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FROM BDI AND stit TO bdi-stit LOGIC∗

Abstract. Since it is desirable to be able to talk about rational agents form-
ing attitudes toward their concrete agency, we suggest an introduction of
doxastic, volitional, and intentional modalities into the multi-agent logic of
deliberatively seeing to it that, dstit logic. These modalities are borrowed
from the well-known BDI (belief-desire-intention) logic. We change the se-
mantics of the belief and desire operators from a relational one to a monotonic
neighbourhood semantic in order to handle ascriptions of conflicting but not
inconsistent beliefs and desires as being satisfiable. The proposed bdi-stit

logic is defined with respect to branching time frames, and it is shown that
this logic is a generalization of a bdi logic based on branching time possible
worlds frames (but without temporal operators) and dstit logic. The new
bdi-stit logic generalizes bdi and dstit logic in the sense that for any model
of bdi or dstit logic, there is an equivalent bdi-stit model.

Keywords: modal logic of agency, deliberative stit logic, BDI logic, beliefs,
desires, intensions, neighbourhood semantics, branching time structures.

1. Introduction

The temporal logics BDI and BDI ∗ of beliefs, desires, and intentions, de-
veloped by Rao and Georgeff [9] are among the most prominent and widely
applied formalizations of rational agents, see also [20]. In this paper, we
shall introduce a modal logic of beliefs, desires, intentions, and agency. Sup-
plementing the BDI vocabulary by a modal operator for agency is a very

∗We dedicate this paper to the memory of Alexander Vladimirovich Kuznetsov (1926–
1984).
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natural move for at least two reasons. First of all, obviously the concrete
actions of rational agents (as opposed to their available action types) are of-
ten described as being guided by the agents’ beliefs, desires, and intentions.
Therefore it is desirable to be able to talk not only about the doxastic, voli-
tional, and intentional attitudes of rational agents, but also about their con-
crete actions. Secondly, the semantics of BDI and BDI ∗ and the semantics
of the perhaps most prominent multi-agent logics of seeing to it that, the stit
logics developed by Belnap, Perloff, and Xu, Chellas, von Kutschera, Horty
and others (see [3] and references therein), are based on certain branching
time structures. Combining both approaches hence more or less suggests
itself.

In Section 2 we shall briefly present the semantics of the deliberatively

seeing to it that (dstit) operator, and Section 3 is devoted to a presentation
of the standard semantics of the sublanguage of BDI comprising the alethic
modalities it is necessary that and it is possible that and the belief, desire,
and intention operators. This logic will be called bdi logic. In Section 4, we
shall motivate and semantically present a combined logic of beliefs, desires,
intentions, and agency, using the branching time frames from stit theory.
Moreover, we shall take seriously a phenomenon frequently encountered in
rational agents and in reasoning about their beliefs and desires, namely the
fact that agents sometimes have conflicting (though not inconsistent) beliefs
and desires. Although conflicting beliefs have been discussed in doxastic
logic in the context of the logical omniscience problem and antagonistic de-
sires have been described also in Michael Bratman’s Belief-Desire-Intention
theory of human practical reasoning [4], ascriptions of such attitudes are un-
satisfiable in the familiar BDI logics. The main technical contribution of the
present paper is the proof that our logic of bdi-stit in fact is a generalization
of both dstit logic and bdi logic in the following sense: For every model of
dstit logic and every model of bdi logic, there exits an equivalent bdi-stit
model. Some concluding remarks on future work can be found in Section 5.1

1In [18] it has been suggested to combine belief, desire, intention, and dstit modalities,
but to restrict the syntax so as to prefix intention modalities only to dstit-formulas. Al-
though this restriction is well-motivated, in the present paper we nevertheless impose no
syntactic restrictions on formulas in the scope of intention modalities, in order to empha-
size the fact that the bdi-stit logic generalizes bdi logic.
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2. Deliberative-stit logic

2.1. The dstit ontology

Deliberative-stit logic (dstit logic)2 is a logic of agency based on so-called
branching time frames. These structures reflect the idea that the past is
linear and determined. In contrast to this, the future is assumed to be
indetermined and hence not linear. Branching time temporal logic goes
back to Arthur Prior and Richmond Thomason [14, 15].

A branching time frame is a structure of the form F = (M,≤), where
M is non-empty set of moments of time, and ≤ is a partial order on M

satisfying the following property:

if n ≤ m and p ≤ m, then n ≤ p or p ≤ n, for all m,n, p .

For a given moment m and every pair of moments in the past of m, it is
determined which one precedes the other. With respect to the future the
situation is different. The partial order ≤ thus imposes a tree structure
on M . A maximal linearly ordered subset h ⊆ M is said to be a history in
M . This means that for every two elements m, n from h, m ≤ n or n ≤ m

and that it is impossible to add a further moment to h without violating
linearity. In the sequel we shall denote the set of all histories of a given
frame F by H. The set H(m) = {h |m ∈ h} then contains all histories which
pass through moment m. A moment/history pair (m,h) with m ∈ h may
be called a situation.

Branching time frames are the structures on which Belnap, Perloff, and
Xu [2, 3] build up their modal logic of agency. They extend a temporal frame
F by a finite, non-empty set A of agents and by a function C : A × M →
P(P(H)) that assigns to every agent at each moment a family of sets of
histories such that for every agent α ∈ A, the set C(α,m) = Cα

m is an
equivalence relation on the set H(m). The equivalence class Cα

m(h) contains
the histories which are choice-equivalent for agent α at moment m, i.e., the
histories agent α cannot distinguish at moment m by her or his actions.
There exist then different equivalence classes {[Cα

m(h)] |h ∈ H(m)} on H(m),
which are also said to be the choice cells for α in moment m. In particular,
histories which share a moment later than m are choice-equivalent at m for
any agent. This is, however, only a sufficient but not a necessary condition
for choice-equivalence.

2Note that there are several formal notions of seeing to it that, for example, the Chellas

stit, the achievement stit, and the deliberative stit, see [3].
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The resulting stit frames F = (M,≤,A, C) are the semantic structures
used to interpret agentive sentences. In order to present a truth definition,
we first need a language.

2.2. The syntax of dstit logic

The language of dstit logic comprises denumerably many atomic formulas
(p1, p2, . . . ), the connectives of classical propositional logic (¬, ∧, ∨, ⊃, ≡)
and the modal necessity and possibility operators 2 and 3. This vocabulary
is supplemented by action modalities α1 dstit :, . . . , αn dstit : where αi dstit :
(1 ¬ i ¬ n) is read as ‘agent αi deliberatively see to it that’. We thus also
assume a set of agent variables (α1, α2, . . . , αn).

Definition 1 (dstit syntax). The formulas of dstit logic are inductively
defined as follows:

1. Every atomic formula p1, p2 . . . is a formula.

2. If ϕ, ψ are formulas, then so are ¬ϕ, (ϕ∧ψ), (ϕ∨ψ), (ϕ ⊃ ψ), (ϕ ≡ ψ),
2ϕ and 3ϕ.

3. If ϕ is a formula and α is an agent variable, then α dstit : ϕ is a formula.

4. Nothing else is a formula.

Note that Belnap, Perloff, and Xu (and other authors) use the notation
[α dstit : ϕ] instead of α dstit : ϕ.

2.3. The semantics of dstit logic

Given a stit frame F = (M,≤,A, C), by adding a valuation function v which
maps every atom to a set of situations in F , one obtains a model M = (F , v).
In the sequel, a model (F , v) will be called a dstit model.

The satisfiability of a formula ϕ at a situation (m,h) in the model,
M, (m,h) |= ϕ, is defined by induction on the construction of ϕ. Intu-
itively, v(ϕ) is the set of situations where ϕ is true. An agent variable α is
interpreted in M by an element from set A. For simplicity, we also use α to
denote its interpretation. From now on, we shall assume that the connectives
∨, ⊃, ≡, and 3 as defined as usual.

Definition 2 (dstit semantics). Let (m,h) be a situation, and let α be an
agent in M = (F , v).
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M, (m,h) |= ϕ iff (m,h) ∈ v(ϕ), if ϕ is an atomic formula.

M, (m,h) |= ¬ϕ iff M, (m,h) 6|= ϕ .

M, (m,h) |= ϕ ∧ ψ iff M, (m,h) |= ϕ and M, (m,h) |= ψ.

M, (m,h) |= 2ϕ iff M, (m,h′) |= ϕ for all h′ ∈ H(m).

M, (m,h) |= α dstit : ϕ iff (i) M, (m,h′) |= ϕ for all h′ ∈ Cα
m(h),

(ii) there exists h′′ ∈ H(m) with

M, (m,h′′) 6|= ϕ.

Necessity, is thus interpreted as an S5-type modal operator (namely, as
a universal quantifier on H(m)). The action modalities, however, are not
normal modal operators.

3. A logic of beliefs, desires, and intentions

The temporal logic of beliefs, desires, and intentions BDI has been developed
in the 1990s by Rao and Georgeff in a series of papers, see [8, 9]. A survey
and further development in book length of BDI logics has been presented
by Michael Wooldridge [20]. We intend to define a logic whose language
contains in addition to the dstit operator the BDI operators from Rao’s and
Georgeff’s logic [9], but which does without the temporal operators of the
Computational Tree Logic CTL. We are thus interested in the bare essentials
needed to extend the syntax of dstit logic to obtain a language for reasoning
about beliefs, desires, intentions, and concrete actions. In order to highlight
that we are dealing with a fragment of the BDI language, we shall use the
lowercase letters bdi to refer to the new logic.

3.1. The syntax of bdi logic

In addition to being able to talk about possibility and necessity, we now
want to be able to express that an agent has certain beliefs, desires, and
intentions. To this end, the language of alethic propositional modal logic
is extended by modal operators αi bel :, αi des : and αi int : (1 ¬ i ¬ n),
where αi stands for a rational agent capable of having beliefs, desires, and
intentions.

Definition 3 (bdi syntax). The formulas of bdi logic are inductively defined
as follows:

1. Every atomic formula p1, p2, . . . is a formula.

2. If ϕ, ψ are formulas, then so are ¬ϕ, (ϕ ∧ ψ), and 2ϕ.



190 Caroline Semmling, Heinrich Wansing

3. If ϕ is a formula and α is an agent variable, then α bel : ϕ, α des : ϕ and
α int : ϕ are formulas.

4. Nothing else is a formula.

Note that Wooldridge, Rao and Georgeff (and other authors) use the
notation [Bel α ϕ] or Bel(ϕ) instead of α bel : ϕ.

3.2. The semantics of bdi logic

Like the models of dstit logic, the models of BDI and hence of bdi logic
are based on branching time frames. However, the models of bdi logic differ
from the models of dstit logic not just in replacing the ‘choice function’ C
by interpretation functions for belief, desire, and intention modalities, but
also in the construction of the situations in which formulas are semantically
evaluated.

Starting from a branching time structure (M,≤), worlds w = (Mw, Rw)
are considered where

Mw ⊆ M ,

Rw ⊆ R = { (m,m′) |m ≤ m′ or m′ ≤ m, for m,m′ ∈ M} ⊆ M ×M ,

Mw , ∅, and Rw is such that w itself is a branching time frame, i.e., a
tree structure. The set of all worlds of a given frame will be denoted by
W . Situations3 in a frame are all pairs (w,m) with w ∈ W and m ∈ Mw.
Moreover, the notion of a path in a world w is defined. Given a situation
w0 = (w,m0), a path is an arbitrarily long sequence (w0, w1, w2, . . .), where
the wi = (w,mi) are situations such that for every i, mi < mi+1, i.e., the
moments of a path are linearly ordered. Maximal paths (fullpaths) are paths
that cease to be linear upon the addition of a further situation (w,mj) with
m0 < mj.

To complete the semantic picture, a finite, non-empty set A of agents and
suitable interpretation functions for belief, desire, and intention operators
are stipulated. A frame of a bdi model then is a structure of the shape
F = (M,≤,W,A, B,D, I). Every function F ∈ {B,D, I} assigns to each
agent a set of triples (w,m,w′), where both (w,m) and (w′,m) are situations.
In other words,

F : A → P((W ×M) ×W ).

3The situations of dstit logic differ from the situations in BDI logics and hence bdi

logic. In the sequel, the context will resolve ambiguity.
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The set Bw
m(α) = {w′ | (w,m,w′) ∈ B(α) } is then understood as the set

of all worlds compatible with that agent α believes in the situation (w,m).
This conception is familiar from Hintikka’s [10] seminal work on epistemic
logic. Similarly, the sets Dw

m(α) and Iw
m(α) are taken to contain the worlds

compatible with what agent α is desiring, respectively intending in the sit-
uation (w,m). Thus, for every agent α, each F ∈ {B,D, I} is a relation
between situations and worlds. In order to avoid the satisfiability of for-
mulas α bel : ϕ, α des : ϕ, and α int : ϕ, where ϕ is unsatisfiable, it is usually
required that the relations F ∈ {B,D, I} are serial, which is to say that
every set Fw

m(α) is non-empty. See, for instance, [9, p. 305].4

A model in which formulas from Definition 3 are assigned truth values
then is a pair M = (F , v), where F = (M,≤,W,A, B,D, I) is a frame and v
is a valuation function from atoms to sets of situations. The interpretation
of a formula ϕ in a situation is defined as follows.

Definition 4 (bdi semantics). Let (w,m) be a situation, α an agent in
model M = (F , v) and let ϕ,ψ be formulas according to Definition 3.

M, (w,m) |= ϕ iff (w,m) ∈ v(ϕ), if ϕ is an atomic formula.

M, (w,m) |= ¬ϕ iff M, (w,m) 6|= ϕ .

M, (w,m) |= ϕ ∧ ψ iff M, (w,m) |= ϕ and M, (w,m) |= ψ.

M, (w,m) |= 2ϕ iff M, (w′,m) |= ϕ for every situation
(w′,m) ∈ W ×M .

M, (w,m) |= α bel : ϕ iff M, (w′,m) |= ϕ for all w′ ∈ Bw
m(α).

M, (w,m) |= α des : ϕ iff M, (w′,m) |= ϕ for all w′ ∈ Dw
m(α).

M, (w,m) |= α int : ϕ iff M, (w′,m) |= ϕ for all w′ ∈ Iw
m(α).

Again, necessity is interpreted as an S5-type modality.
In BDI and BDI ∗, a distinction is drawn between so-called state formulas

and path formulas interpreted at paths. In the language of bdi logic, this
distinction is superfluous, because the temporal operators which give rise
to the distinction are omitted. Yet, we add the alethic modalities 2 and
3 (defined as ¬2¬) from the language of dstit logic. The alethic modal
operators have no counterpart in CTL and CTL∗. Instead of 2 and 3, in
CTL temporal modalities are considered, for example, Fϕ (sometimes in

the future it is the case that ϕ) and Gϕ (always in the future it is the case

4If the relations are serial, then formulas (α des : ϕ ∧ α des : ¬ϕ), (α bel : ϕ ∧ α bel : ¬ϕ),
and (α int : ϕ ∧ α int : ¬ϕ) are unsatisfiable. See the discussion on antagonistic desires and
beliefs in Section 4.
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that ϕ). We do without temporal operators in bdi logic to simplify matters
and because our primary aim is to combine a logic of beliefs, desires and
intentions with dstit logic. With this goal in mind, we interpret 2ϕ as true
in a situation (w,m) from a bdi model if the formula ϕ is true at every world
accessible from m.

This definition is compatible with the semantics of 2 in dstit logic in the
sense that also the ‘historical necessity’ of dstit logic is an S5-type modality.
Moreover, as in dstit logic, the truth of a formula 2ϕ at a situation does not
warrant any conclusion concerning the truth value of ϕ at earlier or later
moments of time. The same holds true for 3ϕ, which is true in a situation
(w,m) if there exists an accessible world in which ϕ is true at m. This is a
concise conception of possibility, which may be clearly distinguished from a
temporal reading of possibly ϕ, namely it is possible that sometimes in the

future ϕ is true in some history.

4. A generalization of bdi logic and dstit logic

Our aim in defining bdi-stit logic is to obtain a modal logic of agency in which
one can express, for instance, that an agent desires or intends to see to it
that something is the case. Also, we want to be able to express that an agent
believes that a certain agent sees to it that something is the case. In this
context, a lot of interesting philosophical questions arise, such as whether the
worlds compatible with what an agent believes in a given situation ought
to be accessible from this situation. As there may be several agents, the
question turns up whether an agent can intend that another agent can bring
about something. We shall not address all these questions in the present
paper,5 but in addition to adjoining the dstit operator to the language of
bdi logic, we shall also generalize bdi logic in its own vocabulary.

The generalization of bdi logic pertains in the first place to the concepts
of belief and desire. In Rao’s and Georgeff’s BDI the belief, desire, and
intention operators are all treated in the same way, namely their semantics is
explicated in terms of relations on situations. The sentence Agent α believes

that ϕ is true in a situation (w,m) if ϕ is true in every situation (w′,m) with
w′ ∈ Bw

m(α). Thus, an agent believes in a situation (w,m) that something is
the case, if in every world compatible with what the agent believes in (w,m),
ϕ is true at m. It is neither required, nor is it excluded that w ∈ Bw

m(α),
but if w ∈ Bw

m(α), then α has only true beliefs in (w,m). Intuitively, this

5A discussion of other-agent-intending can be found in [18].
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conception, or rather its notion of compatibility may well be contentious. In
general, we normally believe what has been shown to be the case, but one
might object that many beliefs are virtually undecidable. Agents may believe
that they made optimal decisions in the past, that there exists a divine being,
that money ruins character, etc. Intuitively, such believes do not preclude a
world w from being compatible with what an agent believes in a situation
(w,m). What if one assumes that, without further qualifications, it is neither
true nor false that money ruins character? Can a world be compatible with
the belief that ϕ, if ϕ is neither true nor false? We need not overemphasize
this objection, because the problems raised can be evaded by considering
models in which every agent/situation pair (α, s) is assigned several sets of
situations. Theses sets may now be seen as ‘worlds’ compatible with what
the agent believes in s.6 Moreover, a similar approach has also bee suggested
to partly overcome the problem of logical omniscience in epistemic logic, see
[6, 7, 16].

The sentence Agent α believes that ϕ is then true iff there exists a set in
the range of the function used to interpret the belief operator such that ϕ
is true in every situation from this set. In particular, it is possible that in a
given situation (w,m) it is true that an agent believes that ϕ and believes
that ¬ϕ. This is the case iff there exist two disjoint ‘worlds’ compatible with
what the agent believes in (w,m) such that ϕ is true in every situation from
one set and ¬ϕ is true throughout the other world.

The following example suggests that a rational agent may, in fact, simul-
taneously believe that ϕ and believe that ¬ϕ. Suppose that because of the
desire to have children an agent decides to waive her plans of a professional
career. Years later, together with her beloved children, she is listening to
a friend, who is reporting about her job-related successes. In this situation
our agent might well correctly be described as simultaneously believing that
it was wise to decide in favour of children and believing that this decision
was unwise.

The idea of being able to consistently ascribe conflicting beliefs to a ra-
tional agent is not new, see [16, 17], and must be distinguished from consis-
tently ascribing inconsistent beliefs. In the survey by Fagin and Halpern [7]
on doxastic logics for rational agents, the authors present an example which
goes back to the physicist Eugene Wigner [19], who diagnosed that quantum
field theory, which describes three out of the four fundamental interactions,

6Note that the notion of a world in BDI and bdi logic differs from the notion of a world
in the bdi-stit logic we are about to develop.
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is incompatible with the general theory of relativity which describes gravi-
tation, the fourth interaction. A physicist may well believe the statements
of quantum field theory and believe the statements of the general theory of
relativity. However, this physicist has to avail of two ‘frames of mind’, in
fact, this agent can be viewed as a ‘society of minds’. Such considerations
are quite familiar from the Philosophy of Science. The frames of mind can
be associated with different, competing paradigms in Thomas Kuhn’s termi-
nology [13] or competing ‘Begriffsapparaturen’ in Kazimierz Ajdukiewicz’s
terminology [1].

An agent may enter into a similar disunion, when he has antagonis-
tic desires. Van der Hoek and Wooldridge [11, p. 142] point out that
“[i]mplemented BDI agents require that desires be consistent with one an-
other, although human desires often fail in this respect”. In other words,
it may be the case that in a given situation a rational agent desires that
ϕ and desires that ¬ϕ. Difficult decisions are often accompanied by an-
tagonistic wishes. Consider an agent who is supposed to donate a kidney
to his brother. The agent may be assumed both to desire that he spends
his life with two healthy kidneys and to desire that he helps his brother by
donating one of his organs. We thus would like to have available semantical
models in which formulas are satisfiable that ascribe conflicting beliefs and
antagonistic desires.

In contrast to this, the semantics should not be such that an agent may
have paradoxical beliefs or desires, and, clearly, given the society-of-minds
understanding, if an agent believes that ϕ and believes that ¬ϕ, this does
not imply that the agent believes that ϕ ∧ ¬ϕ. The agent from one of our
examples above may be aptly described as believing that her decision was
wise and believing that her decision was unwise, but it would be inadequate
to describe the agent as believing a contradiction. Similar things can be said
with respect to an agent’s desires. An agent may have the desire to donate
a kidney to his brother and the desire to continue to life with two kidneys,
but it would be completely inappropriate to describe the agent as desiring
that he simultaneously keeps his pair of kidneys and donates one kidney to
his brother.

4.1. The syntax of bdi-stit logic

As we intend to combine the language of stit logic and bdi logic, it should
be clear how the syntax of bdi-stit logic is inductively defined. In addition
to the obvious merger of vocabulary, however, we shall also introduce a new
possibility operator, namely �.
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Definition 5 (bdi-stit syntax). 1. Every atomic formula p1, p2, . . . is a for-
mula.

2. If ϕ, ψ are formulas and α is an agent variable, then ¬ϕ (ϕ ∧ ψ), 2ϕ,
�ϕ, α dstit : ϕ, α bel : ϕ, α des : ϕ and α int : ϕ are formulas.

3. Nothing else is a formula.

4.2. The semantics of bdi-stit logic

Above, both dstit logic and bdi logic were defined model-theoretically. In
merging the two logics, we have to decide on which kind of frames the bdi-
stit models are based. A natural thought is to use either the stit frames
or the frames of bdi models. In our view, the concept of histories which
represent possible developments of time is not only simpler, but also its
representation is more concrete to the senses than the overlapping worlds
of the bdi semantics. Moreover, the bdi frames may be simplified to frames
with linear worlds. For every world w in the bdi semantics, one may find a
set of histories that represent w.

The basis for the bdi-stit semantics are again temporal frames (M,≤). As
in the dstit semantics, we define the maximal linear subsets of M as histories.
The set of all histories of a given temporal frame F is called H. A situation
is a moment/history pair (m,h) with m ∈ h. The set of all situations in F
is symbolized by S. So far the bdi-stit semantics is analogous to the dstit

semantics.

In bdi-stit logic the frames are modified to obtain a (kind of) neigh-
bourhood semantics (alias minimal models semantics), cf. [5, 7]. We shall
use this semantics in the first place to obtain the satisfiability of formulas
(αdes : ϕ ∧ αdes : ¬ϕ) and (α bel : ϕ ∧ α bel : ¬ϕ), whereas it is not our aim
here to tackle satisfactorily the logical omniscience problem. But once we
consider such a semantics, it becomes quite naturally to consider in addition
to the alethic, ‘historcal’ possibility operator 3 also a non-historical notion
of possibility, expressed by the operator �. Therefore, for every situation s,
we introduce a neighbourhood system, namely a family of sets of situations.
Every such set of situations is called a world.7 A world in the neighbour-
hood system for s is accessible from s (and may be seen to contain situations
which are accessible from s). In general, there are no constraints imposed on
the worlds in the neighbourhood system of a situation, but every world must

7Note again that the term world is used differently in bdi logic and in bdi-stit logic.
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be non-empty.8 The situation s = (m,h) need not belong to the elements of
its neighbourhood system, and an element of the system need not contain a
history running through m. The neighbourhood systems for the situations
of a frame are given by a function N ,

N : S → P(P(S) \ ∅), (m,h) 7→ N(m,h) = N(m,h).

The function N thus assigns to every situation s a family of sets of situations,
a neighbourhood system comprising neighbourhoods of s, alias the worlds
accessible from s. To every temporal frame, we add a function N . Given a
particular frame F , in the sequel we shall denote by N both the neighbour-
hood systems assigning function as well as the union of all neighbourhood
systems of F . The context will disambiguate between the function N and
the set N . In any case, Ns denotes the neighbourhood system of situation s.

The interpretation of the dstit operator is like in dstit logic. That is,
we assume a function that identifies for every moment m choice-equivalent
histories passing through m. This choice function C assigns to every agent
α and every moment m an equivalence-relation on the histories containing
m. The equivalence classes of this relation are the choice cells available to
α at m. Since for evaluating α dstit : ϕ in a situation (m,h) it is irrelevant
how the equivalence relation is specified for histories not choice-equivalent
with h, the function C is defined as a mapping from agent/situation-pairs
(α, (m,h)) into subsets of Hm:

C : A × S → P(H), (α, s) 7→ C(α, s) = Cα
s .

The set Cα
(m,h) thus consists of the histories agent α cannot distinguish from

h by her/his actions at moment m.
In order to deal with the belief, desire, and intention operators, we need

interpretation functions for these operators. Whereas we want to model con-
flicting beliefs and antagonistic desires, we assume that it is impossible that
an agent intends that ϕ and simultaneously intends that ¬ϕ. Intuitively, an
important difference between desiring and believing on the one hand and in-
tending on the other hand is that desires and beliefs are not directed towards
actions in the way intentions are directed towards actions. Typically, inten-
tions are intentions to act, but desires are not typically desires to act. Some
of our actions can be explained in terms of our desires or beliefs and likewise,
our intentions often can be explained in terms of our desires or beliefs. A

8The existence of non-empty sets as neighbourhoods (worlds) leads to the satisfiability
of formulas α des : (ϕ ∧ ¬ϕ) and α bel : (ϕ ∧ ¬ϕ).
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rational agent α may have antagonistic desires and, moreover, α may be a
‘society of minds’ and may in this sense be adequately described as believing
that ϕ and simultaneously believing that ¬ϕ. But α’s volitional incoherence
and α’s doxastic incoherence as a society of minds is not passed on to α’s
intentions. We may return to one of the earlier examples. Suppose an agent
desires to keep his two kidneys and desires to donate one of his kidneys to
his brother. We do not assume that the agent may be adequately described
as intending (with respect to one desire) that he donates one of his kidneys,
and simultaneously as intending (with respect to the conflicting desire) that
he does not donate one of his kidneys. The agent either intends that he do-
nates an organ or he intends that he does not donate an organ, but not both.
An agent cannot simultaneously see to it that ϕ and see to it that ¬ϕ, and
similarly an agent cannot simultaneously intend that ϕ and intend that ¬ϕ.

Note that an agent may intend that ϕ although he desires that ¬ϕ. An
agent α may desire that he does not donate one of his kidneys, but out of
sense of duty or moral considerations α may simultaneously intend that he
donates one of his kidneys. Moreover, although intentions are often pre-
stages to actions, there are also unintended actions. Suppose α believes that
he will refrain from hit-and-run driving and that α causes a fatal accident.
The agent leaves the place of accident, maybe because of a shock but in any
case without intending to abscond after the accident. We would describe this
absconding as an unintended action performed by the agent. If we imagine
that the agent did not desire that he absconds, then the example shows that
an agent may see to it that ϕ without desiring that ϕ.

The interpretation functions for the intention and desire operators there-
fore have to be chosen such that an agent in a situation may have conflicting
desires, may have the intention that ϕ but not the desire that ϕ, and may
see to it that ϕ without desiring that ϕ.

To this end, the intention operator is interpreted by a function I that
assigns to every agent/situation-pair a set of situations, i.e., a world in a
neighbourhood system, whereas the desire operator is interpreted by a func-
tion D that assigns to every agent/situation-pair (α, s) a set of so-called
desire worlds, namely the worlds which are, intuitively, compatible with
what the agent believes in s. If it is true in s that α desires that ϕ, then
there exists a desire world such that ϕ is true in every situation from that
world.

The function B, which assigns to every agent/situation-pair (α, s) the set
of worlds compatible with what α believes in s, is analogous to the function
D used to interpret the desire operator, because we want to account for
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conflicting beliefs, as explained above. The functions B, D, and I are thus
defined on the following sets from a temporal frame:

I : A × S → N , (α, s) 7→ I(α, s) = Iα
s ,

D : A × S → P (N), (α, s) 7→ D(α, s) = Dα
s ,

B : A × S → P (N), (α, s) 7→ B(α, s) = Bα
s .

The set N here is the set of all neighbourhoods. The set Iα
s is thus not

necessarily a neighbourhood from Ns, but there exists a situation s′ such
that Iα

s is a neighbourhood of s′. In general, it is neither necessary that
an agent in a situation has intentions nor is it necessary that if an agent
intends that ϕ, then ϕ is true in some accessible situation. The set of
situations assigned by I to a pair (α, s) just must be a world accessible from
some situation and it must be such that if it is true in s that α intends
that ϕ, then ϕ is true in every situation from that world. Thereby an agent
cannot intend that ϕ if ϕ is unsatisfiable, but the agent can intend that ϕ in
a situation s if ϕ is true at every situation in an unaccessible world, a world
not in Ns. If this is unwanted, one may restrict the mapping I such that for
every situation s, Iα

s ∈ Ns. In this case an agent can intend only what is
true throughout an accessible world.

As to the desire worlds of an agent α in a situation s and the worlds
compatible with what α believes in s, we also do not require that they
belong to Ns, the set of worlds accessible from s. The necessity operator 2

is interpreted as in dstit logic, and formulas �ϕ are defined to be true at a
situation if there is an accessible world throughout which ϕ is true.

A bdi-stit model, used to interpret the formulas from Definition 5, thus
consists of a frame F = (M,≤,A,N,C,B,D, I) with the just introduced
functions together with a valuation v. Satisfiability of a formula in a bdi-stit
model is then defined as follows.

Definition 6 (bdi-stit semantics). Let s = (m,h) be a situation, let α
be an agent in model M = (F , v), and let ϕ, ψ be formulas according to
Definition 5. Then:

M, s |= ϕ iff s ∈ v(ϕ), if ϕ is an atomic formula.

M, s |= ¬ϕ iff M, s 6|= ϕ .

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ .

M, s |= 2ϕ iff M, (m,h′) |= ϕ for all h′ ∈ H(m).

M, s |= �ϕ iff there exists U ∈ Ns with U ⊆ { s′ | M, s′ |= ϕ }.9

9In standard neighbourhood semantics the condition would be { s′ | M, s′ |= ϕ } ∈ Ns.
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M, s |= α dstit : ϕ iff (i) { (m,h′) |h′ ∈ Cα
s } ⊆

{ (m,h′) | M, (m,h′) |= ϕ },
(ii) M, s |= ¬2ϕ.

M, s |= α int : ϕ iff Iα
s ⊆ { s′ | M, s′ |= ϕ }

M, s |= αdes : ϕ iff there exists U ∈ Dα
s with U ⊆ { s′ | M, s′ |= ϕ }.

M, s |= α bel : ϕ iff there exists U ∈ Bα
s with U ⊆ { s′ | M, s′ |= ϕ }.

Note that it is not possible that a neighbourhood U satisfying the truth
condition of the belief, desire or �-operator is empty, because neighbour-
hoods (alias worlds) must not be empty. Obviously, the notion of historical
necessity expressed by 2 and the notion of possibility expressed by � can co-
incide in a bdi-stit model, if every set of an arbitrary neighbourhood system
N(m,h) includes every moment/history pair at this moment m.

Remark 7. Let Mep = (M,≤,A,N,C,B,D, I, v) be a bdi-stit model. If

N : (m,h) 7→
{

U ⊆ S | ∀h′ ∈ H(m) : (m,h′) ∈ U
}

, (*)

then it holds for any formula ϕ according to Definition 5 that

Mep, (m,h) |= 2ϕ iff Mep, (m,h) |= �ϕ .

Instead of stipulating (*) it is alternatively possible to define a neigh-
bourhood system in the following way. Every neighbourhood system N(m,h)

of a situation (m,h) contains the neighbourhood U = { (m,h′) |h′ ∈ H(m) }
and for every neighbourhood V ∈ N(m,h) it holds that U ⊆ V .

Now, after we have motivated and semantically defined bdi-stit logic, our
goal is to show that bdi-stit logic in fact is a generalization of dstit logic and
bdi logic. We first consider the logic of agency and make the rather obvious
observation that for every model of dstit logic there exists a model of bdi-stit
logic satisfying the same formulas in the language of dstit logic.

Remark 8. Let ϕ be a formula according to Definition 1. Then for ev-

ery dstit model Md = (M,≤,A, C, v) there exists a model Mep = (M,≤,
A,N,C,B,D, I, v) such that in every situation (m,h) the following holds:

Md, (m,h) |= ϕ iff Mep, (m,h) |= ϕ .

Proof. The model Mep takes over from a given arbitrary dstit model Md

the components M , ≤, A, and C and the valuation function v. As to the
definition of N, I,D, and B, it may be noted that the operators �, α int :,
αdes :, and α bel : do not occur in ϕ. Therefore the choice of N , I, D, and
B is irrelevant. ⊣
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A similar but less obvious observation can be made concerning bdi logic.
The problem we encounter here is that there are different constructions of
situations in bdi logic and in bdi-stit logic. We obtain the following Theorem.

Theorem 9. Let ϕ be a formula according to Definition 3. Then for every

bdi model Me = (M,≤,W,A, B,D, I, v) there exists a model Mep = (M ′,⊑,
A′,N ′, C ′, B′,D′, I ′, v′), such that for every situation (w,m) in Me there

exists a situation (m,h) in Mep with:

Me, (w,m) |= ϕ iff Mep, (m,h) |= ϕ .

The proof of this theorem is relegated to Appendix A, where we define a
1-1 mapping from the set of situations of the bdi model into the set of situ-
ations of the bdi-stit model such that in the assigned set the same formulas
are satisfiable.

5. Summary and prospects

What have we achieved in this paper?

• We have defined bdi-stit logic, a logic of beliefs, desires, intentions, agency,
and alethic modalities. This logic brings together the most prominent logic
of agency and a fragment of the most influential logics for multi-agent
systems.

• We have shown that bdi-stit logic is a generalization of both dstit logic
and bdi logic. This is a non-trivial observation in the case of bdi logic.

• Due to the generalization of the standard truth conditions for belief as-
criptions, we evaded part of the logical omniscience the agents display in
Rao’s and Georgeff’s [9] BDI framework. There are residual forms of logi-
cal omniscience, as an agent still cannot distinguish in her beliefs between
logically equivalent formulas, and the following formula, for instance, is
valid (true in every situation of every bdi-stit model): α bel : (ϕ ∧ (ϕ ⊃
ψ)) ⊃ α bel : ψ. On the other hand, (α bel : ϕ ∧ (ϕ ⊃ ψ)) ⊃ α bel : ψ and
(α bel : ϕ ∧ α bel : (ϕ ⊃ ψ)) ⊃ α bel : ψ are refutable.

• Although BDI theorists like Bratman perceive and discuss conflicting de-
sires, the formal theories BDI and BDI ∗ do not admit modeling such
desires, if at the same time ascriptions of inconsistent desires are unsatis-
fiable. Treating beliefs and desires alike in our neighbourhood semantics,
not only the formula α bel : ϕ ∧ α bel : ¬ϕ but also αdes : ϕ ∧ αdes : ¬ϕ is
satisfiable.
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• In contrast to our treatment of beliefs and desires, the intention opera-
tors are interpreted not in a neighbourhood semantics but in a relational
semantics. This implies that agents cannot have antagonistic intentions.
Moreover, the formula (α int : ϕ ∧ α int : (ϕ ⊃ ψ)) ⊃ α int : ψ is valid and
if ϕ ⊃ ψ is universally valid, so is α int : ϕ ⊃ α int : ψ.

There are some obvious lines of future research. One task consists in devel-
oping a sound and complete proof system for bdi-stit logic. Is the logic de-
cidable and if so, is decidability preserved under addition of axiom schemata
or inference rules describing certain interaction between the modalities in-
volved? One example of possible interest would be axiom schemata saying
that certain agents desire everything they intend.

A. Proof of Theorem 9

Theorem 9. Let ϕ be a formula according to Definition 3. Then for every

bdi model Me = (M,≤,W,A, B,D, I, v) there exists a model Mep = (M ′,⊑,
A′,N ′, C ′, B′,D′, I ′, v′) such that for every situation (w,m) in Me there is

a situation (m,h) in Mep with:

Me, (w,m) |= ϕ iff Mep, (m,h) |= ϕ .

Proof. The proof consists of two parts. At first we construct a bdi model
Mh in such a way that the set of moments of every world is a maximal linear
subset of the set of all moments of Mh nevertheless satisfying the same sets
of formulas as the model Me. For such a model Mh the way of mapping a
situation of this model to a set of situations belonging to a bdi-stit model
Mep is evident and then it is also easy to see that Mep satisfies the same
formulas as Mh and Me.

Lemma 10. Let ϕ be a formula according to Definition 3. Then for every

bdi model Me = (M,≤,W,A, B,D, I, v) there is a bdi model Mh = (M ′′,�
,W ′′,A′′, B′′,D′′, I ′′, v′′), such that:

Me, (w,m) |= ϕ iff Mh, (w
′′,m′′) |= ϕ , (†)

where for all w′′ = (T,R) ∈ W ′′ it holds that T is a totally ordered maximal

subset of M ′′.

Proof. We introduce a well-order ⊆ on the set of moments M of model Me

with M = {mi}i∈I and identify m0 as the least element according to this
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order.10 In the following we expand each fullpath containing m0 of every
world to a maximal linear subset of M , such that two maximal linear sets
associated with two fullpaths of different worlds are different. For getting
this we must enlarge set M .

We generate a set Gm0
w for each world w ∈ W , such that an element

h ∈ Gm0
w is construed as a maximal linear subset of M containing one fullpath

of w, which comprises m0, and such that to each fullpath of w there is exactly
one element h ∈ Gm0

w . We enumerate all elements of the union of Gm0
w for all

w ∈ W ,10 {hr}r∈Im0 , such that for all hr there is exactly one world w ∈ W

with hr ∈ Gm0
w . However, it is possible that for r′

, r the sets hr′ , hr are
identical, for example, if hr ∈ Gm0

w and hr′ ∈ Gm0
w′ for different worlds w, w′

which contain the same fullpath.

Without loss of generality we consider (Im0 ,E) as well-ordered. By h0

we denote the maximal set given with to the least element of Im0 . For h0

we define the following sets:

≤0
m0

= { (m′,m0) |m′ ≤ m0, m
′ ∈ M } ∪ { (m0,m

′′) |m0 ≤ m′′, m′′ ∈ M },

M0
m0

= {m0} and H0
m0

= {h0}.

By transfinite induction we can take as given the sets M r′

m0
, Hr′

m0
and ≤r′

m0

for all r′, r′′ ∈ Im0 with r′′, r′ ⊳ r and such that for r′
, r′′ it holds that

hr′ , hr′′ .

Being maximal sets it follows for any r, r′ ∈ Im0 , if hr ⊆ hr′ , then
hr′ = hr. Hence it is sufficient to consider two cases:

1. If it applies to all r′ ⊳r, that hr′ , hr. We stipulate ≤r
m0

= ∅, M r
m0

= ∅
and Hr

m0
= {hr}.

2. If there is exactly one r′ ∈ Im0 with r′ ⊳ r and hr′ = hr. In this case
we introduce two new moments n and n′, which do not belong to M or any
set M r′

m0
with r′ ⊳ r, and we put:

≤r′

m0
= { (m′, n′) |m0 ≤ m′, m′ ∈ M ∪M r′

m0
} ∪ {(n′, n′)},

M r′

m0
= M r′

m0
∪ {n′}, Hr′

m0
= {hr′ ∪ {n′}},

≤r
m0

= { (m′, n) |m0 ≤ m′, m′ ∈ M } ∪ {(n, n)},

M r
m0

= {n}, Hr
m0

= {hr ∪ {n}},

Gm0
w = Gm0

w \{hr} ∪ {hr ∪ {n}}, Gm0
w′ = Gm0

w′ \{hr′} ∪ {hr′ ∪ {n′}}.

10We multiply use the well-ordering theorem resp. the axiom of choice in this proof.
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Finally we define the following sets:

Hm0 =
⋃

r∈Im0

Hr
m0
, Mm0 =

⋃

r∈Im0

M r
m0
, ≤m0=

⋃

r∈Im0

≤r
m0
,

where Hm0 is the set of all maximal, totally ordered, and pairwise different
subsets of Mm0 , which contain m0 and one fullpath of any world w. However,
the set Gm0

w is a subset of Hm0, which includes for every fullpath p of w
exactly one element h, with m0 ∈ p and p ⊆ h.

The sets Hmi
, Mmi

, and ≤mi
for all other i ∈ I can be obtained by trans-

finite induction. If we assume that Hmi′ , Mmi′ , and ≤mi′ are appropriately
chosen, we can start the algorithm for Hmi

in the same way as for Hm0. But
in this process we do not build up the sets Gw

mi
for all w ∈ W over M , but

over Mi =
⋃

i′⊂i

Mmi′ . In the end we get for all m ∈ M the sets Hm, Mm,

Gw
m, and ≤m with the desired properties.

Then we take for the bdi model Mh = (M ′′,�,W ′′,A′′, B′′,D′′, I ′′, v′′)
the following sets for all formulas ϕ and each agent α ∈ A′′ = A:11

M
′′ =

⋃

m∈M

Mm,

� = trcl
{

(n, n
′) | n, n

′ ∈ M
′′
, and there is a m ∈ M with (n, n

′) ∈ ≤m

}

,

W
′′ =

{

(h, �|h
) | h ∈ Hm, m ∈ M

}

,

v
′′(ϕ) =

{

((h, �|h
), m) | m ∈ M, w ∈ W, h ∈ G

w
m, (w, m) ∈ v(ϕ)

}

,

B
′′(α) =

{

((h, �|h
), m, (h′

, �|
h′

)) | m ∈ M, h ∈ G
w
m, h

′ ∈ G
w′

m , (w, m, w
′) ∈ B(α)

}

,

D
′′(α) =

{

((h, �|h
), m, (h′

, �|
h′

)) | m ∈ M, h ∈ G
w
m, h

′ ∈ G
w′

m , (w, m, w
′) ∈ D(α)

}

,

I
′′(α) =

{

((h, �|h
), m, (h′

, �|
h′

)) | m ∈ M, h ∈ G
w
m, h

′ ∈ G
w′

m , (w, m, w
′) ∈ I(α)

}

.

Thus every world w′′ ∈ W ′′ is a maximal linear subset of M ′′ and it holds
that for two arbitrary nonequal worlds their sets of moments are different.
It remains to show that the situations of Me can be mapped to W ′′ ×M ′′,
such that for all situations (w,m) in Me there is a situation (w′′,m′′) in Mh

and the following applies to any formula ϕ:

Me, (w,m) |= ϕ iff Mh, (w
′′,m′′) |= ϕ . (†)

For all situations (w,m) in Me it obviously holds that for any h, h′ ∈ Gm
w

and any formula ϕ:

Mh, ((h,�|h),m) |= ϕ iff Mh, ((h′,�|h′ ),m) |= ϕ .

11By trcl M we denote the transitive closure of M , and by �|h
we mark the restriction

of � to h.
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Therefore we assign to every (w,m) in Me a situation (w′′,m′′) in Mh with
m′′ = m and w′′ = (h,�|h) for an arbitrary h ∈ Gm

w . Then we can show by
induction on formulas that (†) holds for this allocation. Let ϕ be an atomic
formula.

Me, (w,m) |= ϕ iff (w,m) ∈ v(ϕ)

iff ((h′,�|h′ ),m) ∈ v′′(ϕ) for all h′ ∈ Gm
w

iff Mh, ((h,�|h),m) |= ϕ

iff Mh, (w
′′,m) |= ϕ.

In the case of ¬ϕ or ϕ ∧ ψ the induction step is trivial. Let ϕ be a formula
of the form 2ψ.

Me, (w,m) |= 2ψ iff Me, w
′ |= ψ for all situations (w′,m) ∈ S

iff Mh, ((h
′,�|h′ ),m) |= ψ for all h′ ∈ Hm =

⋃

w′∈W

Gm
w′

iff Mh, ((h
′,�|h′ ),m) |= ψ for all ((h′,�|h′ ),m) ∈ S

iff Mh, (w
′′,m) |= 2ψ.

Let ϕ be a formula of the form α bel : ψ.

Me, (w,m) |= α bel : ψ iff Me, (w
′,m) |= ψ for all (w,m,w′) ∈ B(α)

iff Mh, ((h
′,�|h′ ),m) |= ψ for all h′ ∈ Gm

w′

with ((h′′,�|h′′ ),m, (h
′,�|h′ )) ∈ B′′(α)

and h′′ ∈ Gm
w

iff Mh, ((h
′′,�|h′′ ),m) |= α bel : ψ for all h′′ ∈ Gm

w

iff Mh, (w
′′,m) |= α bel : ψ.

In a similar manner the claim can be shown for ϕ = αdes : ψ and ϕ =
α int : ψ. Thus the equivalence (†) holds. ⊣

Now we want to prove Theorem 9. For an arbitrary bdi model Me =
(M,≤,W,A, B,D, I, v) there is a bdi-stit model Mep = (M ′,⊑,A′,N ′, C ′,

B′,D′, I ′, v′), such that for every situation (w,m) of Me there exists a situ-
ation (m′, h′) in Mep and every formula ϕ, which can be interpreted in both
kinds of models, is satisfied in situation (w,m) if and only if it is satisfied
in (m′, h′). Using Lemma 10 it is possible to take the set of moments of
every world in Me without loss of generality as a maximal linear subset
of M , where the sets of moments are pairwise different. Then the model
Mep = (M ′,⊑,A′,N ′, C ′, B′,D′, I ′, v′) is constructed as follows:

A′ := A, M ′ := M, C ′ := ∅, ⊑ := ≤ .
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The set of all histories of Mep arises from construction. It is evident that
there is a one-to-one mapping from the set of worlds of Me onto the set of
histories of Mep, so we can apply this to map the situations also one-to-
one by allocating a situation ((h,Rh),m) in Me with the situation (m,h)
in Mep. In the last step of constructing Mep we stipulate the functions
N ′, B′,D′, I ′ and the valuation function v′ for an arbitrary situation (m,h)
and an arbitrary formula ϕ by setting:

N ′(m,h) := P(P({ (m,h) | (m,h) situation in Mep })\∅),

B′(α, (m,h)) := {{ (m,h′) | ((h,≤|h),m, (h′,≤|h′ )) ∈ B(α) }},

D′(α, (m,h)) := {{ (m,h′) | ((h,≤|h),m, (h′,≤|h′ )) ∈ D(α) }},

I ′(α, (m,h)) := { (m,h′) | ((h,≤|h),m, (h′,≤|h′ )) ∈ I(α) },

v′(ϕ) := { (m,h) | ((h,≤|h ),m) ∈ v(ϕ) }.

Note that none of the sets Bh
m(α), Dh

m(α) and Ih
m(α) is empty. Consequently,

B′(α, (m,h)), D′(α, (m,h)), and I ′(α, (m,h)) fail to be empty, too.

The verification of

Mep, (m,h) |= ϕ iff Mh, (w,m) |= ϕ (‡)

with w = (h,≤|h) is also by induction. Let ϕ be an atomic formula.

Mep, (m,h) |= ϕ iff (m,h) ∈ v′(ϕ)

iff (w,m) ∈ v(ϕ), hence w = (h,≤|h)

iff Me, (w,m) |= ϕ.

Let ϕ be a negation or conjunction, then the induction step is again trivial.
If ϕ = 2ψ, then the following equivalences hold:

Mep, (m,h) |= 2ψ iff Mep, (m,h′) |= ψ for all h′ ∈ H(m)

iff Me, (w
′,m) |= ψ with w′ = (h′,≤|h′ )

for all h′ ∈ H(m)

iff Me, (w
′,m) |= ψ for all w′ ∈ W

iff Me, (w,m) |= 2ψ.

Let ϕ = α bel : ψ, the same applies to formulas of form αdes : ψ, then:

Mep, (m,h) |= α bel : ψ iff there is a U ∈ B′α
(m,h) with

U ⊆ { s′ | Mep, s
′ |= ϕ }
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iff Mep, (m,h
′) |= ψ for all (m,h′) ∈ U with

U ={ (m, h′) | ((h, ≤|h
), m, (h′, ≤|

h′
)) ∈ B(α) } ∈ B′α

(m,h)

iff Me, (w
′,m) |= ψ for all w′ = (h′,≤|h′ ) and

w′ ∈ Bw
m(α), where w = (h,≤|h)

iff Me, (w,m) |= α bel : ψ .

Since in a bdi-stit model the intention operator differs in kind of the inter-
pretation from the belief and the desire operator, the equivalence (‡) has to
be shown separately.

Mep, (m,h) |= α int : ψ iff I ′α
(m,h) ⊆ { (m′, h′) | Mep, (m′, h′) |= ψ }

iff { (m,h′) | ((h,≤|h),m, (h′,≤|h′ )) ∈ I(α) }

is a subset of { (m′, h′) | Mep, (m′, h′) |= ψ }

iff Mep, (m,h′) |= ψ for all h′ with

(h′,≤|h′ ) ∈ I
(h,≤|h

)
m (α)

iff Me, (w′,m) |= ψ for all w′ ∈ Iw
m(α) with

w = (h,≤|h)

iff Me, (w,m) |= α int : ψ. ⊣
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