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IN WHAT SENSE IS KANTIAN PRINCIPLE

OF CONTRADICTION NON-CLASSICAL?

Abstract. On the ground of Kant’s reformulation of the principle of con-
tradiction, a non-classical logic KC and its extension KC+ are constructed.
In KC and KC+, ¬(φ ∧ ¬φ), φ → (¬φ → ψ), and φ ∨ ¬φ are not valid due
to specific changes in the meaning of connectives and quantifiers, although
there is the explosion of derivable consequences from {φ,¬φ} (the deduc-
tion theorem lacking). KC and KC+ are interpreted as fragments of an
S5-based first-order modal logic M. The quantification in M is combined
with a “subject abstraction” device, which excepts predicate letters from the
scope of modal operators. Derivability is defined by an appropriate labelled
tableau system rules. Informally, KC is mainly ontologically motivated (in
contrast, for example, to Jaśkowski’s discussive logic), relativizing state of
affairs with respect to conditions such as time.

Keywords: Kant, paracompleteness, paraconsistency, principle of contradic-
tion, square of oppositions, subject abstraction, labelled tableau.

1. Introduction

According to Kant’s formulation of the principle of contradiction, a con-
tradiction can occur only in the relation between the “subject” and the
“predicate” of a categorical proposition (a, e, i, and o propositions in the
logical square). Starting from that formulation of the principle of contra-
diction, we want to describe a non-classical logic KC where φ ∧ ¬φ and
¬(φ∨ ¬φ) are satisfiable as predicates of a categorical proposition, even un-
der the existential import of the subject term of the proposition. KC is
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half-paraconsistent in that ¬(φ ∧ ¬φ) and φ → (¬φ → ψ) are not theorems
of KC, but, at the same time, an explosion of consequences is derivable
form {φ,¬φ}. We will disregard the non-explosiveness of Kant’s syllogistic,
where the derivability is constricted to the traditional syllogistic figures (for
example, {∀x(Mx → Px),¬∀x(Mx → Px)} 0 ∃x(Sx ∧ Px) [14, p. 293]).

We start with the analysis of Kant’s examples that illustrate his formu-
lation of the principle of contradiction. Second, we describe a non-classical
logic KC as a shorthand for a fragment of S5-based first-order modal logic,
and define an appropriate tableau system. Next, we extend KC to KC+
with strict conditional and strict disjunction. Finally, we sketch a proof of
the adequacy of the tableau system for KC+.

2. The principle of contradiction

2.1. Kant’s formulation of the principle

In the Section ‘The highest principle of all analytic judgments’ of the Critique

of Pure Reason, Kant criticizes the following formulation of the principle of
contradiction originating from Aristotle and Plato:

PC
∗: It is impossible that something should at one and the same

time both be and not be. (B 191)1

PC
∗ is not acceptable for Kant as a principle of logic because it contains a

time condition (‘at one and the same time’), which is not for him a logical
concept. Kant adopts the principle of contradiction in the following formu-
lation, which is based solely on the logical form of a categorical proposition,
i.e., on the relation of a predicate to the subject of a proposition:2

PC: No predicate contradictory of a thing can belong to it.
(B 190)3

1As usual, ‘B’ denotes the 2nd edition of Kant’s ‘Critique of Pure Reason’ [7, vol. 3],
which is quoted according to the English translation by N. Kemp Smith [8].

2To avoid ambiguity, we will use ‘subject term’, ‘predicate term’, ‘sentence’ (‘formula’)
for subject, predicate, and proposition in the linguistic sense, respectively. Note that
“predicate letters” of quantificational logic occur both within subject terms and within
predicate terms. As is known, Kant himself conceived logical forms as forms of “thinking”
(of “bringing our representations under the unity of consciousness”).

3Nulli subiecto competit praedicatum ipsi oppositum [7, vol. 2, Die falsche Spitzfind-

igkeit der vier syllogistischen Figuren, p. 60]. In historical or informal logical texts we
often encounter an analogous general scheme: A is not non-A. But that scheme is often
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“Thing” is referred to by the subject of a proposition. Thus, it is not a
violation of PC if two predicates of a subject negate each other, if only they
do not negate the subject. On Kant’s presuppositions, this leads straight-
forwardly to the non-classicality of logic in the way to be illustrated by
examples and more precisely explained below.

According to Kant, the principle of identity, A is A, is already contained
in PC, since Kantian contradiction relates to negation in a classical way: the
negation of a self-contradictory proposition (where the predicate contradicts
the subject) is valid. As Kant says: “since the opposite of the concept would
contradict the object, the concept itself must necessarily be affirmed of it”
(B 190–191).

2.2. Some examples

Let us, first, pause on an example by which Kant illustrates the need of his
reformulation of the principle of contradiction:

A man who is unlearned is not learned. (B 192) (1)

In (1), ‘unlearned’ is (universally) affirmed as a predicate of the subject
‘man’, and ‘learned’ is denied as a predicate of the same subject. Since ‘un-
learned’ and ‘learned’ are merely predicates not being included or excluded
by the subject itself, (1) is not true by PC, according to Kant.

In other words and according to Kant’s nomenclature, (1) is not an
analytic proposition, because for Kant a categorical proposition is analytic
if and only if “its truth can always be adequately known in accordance
with the principle of contradiction” (B 190)4). That means that in each
analytic proposition either what contradicts the subject is denied, or what
is contained in the subject must be affirmed, which is obviously not the case
in (1) if only ‘man’ is conceived as the subject term of (1).

Consequently, the following proposition can be stated without Kantian
contradiction:

Some men who are unlearned are learned, (2)

interpreted indistinguishably to the Aristotelian way: what is A cannot at the same time
be non-A. For example, according to Leibniz, it is included in the principle of contradic-
tion “that the same proposition cannot be true and false at the same time [à la fois]”, and
hence “what is A cannot be non A [11, vol. 5, p. 343]; cf. also a letter to S. Clarke (with
‘en même temps’ instead of ‘à la fois’) [10, vol. 6, p. 355].

4In other words, “the principle of contradiction must . . . be recognized as being the
universal and completely sufficient principle of all analytic knowledge” (B 191).
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since neither predicate ‘unlearned’, nor predicate ‘learned’ contradict the
subject ‘men’. To put it another way, the same man could be unlearned (at
one time), as well as learned (at another time). Generalizing Kant’s concep-
tion (where only time as a predicate relativizing condition is mentioned), we
could say that the same man can be in one sense, or in one possible world,
unlearned, and in another sense, or in another possible world, learned:

∃x(Mx ∧ (3¬Lx ∧ 3Lx))

(where M1 stands for ‘. . . is a man’, and L1 for ‘. . . is learned’).

In distinction to (2), the following proposition:

Some unlearned men are learned (B 192) (3)

according to Kant, disobeys PC, in that it predicates to the subject (‘un-
learned man’) what contradicts the subject, and therefore in no way could
be true.

On the other hand, the proposition

No unlearned man is learned (B 192) (4)

is true precisely by PC. That is, it is analytic, ‘unlearned man’ being the
subject, and the predicate ‘learned’ (which contradicts the subject) being
denied of the subject.

3. Logic KC

On the ground of Kant’s conception of contradiction, we can describe a
Kantian non-classical quantificational logic KC (a logic of “Kantian con-
tradiction”), with analytic propositions, as defined in the previous section,
among its theorems.

A crucial point for KC will be to distinguish a subject term from the
predicate term in the way that the constituents of the subject term can
be clearly traced within the predicate term. This cannot be accomplished
by translating categorical sentences of the logical square (a, e, i, o) into a
familiar language of classical first-order logic. In the latter approach, we
could not clearly distinguish, for example, between sentence (1) (where the
article ‘a’ should be understood as ‘each’) and sentence (4), since both could
be classically translated as ∀x((Mx ∧ ¬Lx) → ¬Lx), although (1) is non-
analytic and (4) analytic. Similarly, both sentence (2) and sentence (3)
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could be classically translated as ∃x((Mx ∧ ¬Lx) ∧ ¬Lx), although (2) is
non-contradictory and (3) contradictory.

To distinguish the subject term and the predicate term within a for-
mula of KC, we will use the angle notation for quantified conditionals and
conjunctions:

∀x〈Mx → Lx〉, ∃x〈Mx ∧ Lx〉 (5)

where Mx and Lx are the subject term and the predicate term, respectively.
The predicate letter L in (5), which does not occur in the subject term,
is treated as logically independent of the subject term in the sense that it
cannot produce a Kantian contradiction (according to PC). However, the
following sentence contains a contradiction:

∃x〈(Mx ∧ ¬Lx) ∧ Lx〉 (6)

being in fact a translation of (3). In (6) the predicate letter L is subject
dependent (since it occurs in the subject term, not only in the predicate
term), and is both affirmed (in the predicate term) and denied (in the subject
term).

For evaluating the same predicate letter in the same sentence in different
ways, a modal semantics can be applied, where values of predicate letters
are relativized with respect to different semantic points (“possible world”).
Accordingly, the satisfaction conditions of formulas will be redefined in a
modal way. In the result, the subject term of a formula will be rigid regarding
the predicate letters occurring in the subject term, in the sense that those
predicate letters will be evaluated with respect to the same point throughout
the formula. At the same time, a predicate term will be non-rigid regarding
its constituent predicate letters that do not occur in the subject term, that
is, they could be evaluated with respect to different semantic points.

Remark 1. We note that, in fact, Kant’s idea was not to advocate a kind of
non-classical logic. Obviously, Kant did not regard “copulative proposition”
(a kind of conjunction) as a logical form (logical “unity”) and hence did not
include it in his well known table of propositions. Apparently, “copulative
proposition” was for him a plurality of psychologically associated proposi-
tions merely linguistically put together in one sentence (thus, a sentence
with many predicates of one subject stands for many categorical proposi-
tions). Therefore, Kant reformulated the principle of contradiction in order
to make it independent of what were for him non-logical conditions. We
aim to show that Kant’s “copulative proposition” is a kind of non-classical



256 Srećko Kovač

conjunction, which can be combined with Kant’s principle of contradiction
in one (non-classical) logic.5

Let us now see the details of the formal description of the logic KC.

3.1. Languages K C and M

The vocabulary of K C consists of n-place predicate letters (Pn, Qn, Rn, with
or without subscripts; informally, we also use other latin capital letters), in-
dividual terms (individual variables u, x, y, z, and individual constants c, d, e,
with or without subscripts), connectives (¬, ∧, ∨, →, ↔), quantifier symbols
(∀,∃), parentheses and brackets.

The set FormK C of formulas of K C consists of atomic formulas
Φt1 . . . tn, where ti is an individual term, compound formulas ¬φ, (φ ∧ ψ),
(φ ∨ ψ), (φ → ψ), (φ ↔ ψ), 〈φ → ψ〉, 〈φ ∧ ψ〉, and quantified formulas
∀x〈φ → ψ〉, ∃x〈φ ∧ ψ〉, where φ and ψ are formulas. There are also formu-
las with a square bracket indication, φ[Φ1, . . . , Φn], where Φ1, . . . , Φn are
predicate letters. As usual, we can omit outer parentheses of φ when φ is
not a subformula of another formula. Closed formulas are called sentences.

Square bracket indication is not an operator (e.g., an atomic formula
with a square bracket indication is still an atomic formula), so that the main
operator of φ[Φ1, . . . , Φn] is the same as the main operator of φ. The purpose
of the square bracket indication will be explained below. In fact, a formula
without a square bracket indication can be conceived as having empty square
bracket notation. Note a special use of angle brackets to delimit immediate
subformula in a quantified formula. In addition, only a conjunction and a
conditional can be the immediate subformula of a quantified formula, since
K C is designed primarily to formalize quantification in Kantian logic, which
is restricted to the sentences of the logical square. For the sake of generality,
we allow n-place predicate letters, although Kantian quantification logic is
merely monadic. We say that φ and ψ are the subject term and the predicate
term, respectively, of ∀x〈φ → ψ〉, ∃x〈φ ∧ ψ〉, ¬∀x〈φ → ψ〉, and ¬∃x〈φ ∧ ψ〉.
In addition, a quantified and negated quantified formula will be called an
SP -formula.

In what follows, a translation from K C to a first-order modal language
M will be important. M is familiar except that it has predicate variables

5Some other examples of bringing Kant in connection with non-classical (especially
paraconsistent) logic are reasoning in moral dilemmas [15], and reasoning about the “limits
of thought” [13]. The opinion that Kant’s (and Leibniz’s) ideas “can be restated” in the
setting of Jaśkowski’s discussive logic is expressed in [16, p. 487].
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Xn
1 ,X

n
2 , . . . , atomic formulas Xt1 . . . tn, and subject abstraction formulas of

the form

(X.φ)(Φ) (7)

Subject abstraction in M is meant to except each atomic formula in which
a predicate letter Φ occurs from the scope of any modal operator in φ. We
say that Φ and Φt1 . . . tn are bound by subject abstraction (X.φ)(Φ).6 For
example, in

(X.2(Px ∧Xx))(Q)

Q, substituted for X in 2(Px ∧Xx), is excepted from the scope of 2. In

3(X.2(Px ∧Xx))(Q)

Q, substituted for X in 2(Px∧Xx), is excepted from the scope of 2 (as in
the example above), but it remains within the scope of 3. Nested subject
abstractions,

(X1.(X2. . . . (Xn.φ)(Φn) . . .)(Φ2))(Φ1) (8)

will be abbreviated in the following way:

(X1 . . . Xn.φ)(Φ1, . . . ,Φn) (9)

Let FormM be the set of formulas of M . We will now define a translation
function T from K C into M . The translation T does not grammatically
change formulas inside a subject term, except for angle brackets, which be-
come parentheses. Outside a subject term, T modalizes immediate subfor-
mulas of compounds if compounds are not bound by a subject abstraction.

Definition 1 (Translation from K C into M ). The translation from K C

into M is a function T : FormK C −→ FormM such that

T (φ) = φ, with parentheses in the right side φ
instead of angle brackets in the left side φ,

6Subject abstraction should be distinguished from the predicate (or λ-) abstraction as
used, for example, by Melvin Fitting (see [2, 3]). Predicate abstraction excepts individ-
ual terms or function symbols, not predicate letters, from the scope of modal operators.
Further, predicate abstraction produces a predicate term from a formula, whereas subject
abstraction does not produce any new term.
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if the left side φ is a subformula of a subject term, otherwise:

T (φ) = φ, if φ is atomic
T (¬φ) = ¬T (φ)
T (φ ∧ ψ) = 3T (φ) ∧ 3T (ψ)
T (φ ∨ ψ) = 2T (φ) ∨ 2T (ψ)
T (φ → ψ) = 3T (φ) → 2T (ψ)
T (φ ↔ ψ) = 2(3T (φ) ∧ 3T (ψ)) ∨ 2(3¬T (φ) ∧ 3¬T (ψ))
T (〈φ → ψ〉) = T (φ) → (X1 . . . Xn.T (ψ[X1/Φ1, . . . , Xn/Φn]))(Φ1, . . . , Φn)

where Φ1, . . . , Φn are all and only predicate letters occurring in φ
T (〈φ ∧ ψ〉) = T (φ) ∧ (X1 . . . Xn.T (ψ[X1/Φ1, . . . , Xn/Φn]))(Φ1, . . . , Φn)

where Φ1, . . . , Φn are all and only predicate letters occurring in φ
T (∀x〈φ → ψ〉) = ∀xT (〈φ → ψ〉)
T (∃x〈φ ∧ ψ〉) = ∃xT (〈φ ∧ ψ〉)
T (φ[Φ1, . . . , Φn]) = (X1 . . . Xn.T (φ[X1/Φ1, . . . , Xn/Φn]))(Φ1, . . . , Φn)

φ[X/Φ] is a formula φ in which each occurrence of Φ is replaced by an
occurrence of X.

Remark 2 (Square bracket indication). Sometimes we need to translate a
formula φ as if each of the predicate letters Φ1, . . . , Φn occurs in the subject
term of φ, although some of Φ1, . . . , Φn may actually not occur in that
term or φ even may not have a subject term at all. To that end, we have
introduced a new kind of formulas, φ[Φ1, . . . , Φn], and apply the translation
function T in accordance with the last case in Definition 1.

Γ[Φ1, . . . , Φn] will be like a set Γ except that to each φ ∈ Γ a square
bracket indication [Φ1, . . . , Φn] is added.

3.2. Semantics for K C and M

The main semantic concepts for the language K C and its logic KC are de-
fined by means of the semantics for the formerly introduced modal language
M and its modal logic M. We, first, semantically outline the logic M, and
after that, we define the main semantic concepts of KC.

3.2.1. Outline of the semantics of M

A model M of the logic M is an S5-based quantificational model with (for
simplicity) a universal accessibility relation and a constant domain. It is a
quintuple 〈W,R,D, I〉, where W is a non-empty set (of worlds, moments of
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time), R the universal relation on W (i.e., W ×W ),7 D a non-empty set (of
objects), and I an interpretation such that I(c) ∈ D and I(Φn, w ∈ W ) ∈
℘Dn (c is an individual constant, and Φn an n-placed predicate letter).
Variable assignment v maps each individual variable to a member of D,
and each n-place predicate variable at a world to an n-ary relation on D.
Variants v[d/x] and v[r/X] of a variable assignment v differ from v at most in
assigning d ∈ D to x and an n-ary relation r on D to the n-place predicate
variable X (at w), respectively.

New satisfaction cases for M to be defined are the satisfaction of an
atomic formula with a predicate variable:

M, w |=M

v Xt1 . . . tn iff 〈~t1�
M,w
v , . . . , ~tn�

M,w
v 〉 ∈ ~X�M,w

v

and the satisfaction of a subject abstraction formula:

M, w |=M
v (X.φ)(Φ) iff M |=M

v[~Φ�M,w

v /X]
φ.

That is, Φ remains evaluated at w through the whole φ, regardless of the
modal context in φ in which Φ may occur. The other cases of the satisfaction
of translated formulas are defined in a way familiar in first-order modal logic
with a constant domain.

3.2.2. The semantics of KC

The models of KC are precisely the models of M. The following semantic
concepts of KC and its language are defined locally, that is, with respect to
a world in a model, and with the help of the translation function T .

Definition 2 (Satisfaction in KC).

M, w |=KC

v φ iff M, w |=M

v T (φ).

It is easy to see that under universal accessibility relation R in M, for
each compound formula (φ ∗ ψ) without a square bracket indication (∗ is
a two-place connective), it holds that M, w |=KC

v (φ ∗ ψ) iff for each w,
M, w |=KC

v (φ ∗ ψ).

7Models with a universal relation R can for present purposes sufficiently represent Kan-
tian time. For, as is known, asymmetry, transitivity and comparability for time operators
H (‘always in the past’) and G (‘always in the future’) give equivalence relation for the
operator A (‘always’). Universal relation is a special case of equivalence relation, with
only one equivalence class of worlds (moments of time).
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Definition 3 (Satisfiability in KC). A set Γ of formulas of K C is satis-
fiable iff there are M, w, and v such that for each φ ∈ Γ, M, w |=KC

v φ.

Definition 4 (Consequence in KC). Γ |=KC ψ iff for each M, w, and v,
M, w |=KC

v ψ whenever for each φ ∈ Γ,M, w |=KC
v φ.

Definition 5 (Semantic equivalence in KC). φ and ψ are semantically
equivalent iff for each M, w, and v, M, w |=KC

v φ,ψ or M, w 6|=KC
v φ,ψ.

Definition 6 (Analytic formula in KC). ∀x〈ψ → ψ〉, ∃x〈ψ∧ψ〉, and their
equivalents are analytic iff |=KC 〈ψ → χ〉.

Definition 7 (Self-contradictory formula in KC). ∀x〈ψ → ψ〉, ∃x〈ψ ∧ψ〉,
and their equivalents are self-contradictory iff |=KC 〈ψ → ¬χ〉.

The validity of traditional inferences on SP -sentences (“immediate con-
sequences”, “categorical syllogisms”) is preserved if each subject term in an
inference is treated as if it is a subject term of each sentence in the inference,
in the way defined by the following special cases of the consequence relation
and of the corresponding satisfiability property:

Definition 8 (SP -consequence in KC). Γ[Φ1, . . . , Φn] |=KC ψ[Φ1, . . . ,
Φn] iff for each M, w, and v, M, w |=KC

v ψ[Φ1, . . . , Φn] whenever for each
φ ∈ Γ,M, w |=KC

v φ[Φ1, . . . , Φn], where Φ1, . . . , Φn are all and only predicate
letters occurring in the subject terms of the members of Γ ∪ {ψ}.

Definition 9 (SP -satisfiability in KC). A set Γ[Φ1, . . . , Φn] is satisfiable
iff there are M, w, and v such that for each φ ∈ Γ, M, w |=KC

v φ[Φ1, . . . , Φn],
where Φ1, . . . , Φn are all and only predicate letters occurring in the subject
terms of the members of Γ.

Example 1. If we consider the translations of the sentences (1)–(4) into
M , we can easily see that they are non-analytic, non-selfcontradictory, self-
contradictory, and analytic, respectively:

1. non-analytic (“synthetic”) sentence:

A man who is unlearned is not learned,
K C : ∀x〈Mx → (¬Lx → ¬Lx)〉,
M : ∀x(Mx → (X.(3¬Lx → 2¬Lx))(M))

(the sentence is conceived universally, as an e sentence),

2. non-selfcontradictory sentence:

Some men who are unlearned are learned,
K C : ∃x〈Mx ∧ (¬Lx ∧ Lx)〉,
M : ∃x(Mx ∧ (X.(3¬Lx ∧ 3Lx))(M)),
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3. self-contradictory sentence:

Some unlearned men are learned,
K C : ∃x〈(Mx ∧ ¬Lx) ∧ Lx〉,
M : ∃x((Mx ∧ ¬Lx) ∧ (XY.Y x)(M,L)),

4. analytic sentence:

No unlearned man is learned,
K C : ∀x〈(Mx ∧ ¬Lx) → ¬Lx〉,
M : ∀x((Mx ∧ ¬Lx) → (XY.¬Y x)(M,L)).

In the first and the second of the above translations, subject abstraction
could be omitted because it appears only vacuously, and in the third and
the fourth translation the subject abstraction for M and X could be omitted
for the same reason.

The above examples clearly indicate that KC is paraconsistent in the
sense that φ∧¬φ is satisfiable (see sentence 2) without the explosion of con-
sequences. KC is paracomplete too, since φ∨ ¬φ of K C (being interpreted
in M as 2φ∨2¬φ) is non-valid. We will return to the paraconsistency and
paracompleteness of KC at the end of this section.

Remark 3. There are some similarities (as well as differences) between the
propositional fragment of KC and Jaśkowski’s discussive logic D2 [4, 5,
6] (see also, for example, [12]), first of all in the modal approach to the
semantics, and, in particular, in the similar interpretation of the conditional
and the conjunction (cf. 3φ → ψ and φ ∧ 3ψ of D2). The propositional
fragment of KC is, in a sense, more classical then discussive logic, in that,
for example, in KC conjunction, disjunction, and conditional are classically
interdefinable. In addition, theorems of KC can be modally interpreted as
necessities, not merely as possibilities (like “theses”, which are discussive
counterparts of classical theorems). Note that discussive conjunction as a
thesis becomes equivalent to 3φ∧3ψ (which is the modal interpretation of
the conjunction of K C ).

Philosophically, the difference between discussive logic and KC lies in
the fact that discussive logic is primarily subjective and methodologically
motivated by the cases where there is a lack of a uniform opinion or of a
uniform meaning of terms, while KC is primarily objective and ontologically
motivated by the non-uniformity of the state of affairs through time.8

8 Cf. Perzanowski’s observation about the “lack of an ontological motivation” in Jaś-
kowski’s logic [12, p.19].
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3.3. The principle of contradiction in the square of oppositions

Although KC is paraconsistent, all the oppositions of the logical square of
categorical propositions hold in KC if we presuppose the existential import

for the subject term. For the proof, compare the semantics of the transla-
tions of categorical propositions of K C into the modal language M . The
oppositions hold in each Kripke frame. See as an example the figure below
with a compound predicate term, and ∃x Sx as a general assumption for all
propositions in the square.

a

∀x(Sx → (3Px ∧ 3Qx))

e

∀x(Sx → (2¬Px ∨ 2¬Q))

i

∃x(Sx ∧ (3Px ∧ 3Qx))

o

∃x(Sx ∧ (2¬Px ∨ 2¬Q))

Figure: the square of translations in M , ∃x Sx presupposed

3.4. Conversion and categorical syllogism

In a categorical inference of KC, a subject term of a premise or a conclusion
is a subject term of the whole inference (see Definition 8). In that way,
familiar conversions and categorical syllogisms remain valid.

Example 2.

∀x〈Mx → (Px ∨Qx)〉[M,S] ∀x(Mx → (2Px ∨ 2Qx))
∀x 〈Sx → Mx〉 [M,S] iff ∀x(Sx → (X.Xx)(M))

KC M

∀x 〈Sx → (Px ∨Qx)〉 [M,S] ∀x(Sx → (2Px ∨ 2Qx)).

Since predicate terms of the first premise and of the conclusion do not
contain any predicate letter that occurs in their respective subject terms, we
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omitted the subject abstraction from the first premise and the conclusion of
the M inference (right side) as unnecessary. The right side inference is valid
in each Kripke frame.

3.5. Tableau system for KC

We present the tableau rules for the logic KC, and conceive the rules as a
formal proof system. Each sentence in a tableau is labelled. As usual, we
start a tableau from a set of assumptions with the same label n, and try
to prove the inconsistency of the set by obtaining, in each path, both m φ
and m ¬φ for an atomic φ. As usual, α refers to non-branching rules for
connectives, β refers to branching rules for connectives, γ refers to universal
instantiation rules, and δ refers to existential instantiation rules.

α α1 α2 label properties

m φ ∧ ψ n φ o ψ n, o new
m ¬(φ ∨ ψ) n ¬φ o ¬ψ n, o new
m ¬(φ → ψ) n φ o ¬ψ n, o new
m ¬¬φ m φ
m ¬〈φ → ψ〉 m φ m ¬ψ literals with predicate letters of

φ are bound to m in the whole α
m 〈φ ∧ ψ〉 m φ m ψ literals with predicate letters of

φ are bound to m in the whole α

β β1 β2 label properties

m ¬(φ ∧ ψ) n φ o ψ n, o any
m φ ∨ ψ n φ o ψ n, o any
m φ → ψ n ¬φ o ψ n, o any
m φ ↔ ψ n φ ∧ ψ o ¬φ ∧ ¬ψ n, o any
m ¬(φ ↔ ψ) n φ ∧ ¬ψ o ¬φ ∧ ψ n, o any
m 〈φ → ψ〉 m ¬φ m ψ literals with predicate letters of

φ are bound to m in the whole β
m ¬〈φ ∧ ψ〉 m ¬φ m ¬ψ literals with predicate letters of

φ are bound to m in the whole β

γ γ(c/x) term properties

m ∀xφ m φ(c/x) any c
m ¬∃xφ m ¬φ(c/x) any c

δ δ(c/x) term properties

m ¬∀xφ m ¬φ(c/x) new c
m ∃xφ m φ(c/x) new c
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Rules for m φ[Φ1, . . . , Φn] are as above, depending on the type
of φ, with the difference that the results of the application of the
rule preserve the square bracket indication [Φ1, . . . , Φn] (literals
with Φ1, . . . , Φn are bound to m in the whole φ).

In justifications of lines on the right side of a tableau, there are also annota-
tions about the label to which a subject term predicate letter is associated.
The number of a line and the name of a rule in a justification are separated
by a slash. Closure and openness conditions for a tableau are as in classical
tableaux, with the addition that literals that cause the closing of a path
should have the same label, no matter whether any of those literals has a
square bracket indication appended or not.9 Finally, the proof of φ from Γ,
i.e., Γ ⊢KC φ (Γ and φ unlabelled), is a closed tableau for Γ ∪ {¬φ}.

Example 3. 0KC ∀x〈Mx → (¬Lx → ¬Lx)〉.

1 1 ¬∀x〈Mx → (¬Lx → ¬Lx)〉 X ass.
2 1 ¬〈Mc → (¬Lc → ¬Lc)〉 X 1/¬∀.
3 1 Mc 2/¬〈→〉, 1 M
4 1 ¬(¬Lc → ¬Lc)X 2/¬〈→〉
5 2 ¬Lc 4/¬ →
6 3 ¬¬Lc X 4/¬ →
7 3 Lc 6/¬¬

◦

Example 4. ⊢KC ∀x〈(Mx ∧ ¬Lx) → ¬Lx〉.

1 1 ¬∀x〈(Mx ∧ ¬Lx) → ¬Lx〉 X ass.
2 1 ¬〈(Mx ∧ ¬Lx) → ¬Lx〉 X 1/¬∀
3 1 Mc ∧ ¬Lc 2/¬〈→〉
4 1 ¬¬Lc X 2/¬〈→〉
5 1 Mc 3/∧, 1 M
6 1 ¬Lc 3/∧, 1 L
7 1 Lc 6/¬¬

×

In proving categorical inferences we will treat the premises and the con-
clusion analogously to Definition 8 (and Example 2).

9For the use of labelled tableaux in discussive logic see [1].
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Example 5. In the following tableau, square bracket indications are added
where that makes a difference in the application of a rule. Each assumption
has a square bracket indication.

∀x〈Mx → (Px ∧Qx)〉[M,S]
∀x 〈Sx → Mx〉 [M,S]

KC

∀x 〈Sx → (Px ∧Qx)〉 [M,S]

1 1 ∀x〈Mx → (Px ∧Qx)〉[M,S] cX ass.

2 1 ∀x 〈Sx → Mx〉 [M,S]cX ass.
3 1 ¬∀x〈Sx → (Px ∧Qx)〉[M,S] X ass.
4 1 ¬〈Sc → (Pc ∧Qc)〉 X 3/¬∀
5 1 Sc 4/¬〈→〉
6 1 ¬(Pc ∧Qc) 4/¬〈→〉
7 1 〈Mc → (Pc ∧Qc)〉 X 1/∀
8 1 〈Sc → Mc〉[M,S] 2/∀

/ \
9 1 ¬Mc 1 Pc ∧Qc 7/〈→〉, 1 M

/ \
10 1 ¬Sc Mc[M ] 8/〈→〉

× ×
11 2 Pc 9/∧
12 3 Qc 9/∧

/ \
13 2 ¬Pc 3 ¬Qc 6/¬∧

× ×

Proposition 1. All traditional categorical syllogisms that are valid without

the existential import for the subject term are valid with respect to KC

tableau system, provided premises and the conclusion are expressed by a

square bracket indication [Φ1, . . . ,Φn], where Φ1, . . . ,Φn are all and only

predicate letters occurring in the premises and the conclusion.

Proof. The proof is obvious from the fact that all immediate subformulas
of quantified formulas in a syllogism and all predicate letters occurring in
subject terms come under the same label. All subject terms of a syllogism
behave therefore in a classical way (as if they are not labelled). It is easy to
check that the tableau decomposition of both (classical) subject terms and
(possibly non-classical) predicate terms result with a classical contradiction
(path closure condition). ⊣
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Proposition 2 (Theorems of KC).

⊢KC φ → (ψ → (φ ∧ ψ))
⊢KC (φ → ψ) ↔ (¬φ ∨ ψ)
⊢KC (φ ∧ ψ) → (ψ ∧ φ), ⊢KC (φ ∨ ψ) → (ψ ∨ φ)
⊢KC (φ ∧ (ψ ∧ χ)) ↔ ((φ ∧ ψ) ∧ χ)
⊢KC (φ ∨ (ψ ∨ χ)) ↔ ((φ ∨ ψ) ∨ χ)
⊢KC (φ ∧ (ψ ∨ χ)) → ((φ ∧ ψ) ∨ (φ ∧ χ))
⊢KC ¬(φ ∧ ψ) ↔ (¬φ ∨ ¬ψ), ⊢KC ¬(φ ∨ ψ) ↔ (¬φ ∧ ¬ψ)
⊢KC (¬ψ → ¬φ) → (φ → ψ)
⊢KC ((φ → ψ) ∧ φ) → ψ
⊢KC ¬∃x 〈φ ∧ ¬φ〉
⊢KC ∀x 〈φ → φ〉
⊢KC ∀x(φ → (ψ → φ))
⊢KC ∀x((¬ψ → ¬φ) → (φ → ψ))
⊢KC ∀x(((φ → ψ) ∧ φ) → ψ)
⊢KC ∀x 〈(φ ∧ ψ) → φ〉
⊢KC ∀x 〈φ → (φ ∨ ψ)〉
⊢KC ∀x(((φ ∧ ψ) ∨ (φ ∧ χ)) → (φ ∧ (ψ ∨ χ)))
⊢KC ∀x 〈¬¬φ → φ〉
⊢KC (∃x〈φ ∧ ψ〉 ∨ ∃x〈φ ∧ χ〉) → ∃x〈φ ∧ (ψ ∨ χ)〉

Proposition 3 (Non-theorems of KC).

0
KC ¬(φ ∧ ¬φ)
0

KC φ → (¬φ → ψ)
0

KC φ ∨ ¬φ
0

KC φ → φ
0

KC φ → (ψ → φ)
0

KC (φ ∧ ψ) → φ
0

KC φ → (φ ∨ ψ)
0

KC ((φ ∧ ψ) ∨ (φ ∧ χ)) → (φ ∧ (ψ ∨ χ))
0

KC ¬¬φ → φ
0

KC ∀x〈φ → ψ〉 → ∃x〈φ ∧ ψ〉
0

KC ¬∀x〈φ → ψ〉 ↔ ∃x〈φ ∧ ¬ψ〉
0

KC (∀x〈φ → ψ〉 ∧ ∀x〈φ → χ〉) → ∀x〈φ → (ψ ∧ χ)〉
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Proposition 4 (Derivability in KC).

{φ,ψ} ⊢KC (φ ∧ ψ)
{φ,¬φ} ⊢KC ψ
{φ → ψ, φ} ⊢KC ψ
{φ → ψ,¬ψ} ⊢KC ¬φ
{¬¬φ} ⊢KC φ
{∃x〈φ ∧ ψ〉 ∨ ∃x〈φ ∧ χ〉} ⊢KC ∃x〈φ ∧ (ψ ∨ χ)〉

Proposition 5 (Non-derivability in KC).

{φ ∧ ψ} 0KC φ,ψ
{φ} 0KC φ ∨ ψ
{(φ ∧ ψ) ∨ (φ ∧ χ)} 0KC φ ∧ (ψ ∨ χ)
{∀x〈φ → ψ〉} 0KC ∃x〈φ ∧ ψ〉
{∀x〈φ → ψ〉 ∧ ∀x〈φ → χ〉} 0KC ∀x〈φ → (ψ ∧ χ)〉

Proposition 6 (Deductive equivalences in KC). Beside the commutativity

and the associativity of ∧ and ∨, we mention the following equivalences.

¬(φ ∧ ψ) ⊣⊢KC ¬φ ∨ ¬ψ
¬(φ ∨ ψ) ⊣⊢KC ¬φ ∧ ¬ψ
φ → ψ ⊣⊢KC ¬φ ∨ ψ
¬(φ → ψ) ⊣⊢KC φ ∧ ¬ψ
¬∀x〈φ → ψ〉 ⊣⊢KC ∃x〈φ ∧ ¬ψ〉

Propositions 2–6 can be checked by the KC tableau system. Note that
some quantificational theorems from Proposition 2 become non-theorems
when the quantifier is omitted (see Proposition 3) (e.g., the classical princi-
ple of contradiction, the principle of double negation). Further, for example,
the classical definition of the conditional (by ¬ and ∨), the commutativ-
ity, associativity, and De Morgan’s laws for ∧ and ∨ hold as theorems as
well as derivability relations. In contrast, the law of distribution does not
hold neither as a theorem, nor as a derivability relation. Note the asymme-
try between theoremhood and derivability: for example, ex contradictione

quodlibet and the principle of double negation hold as derivability relations,
but not as theorems.

Corollary 1. The deduction theorem for KC does not hold.

Proof. According to propositions 4 and 3, {φ,¬φ} ⊢KC ψ, but 0KC φ →
(¬φ → ψ). See the same propositions for the principle of double negation.
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Compare also the second last non-theorem in Proposition 3 and the last
equivalence in Proposition 6. ⊣

Corollary 2. KC is paraconsistent and paracomplete regarding theorem-

hood.

Proof. See in Proposition 3 the first and the second non-theorem for para-
consistency, and the third non-theorem for paracompleteness. ⊣

Corollary 3. Regarding derivability, KC is explosive.

Proof. See Proposition 4, the second case. ⊣

Corollary 4. KC is adjunctive regarding theoremhood and derivability.

Proof. See Proposition 2 case 1, and Proposition 4 case 1. ⊣

4. An extension of KC

Beside categorical propositions, Kant introduces “hypothetical” and “dis-
junctive” propositions. In order to express such propositions, we extend the
language K C to a language K C + with the following new kinds of formu-
las: φ J ψ and φ ⊻ ψ. The first kind is the familiar strict conditional, and
the second one is strict exclusive disjunction.10 They translate into M in
the following way:

T (φ J ψ) = 2(φ → ψ),
T (φ ⊻ ψ) = 2¬(φ ↔ ψ).

By 2 we want to express that hypothetical and disjunctive propositions,
unlike categorical proposition, are meant time independently. For instance,
when Kant gives an example of the following disjunctive proposition

The world exists either through blind chance, or through inner
necessity, or through an external cause

10Kant describes the “relation” of the antecedent to the consequent in a hypothetical
proposition as a “consequence” (“Consequenz”, B 98), that is, as a “ground – consequent”
(“Grund – Folge”, B 98) relation. Further, Kant describes the “relation” that constitutes
a disjunctive proposition as a complementation of parts (disjuncts) to a whole sphere of
a possible knowledge in a chosen respect to the subject: “In disjunctive judgments we
consider all possibility as divided in respect to a particular concept” [9, p. 95] (emphasis
in [7, vol. 4, Prolegomena, p. 330]).
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(B 99), he plainly does not relativize the meaning of the statement only to
one moment of time (in the sense in which “A man is learned” means that
the man is learned at one time, but can be unlearned at another time). The
same holds for Kant’s example of the hypothetical proposition: “If there is
a perfect justice, the obstinately wicked are punished” (B 98).

In K C + we allow ∀x and ∃x to be applied to φ J ψ and φ ⊻ ψ, so that
we get the formulas of the form ∀x(φ J ψ) and ∀x(φ ⊻ ψ), and similarly
for ∃x. What Kant meant under “hypothetical proposition” (“judgment”)
were not only the propositions of the form of the strict conditional, but
also the propositions of the form ∀x(φ J ψ). Similarly, under (exclusively)
disjunctive proposition Kant meant not only the propositions of the form
φ ⊻ ψ, but also the propositions of the form ∀x(φ ⊻ ψ).

Kant’s idea was to strengthen the logical “unity” of a proposition in com-
parison to categorical propositions. According to Kant’s theory of propo-
sitions, we can distinguish three grades of the logical unity of propositions
regarding the possible truth of mutually contradictory predications11:

1. the weakest unity is the “relation” of a predicate to the subject in a
categorical proposition: mutually contradictory predications to the same
(non-contradictory) subject can both be true if only they do not contra-
dict the subject (Kant’s principle of contradiction);

2. the next, stronger, unity is the “relation” of a consequent to the an-
tecedent in a hypothetical proposition: mutually contradictory predica-
tions cannot both be true consequents of the same true antecedent, but
can both be its false consequents; a true antecedent has simply a plurality
of mutually non-contradictory predications as its true consequents (the
principle of sufficient reason);

3. the strongest unity is the “relation” of the whole to the members of an
exclusive disjunctive proposition: precisely one of the contradictory pred-
ications must be true as a member of a whole of mutually exclusive pred-
ications (the principle of excluded middle).

Corresponding to the language K C + there is a logic KC+, with semantic
concepts (satisfaction, satisfiability, consequence, etc.) defined in an obvious
way and analogously to KC. The tableau system of KC+ includes the

11See, for example, B 98–100, a letter to Reinhold (12.05.1789) in [7, vol. 9], and
reflections 2178 [7, vol. 16], 5562 and 5734 [7, vol. 18].
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tableau rules of KC with the addition of the following rules:

α α1 α2 label property

m ¬(φ J ψ) n φ n ¬ψ any n

β β1 β2 label property

m φ J ψ n ¬φ n ψ any n
m φ ⊻ ψ n φ,¬ψ n ¬φ,ψ any n
m ¬(φ ⊻ ψ) n φ,ψ n ¬ψ,¬ψ any n

Regarding our discussion of paraconsistency and paracompleteness of Kan-
tian logic, it is obvious that it is not paraconsistent with respect to J. For
the proof, we first introduce a weak conjunction, φ ⊼ ψ, by the following
translation to M :

T (φ ⊼ ψ) = 3(φ ∧ ψ).

Thus ⊢KC+ ¬(φ⊼¬φ). Since ⊢KC+ (φ J ψ) ↔ ¬(φ⊼¬ψ), and ⊢KC+ (φ J ψ),
paraconsistency is excluded with respect to the weak conjunction, and hence
with respect to the strict conditional. In addition, it is obvious that KC+
is not paracomplete with respect to ⊻, since ⊢KC+ φ ⊻ ¬φ.

5. Soundness and completeness

As a preliminary to the sketch of the soundness and completeness proofs for
the KC+ tableau system, we define the satisfaction of a labelled formula
and the satisfiability of a set of labelled formulas in KC+.

Definition 10 (KC+-satisfaction of a labelled formula).

M |=KC+
v n φ iff M, wn |=M

v T (φ).

Corollary 5.

M, wn |=KC+
v φ iff M |=KC+

v n φ.

Proof. The corollary is obvious from the generalization of Definition 2 to
KC+, and Definition 10. ⊣

Definition 11 (KC+-satisfiability of a labelled set). A set Γ of labelled
formulas of K C + is KC+-satisfiable iff there are M and v such that for
each n φ ∈ Γ, M |=KC+

v n φ.

Since each tableau path (which extends from the beginning of the tableau
to the end of a branch) is a set of labelled formulas of K C +, we can speak
of the KC+-satisfiability of a tableau path too.
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5.1. Soundness

First, we show that KC+ tableau rules preserve the satisfiability in
a tableau.

Proposition 7 (Satisfiability preservation). If a tableau T has at least one

satisfiable path, and T ′ is the extension of T by a tableau rule for members

of T , then T ′ too has a satisfiable path.

Proof. For α rules, observe that, according to the semantics of KC+, both
n α1 and o α2 are true in each model that satisfies a path p (of a tableau
T ) containing m α, for indices n and o new to p. For example, if T has a
satisfiable path p, and m φ∧ψ ∈ T , then the extension T ′ containing n φ and
o ψ has a satisfiable path too if n and o are new to the path on which they
occur. For, if M |=KC+

v p and m φ ∧ ψ ∈ p, then M |=KC+
v p ∪ {n φ, o ψ},

where n and o are new to p (i.e., with respect to the modal logic M, wn and
wo need not to be identical with any world corresponding to the indices of
the members of the path p). If m φ ∧ ψ ∈ p occurs in T outside the path p,
p trivially remains satisfied after the extension of T .

For β rules, observe that either n β1 or o β2 (for any n and o) is true in
each model that satisfies a path p (in T ) containing m β. For example, if
T has a satisfiable path p, and m 〈φ → ψ〉 ∈ p, then either p extended by
m ¬φ or p extended by m ψ is satisfiable. If m 〈φ → ψ〉 < p, T ′ trivially
continues to have a satisfiable path. Therefore, the extension T ′ containing
n β1 and o β2 has a satisfiable path.

Similarly, the results of applying γ and δ rules are true for models that
satisfy a path p in T , p containing γ and δ, respectively.

In an analogous way, the application of α, β, γ, and δ rules to the formulas
with a square bracket indication also preserves a satisfiable path in a tableau.

⊣

Theorem 1 (Soundness). If Γ ⊢KC+ φ, then Γ |=KC+ φ.

Proof. It follows from Proposition 7 that, if a tableau for a set n Γ∪{n ¬φ}
of labelled formulas eventually has on each path a pair m φ and m ¬φ for an
atomic φ, then n Γ∪{n ¬φ} itself cannot be a tableau with a satisfiable path.
That is, if Γ ∪ {¬φ} has a closed tableau, then Γ ∪ {¬φ} is not satisfiable
(see Corollary 5). (Note that a closed tableau for a finite set ∆ is also a
closed tableau for any infinite superset of ∆). Since the tableau method is
conceived as a formal proof method, where Γ ⊢KC+ φ iff Γ ∪ {¬φ} has a
closed tableau, the theorem obviously follows. ⊣
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5.2. Completeness

Definition 12 (Labelled Hintikka set). A labelled Hintikka set H is defined
according to the tableau rules for KC+: if α ∈ H then α1, α2 ∈ H (α1 for
at least one label n and α2 for at least one label o), if β ∈ H then β1 ∈ H
or β2 ∈ H (β1 for each label n and β2 for each label o), if γ ∈ H then
γ(c/x) ∈ H for each c occurring in the members of H and for at least one
c, if δ ∈ H then δ(c/x) ∈ H for at least one c. Also, if φ is atomic, then
n φ < H or n ¬φ < H. In addition, if φ[Φ1, . . . , Φn] ∈ H then the above
conditions for the membership in H of atomic, α, β, γ, and δ formulas apply
in dependence of the form of φ and with [Φ1, . . . ,Φn] appended to α1 and
α2, β1 and β2, γ(c/x), δ(c/x), and literals n φ and n ¬φ.

Proposition 8. Each open path of a tableau is a subset of at least one

labelled Hintikka set.

Proof. Each formula entered into an open path of a tableau would also be
entered in a variant of the application of the formation rules for a labelled
Hintikka set (Definition 12). Thus, each formula of an open path is also a
formula of a labelled Hintikka set. ⊣

Proposition 9 (Satisfiability of a labelled Hintikka set). Each labelled Hin-

tikka set is satisfiable.

Proof. We construct a canonical model MH = 〈W,R,D, I〉 for a given
labelled Hintikka set H in the following way: W is a non-empty set (of
labels in H); R is the universal relation on W (universal accessibility); D is
a set of individual constants occurring in the members of H (D = {c} if no
individual constant occurs in H); I(c) = c if an individual constant c occurs
in H, otherwise I(c) = c; 〈c1, . . . , cn〉 ∈ I(Φn,m) iff m Φnc1 . . . cn ∈ H. Now,
it follows by mathematical induction that if m φ ∈ H then MH |=KC+ m φ.
For example, let m φ ∨ ψ ∈ H. Then n φ ∈ H or o ψ ∈ H for each n
and o in H. According to the inductive hypothesis, MH |=KC+ n φ or
M

H |=KC+ o ψ, for each n and o in H, and thus MH |=KC+ m φ ∨ ψ (see
Corollary 5). Further (to take another example), let m 〈φ → ψ〉 ∈ H. Then
m ¬φ ∈ H or m ψ ∈ H with predicate letters of φ bound to m. According
to the inductive hypothesis, MH |=KC+ m ¬φ or MH |=KC+ m ψ, where
each literal subformula with a predicate letter of φ is bound to m. Hence,
M

H |=KC+ m 〈φ → ψ〉 (see Corollary 5). ⊣

Theorem 2 (Completeness). If Γ |=KC+ φ, then Γ ⊢KC+ φ.
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Proof. If Γ∪{¬φ} has a tableau with an open path, then n Γ∪{n ¬φ} is a
subset of a labelled Hintikka set (Proposition 8), and therefore n Γ∪{n ¬φ}
is satisfiable (see Proposition 9). Hence, Γ ∪ {¬φ} is also satisfiable (see
Corollary 5). After the contraposition, the theorem follows, since a tableau
without an open path is closed, and hence is a proof of φ from Γ. ⊣
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