregoing results as well as questions that remain open.
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Theory Inseparable? Finitely Undecidable?
Inseparable?

GM := (P1) + (P2) + (P3) No Yes Yes
GM + (EP) No Yes Yes
MM := GM + (WSP) No Yes Yes
EM := GM + (SSP) No Yes Yes
GM + (FS) No Yes Yes
GM + (FP) No Yes Yes
CM := GM + (FS) + (FP) No Yes Yes
CM + (EP) No Unknown Yes
CEM := EM + (FS) + (FP)
q No Unknown Yes

CMM := MM + (FS) + (FP)
CEM + (C) No No No
CEM + (¬C) Unknown Unknown Yes
CEM + (G) No No Yes
CEM + (¬G) Unknown Unknown Yes
CEM + (C) + (G) No No No
CEM + (C) + (¬G) No No No
CEM + (¬C) + (G) Unknown No Yes
CEM + (¬C) + (¬G) Unknown Unknown Yes

Remark 2. An anonymous referee draws my attention to the following axiom
called by Simons [1987, p. 28] Proper Parts Principle:

(PPP) ∀x∀y(∃zPPzx → (∀z(PPzx → PPzy) → Pxy)).

Obviously (EP) follows from (P2) and (PPP). And it is easy to see that
GM+(EP) does not imply (PPP). Hence we may get some stronger theories
after replacing (EP) by (PPP) in the theories listed above. The same referee
also points out a theory named by Simons [1987, p. 119] Minimal Extensional

Mereology: MEM := MM+(FP), as well as the following two possible axioms
which are theorems of MM.

∃x∃y x 6= y ↔ ∃x∃y¬Oxy,(∃E)

∃x∃y x 6= y ↔ ¬∃x∀yPxy.(∄0)

Notice that (∃E) follows from (P1) and (WSP), and (∄0) follows from (P1)
and (∃E).
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Now several strictly increasing chains of theories are noted by the referee:

1. GM + (EP) < GM + (EP) + (∄0) < GM + (EP) + (∃E) < MM + (EP) <

MM + (PPP);

2. GM + (∄0) < GM + (EP) + (∄0) < GM + (EP) + (∃E) < MM + (EP) <

MM + (PPP);

3. GM + (∄0) < GM + (∃E) < GM + (EP) + (∃E) < MM + (EP) < MM +
(PPP);

4. GM + (∄0) < GM + (∃E) < MM < MM + (EP) < MM + (PPP);

5. GM + (EP) < GM + (PPP) < MM + (PPP) < EM < MEM < CMM =
CEM.

I would like to point out the following two facts. First, all theories in the
first four chains are finitely inseparable and hence undecidable, for (PPP)
is provable from (P1) and (SSP)12 and therefore MM + (PPP) ≤ EM, so
by Theorem 1 and (9), any theory ≤ MM + (PPP) is finitely inseparable.
Second, MEM is undecidable and separable, for it has a finite extension, e.g.
CEM, which is undecidable as well as a finite extension, e.g. CEM + (C),
which is decidable. The only question still open to inquiry is whether MEM

is finitely inseparable or not.

4. Further Observations

Both set theory and mereological theories are based on a binary predicate,
and the predicate ‘being a member of’ used in set theory looks akin to
‘being a part of’. Actually, at the early stage of their development, it might
be envisaged that set theory would be replaced by mereological theories13.
However, mereological theories are (as we have seen, most of them are in
some sense subtheories of ETB14) quite weak compared with set theory which
has proven to be so powerful that all kinds of mathematical objects can

12The proof is easy. Suppose toward contradiction ∃zPPzx, ∀z(PPzx → PPzy) and
¬Pxy. By (SSP), ∃z(Pzx ∧ ¬Ozy). Fix that z. It cannot be x itself since Oxy follows
from ∃zPPzx and ∀z(PPzx → PPzy). So PPzx and hence PPzy, but then by (P1), Ozy,
which contradicts ¬Ozy.

13It is also said that Leśniewski’s intention was to use his mereological theory to provide
a new foundation for mathematics (see Simons [1987, p. 60]).

14Note that even with fusion axiom schema (see Remark 1), the mereological theories
classified by Casati and Varzi will still be bounded by the theory of complete Boolean
algebras.
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be defined within it. I think this huge difference mainly results from the
difference between the ways in which they generate new objects respectively.
An example will be in order here. Suppose we start with two atomic objects
(which are presumably not sets), say, x and y. How many sets can we
generate from them? Obviously, there are infinitely many, for x is not equal
to {x}, and by the same token, {x} is not equal to {{x}} and such a process
can go on forever. But there are only three mereological sums that can
be generated in this case: x, y and xy (the thing generated by putting x

and y together). To see this, observe that the mereological sum of x and
xy is again xy (for these two sums share the same parts) and hence does
not add anything new. In general, if we start with n atomic objects, there
are only 2n − 1 mereological sums. Ontologically speaking, set theory is
committed to the abstract things generated by adding that “magic” pair of
curly brackets, while mereological construction has no resources other than
the objects already there.

Is it possible to get new mereological axioms to generate some more
powerful theories? It would be fair to request that such new axioms, if they
can be found, have to be philosophically well-motivated. One might suggest
that they have to be some true statements of a reasonable mereological
representation of the real world. A likely model is to have a domain with
infinite atoms and all objects in that domain are composed of atoms. So an
object can be identified with a set of atoms and ‘P’ can be interpreted as
the set inclusion. But then the model thus constructed will be an infinite
atomic Boolean algebra, and it is known that the theory of infinite atomic
Boolean algebras is complete15 (and hence decidable), which means that
whatever sentences which are true in that model are theorems of the theory
of infinite atomic Boolean algebras. As a matter of fact, the mereological
theory of this model will be exactly the theory of infinite atomic Boolean
algebras (translated into the language of mereology) plus the axiom saying
that there is no least element. It is of course axiomatizable, but not in
an interesting way we are expecting. Well, maybe there are only finitely
many atoms. But this case is even easier, for the theory of a finite Boolean
algebra is axiomatized by the original axioms plus the axiom specifying a
finite cardinality. Thus it seems not very promising to try to fix an intended
model along the foregoing line.

On a different line, one might want to put some restrictions on the domain
of a mereological structure. For example, some philosophers did argue that

15See Monk [1976, pp. 360–361].
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arbitrarily putting some objects together does not necessarily form a new
object16. Therefore, one could modify those closure principles such as (FS)
and (FP) according to some additional conditions which one believes are
required for composition. Note that the same consideration might lead to
adding (¬C) or (¬G) as new axioms. However, whether some restrictions
should be imposed on composition is a profoundly controversial philosophical
issue still under debate.

Though pointing out some possibilities of ways to locate new mereological
axioms, here I shall not pursue them any further.
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