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EXTENSIONS OF THE BASIC

CONSTRUCTIVE LOGIC FOR WEAK

CONSISTENCY BKc1 DEFINED

WITH A FALSITY CONSTANT∗

Abstract. The logic BKc1 is the basic constructive logic for weak consis-
tency (i.e., absence of the negation of a theorem) in the ternary relational
semantics without a set of designated points. In this paper, a number
of extensions of BKc1 defined with a propositional falsity constant are de-
fined. It is also proved that weak consistency is not equivalent to negation-
consistency or absolute consistency (i.e., non-triviality) in any logic in-
cluded in positive contractionless intermediate logic LC plus the construc-
tive negation of BKc1 and the (constructive) contraposition axioms.
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1. Introduction

A theory is a set of formulas closed under adjunction and provable entailment
(cf. §2). Then, weak consistency is defined as follows:

Definition 1. Let L be a logic and a be a theory whose underlying logic is L.
Then, a is w-inconsistent (weakly inconsistent) iff a contains the negation of
a theorem of L (a is w-consistent iff it is not w-inconsistent).

∗I thank a referee of the LLP for his(her) comments on a previous version of this paper.

Received May 31, 2007; Revised December 28, 2007
© 2008 by Nicolaus Copernicus University ISSN: 1425-3305

http://dx.doi.org/10.12775/LLP.2007.010


312 Gemma Robles

The logic BKc1, the basic constructive logic adequate to this sense of
consistency is defined in [8]. Next, in the same paper, it is shown how to
extend BKc1 with the strong constructive contraposition axioms

(i) (A → ¬B) → (B → ¬A)

and

(ii) B → [(A → ¬B) → ¬A)

and with some strong implicative axioms up to positive contractionless intu-
itionistic logic JW+ (the logic BKc1 plus (i) and (ii) is dubbed BKc2). In [8],
it is proved that in JW+ plus (i) and (ii) (consequently, in all logics included
in it), weak consistency is not equivalent to negation-consistency and to ab-
solute consistency (i.e., non-triviality) because the ECQ (‘e contradictione
quodlibet’) axioms

(iii) (A ∧ ¬A) → ¬B

(iv) (A ∧ ¬A) → B

and the EFQ (‘e falso quodlibet’) axioms

(v) ¬A → (A → B)

(vi) A → (¬A → B)

are not provable in JW+ plus (i) and (ii). Further, in the same paper, it
is proved that if the EFQ axioms (v) and (vi) are added to JW+ plus (i)
and (ii), the ECQ axioms (iii) and (iv) are still unprovable. Consequently,
in JW+ plus (i), (ii), (v), (vi), although weak consistency is equivalent to
absolute consistency, it is not equivalent to negation-consistency.

In respect of these results, the aim of this paper is fourfold:

1. It will be proved that the weak constructive contraposition axioms

(vii) (A → B) → (¬B → ¬A)

(viii) ¬B → [(A → B) → ¬A)

can be added to BKc1, the resulting logic being different from BKc2.
This logic is dubbed BKc1′ . Further, it is proved that BKc1′ can be
extended with prefixing,

(ix) (B → C) → [(A → B) → (A → C)]
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suffixing

(x) (A → B) → [(B → C) → (A → C)]

and the assertion rule

(xi) ⊢ A ⇒ ⊢ (A → B) → B

the resulting logic being different from that obtainable by adding (ix),
(x) and (xi) to BKc2.

In addition to (1), the results on the independence of w-consistency
will be strengthened in the following sense. It will be proved that:

2. The characteristic axiom of Dummett’s LC (cf. [3])

(xii) (A → B) ∨ (B → A)

can be added to JWK+ plus (i) and (ii), weak consistency still being
independent of negation-consistency and absolute consistency.

3. The axiom (xii) can be added to JWK+ plus (i), (ii), (v) and (vi),
w-consistency still being independent of negation-consistency.

Last but not least, another aim of this paper is the following (a brief dis-
cussion precedes it). Let S+ be a positive logic. Negation can be introduced
in S+ by adding to the positive language the propositional falsity constant
F together with the definition

(xiii) ¬A ↔ (A → F )

Then, two options are open: either no axioms are added to S+ and a minimal
negation is then defined, or some axioms are added to S+, thus defining this
or that concept of negation. Now, let SF be the result of introducing a
negation with a falsity constant F in S+ and S¬ be the result of adding
negation with a negation connective. The question of finding definitionally
equivalent logics (the concept is treated in §4) SF ′ and S¬

′ definitionally
equivalent to S¬ and SF , respectively, depends heavily on the strength of
S+. Thus, for example, if S+ is J+ (i.e., positive intuitionistic logic), J+ plus
(i), (ii) and (v) (that is, propositional intuitionistic logic) is definitionally
equivalent to J+ plus the following axioms ((xiv) and (xv) would not be
independent):
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(xiv) [A → (B → F )] → [B → (A → F )]

(xv) B → [[A → (B → F )] → (A → F )]

(xvi) F → A

However, consider the logic B+,F defined in [9]. B+,F is the result of
introducing a minimal negation in Routley and Meyer’s system B+, which,
as is known, is a weak (but most interesting) logic. The question is, which
extension, if any, of B+ with a negation connective is equivalent to B+,F ?
But let us return to our purpose. Despite that fact that BKc1 is not a strong
logic, in [9] it is proved that the logic BKc1,F , in which negation is introduced
via a falsity constant, is definitionally equivalent to it. A fourth aim of this
paper, therefore, is:

4. To define logics formulated with a falsity constant definitionally equiv-
alent to BKc1′ , BKc2 and their extensions.

The structure of the paper is as follows. In §2, the logic BK+ along with
some well known strong positive extensions of it are defined. The logic BK+

is the result of adding the K rule

(xvii) ⊢ A ⇒ ⊢ B → A

to Routley and Meyer’s B+. In §3, the logics BKc1 and BKc2 are recalled and
the logic BKc1′ is introduced. In §4, logics formulated with F definitionally
equivalent to those defined in §3 are introduced, and in §5, the definitional
equivalence is proved. In §6, all the logics treated so far are extended with
some strong implicative axioms. Finally, in §7 the EFQ axioms are added.
All logics are proved sound and complete in respect of a modification of
Routley and Meyer’s ternary relational semantics for relevance logics (note
that all logics defined in this paper have the K rule (xvii)).

We end this introduction by remarking that all logics here introduced
are paraconsistent logics in the sense of [7], and that they are paraconsistent
in respect of a precisely defined sense of consistency, i.e., w-consistency.

2. The positive logic BK+ and its extensions

Firstly, the positive logic BK+ is defined. It can be axiomatized with

Axioms

A1. A → A

A2. (A ∧ B) → A / (A ∧ B) → B
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A3. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

A4. A → (A ∨ B) / B → (A ∨ B)

A5. [(A → C) ∧ (B → C)] → [(A ∨ B) → C]

A6. [A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)]

The rules of inference are

Modus ponens (MP): ⊢ (A & ⊢ A → B) ⇒ ⊢ B

Adjunction (Adj.): (⊢ A & ⊢ B) ⇒ ⊢ A ∧ B

Suffixing (Suf.): ⊢ A → B ⇒ ⊢ (B → C) → (A → C)

Prefixing (Pref.): ⊢ A → B ⇒ ⊢ (C → A) → (C → B)

K: ⊢ A ⇒ ⊢ B → A

Therefore, BK+ is B+ with the addition of the K rule.
We now define the semantics for BK+. A BK+ model is a triple 〈K, R,�〉

where K is a non-empty set, and R is a ternary relation on K subject to
the following definitions and postulates for all a, b, c, d ∈ K with quantifiers
ranging over K:

d1. a ≤ b =df ∃xRxab

d2. R2abcd =df ∃x(Rabx & Rxcd)

P1. a ≤ a

P2. (a ≤ b & Rbcd) ⇒ Racd

Finally, � is a valuation relation from K to the sentences of the positive
language satisfying the following conditions for all propositional variables p,
wff A, B and a ∈ K:

(i) (a ≤ b & a � p) ⇒ b � p

(ii) a � A ∧ B iff a � A and a � B

(iii) a � A ∨ B iff a � A or a � B

(iv) a � A → B iff for all b, c ∈ K, (Rabc & b � A) ⇒ c � B

A formula A is BK+ valid (�Bk+
A) iff a � A for all a ∈ K in all models.

Remark 1. The postulates P3 Rabc ⇒ b ≤ c, P4 (a ≤ b & b ≤ c) ⇒ a ≤ c
and P5 R2abcd ⇒ Rbcd hold in all models.

In [5] or in [8], it is proved that BK+ is sound and complete in respect of
this semantics.
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Remark 2. As is known, in the standard semantics for relevance logics (see,
e.g., [10]), there is a set of ‘designated points’ in terms of which the relation
≤ is defined and formulas are determined to be valid. The absence of this set
in BK+ semantics (and the corresponding changes in d1 and the definition
of validity) are the only but crucial differences between B+ models and BK+

models.

Next, we define some positive extensions of BK+. Consider the following
axioms and rule of inference

A7. (B → C) → [(A → B) → (A → C)]

A8. (A → B) → [(B → C) → (A → C)]

A9. ⊢ A ⇒ ⊢ (A → B) → B

A10. A → [(A → B) → B]

A11. A → (B → A)

A12. (A → B) ∨ (B → A)

The logic TW+ (‘Contractionless positive Ticket Entailment’) is B+ plus A7
and A8; the logic EW+ (‘Contractionless positive Logic of Entailment’) is
TW+ plus A9; RW+ (‘Contractionless positive Logic of Relevance’) is TW+

plus A10 (see, e.g., [10] about these logics), JW+ (‘Contractionless positive
Intuitionistic Logic’) is RW+ plus A11, and finally, LCW+ (‘Contractionless
superintuitionistic logic LC’) is JW+ plus A12. Therefore, TWK+, EWK+,
RWK+, JWK+ and LCWK+ are, respectively, TW+, EW+, RW+, JW+ and
LCW+ plus the K rule. Since the K rule is not, of course, independent in
JWK+ and LCWK+, these logics will be referred to by JW+ and LCW+,
respectively.

We note:

Proposition 1. 1. RWK+ and JW+ are deductively equivalent logics.

2. TWK+, EWK+, RWK+ (= JW+) and LCW+ are different logics.

Proof. (1) is trivial and (2) follows by well known results on relevance and
intuitionistic logics (alternatively, one can use MaGIC, the matrix generator
developed by J. Slaney (see [11]).

We now turn to semantics. Consider the following set of postulates

P6. R2abcd ⇒ (∃x ∈ K)[Rbcx & Raxd]

P7. R2abcd ⇒ (∃x ∈ K)[Racx & Rbxd]



Extensions of the Basic Constructive Logic . . . 317

P8. (∃x ∈ K)Raxa

P9. Rabc ⇒ Rbac

P10. Rabc ⇒ a ≤ c

P11. (Rabc & Rade) ⇒ (b ≤ e or d ≤ c)

Now TWK+ models, EWK+ models RWK+ models, JW+ models and
LCW+ models are defined, similarly, as BK+ models except for the addition
of the following postulates:

1. TWK+ models: P6, P7.

2. EWK+ models: P6, P7, P8.

3. RWK+ models: P6, P7, P9.

4. JW+ models: P6, P7, P9, P10.

5. LCW+ models: P6, P7, P9, P11.

As in BK+ models, validity is defined in all cases in respect of all points
of K.

We next define the canonical models (cf. [5]). We begin by recalling
some definitions. A theory is a set of formulas closed under adjunction and
provable entailment (that is, a is a theory if whenever A, B ∈ a, then
A ∧ B ∈ a; and if whenever A → B is a theorem and A ∈ a, then B ∈ a); a
theory a is prime if whenever A ∨ B ∈ a, then A ∈ a or B ∈ a; a theory a is
regular iff all the theorems belong to a. Finally, a is null iff no wff belong
to a. Now, we define the BK+ canonical model. Let KT be the set of all
theories and RT be defined on KT as follows: for all formulas A, B and a, b,
c ∈ KT , RT abc iff if A → B ∈ a and A ∈ b, then B ∈ c. Further, let KC be
the set of all prime non-null theories and RC be the restriction of RT to KC .
Finally, let �C be defined as follows: for any wff A and a ∈ KC , a �C A iff
A ∈ a. Then, the BK+ canonical model is the triple 〈KC , RC ,�C〉.

Now, let L+ be any of the extensions of BK+ defined above. The L+

canonical model is defined, similarly, as the BK+ canonical models except
that its items are referred to L+ theories instead of BK+ theories. Then, we
have

Proposition 2. Given the logic BK+ and BK+ semantics, P6, P7, P8, P9,
P10 and P11 are the corresponding postulates to A7, A8, A9, A10, A11 and
A12, respectively.
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Proof. Given BK+ and BK+ semantics, we have to prove that each axiom
is proved valid with the corresponding postulate and that the corresponding
postulate is proved valid with the axiom. Now, that this is the case for
A7 (P6), A8 (P7), A9 (P8), A10 (P9) and A11 (P10) is proved in (or can
easily be derived from) e.g., [10]. So, we prove that P11 is the corresponding
postulate to A12.

1. A12 is LCW+ valid: Suppose a 2 A → B, a 2 B → A for wff A, B and
a ∈ K in some model. Then, b � A, d � B, c 2 B, e 2 A for b, c, d, e ∈ K
such that Rabc and Rade. By P11, b ≤ e or d ≤ c. So, either e � A or
c � B, a contradiction.

2. P11 holds canonically: Suppose RCabc, RCade for a, b, c, d, e ∈ KC ,
and, for reductio, b �C e and d �C c. Then, A ∈ b, B ∈ d, A /∈ e,
B /∈ c for some wff A, B. As a is non-null, it is regular by the K rule.
So, (A → B) ∨ (B → A) ∈ a by A12. As a is prime, A → B ∈ a or
B → A ∈ a. So, either B ∈ c or A ∈ e, a contradiction.

Remark 3. The correspondence between postulates and axioms A7 (P6),
A8 (P7), A9 (P8) and A10 (P9) stated in Proposition 2 can be proved in
respect of B+ instead of BK+.

Now, it is clear that, given the soundness and completeness of BK+,
those of TWK+, EWK+, RWK+ (= JW+) and LCW+ in respect of the
corresponding semantics follow immediately by Proposition 2.

3. The logics BKc1 , BKc1’ and BKc2

We add the unary connective ¬ (negation) to the positive language. Consider
the following axioms:

A13. ¬A → [A → ¬(A → A)]

A14. [B → ¬(A → A)] → ¬B

A15. (A → B) → (¬B → ¬A)

A16. ¬B → [(A → B) → ¬A]

A17. (A → ¬B) → (B → ¬A)

A18. B → [(A → ¬B) → ¬A]

Then, the logics are axiomatized as follows:

1. BKc1: BK+ + A13 + A14
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2. BKc1′ : BK+ + A13 + A14 + A15 + A16

3. BKc2: BK+ + A17 + A18

We note the following theorems and rules of inference of BKc1, BKc1′ and
BKc2:

T1BKc1
⊢ A → B ⇒ ⊢ ¬B → ¬A Pref., Suf., A13, A14

T2BKc1
⊢ A ⇒ ⊢ ¬A → ¬B K, T1BKc1

T3BKc1
¬A → (A → ¬B) Pref., A13, T2BKc1

T4BKc1
⊢ A ⇒ ⊢ (B → ¬A) → ¬B T2BKc1

, A14

T1BKc1′
(A → B) → {[B → ¬(A → A)] → [A → ¬(A → A)]} A13, A14, A15

T2BKc1′
[B → ¬(A → A)] → {(A → B) → [A → ¬(A → A)]} A13, A14, A16

T1BKc2
{A → [B → ¬(A → A)]} → {B → [A → ¬(A → A)]} A13, A14, A17

T2BKc2
B → {[A → [B → ¬(A → A)]] → [A → ¬(A → A)]} A13, A14, A18

We now remark the following

Proposition 3. 1. BKc1 and BKc1′ are deductively included in BKc2.

2. BKc1 and BKc1′ are different logics.

3. BKc1, BKc1′ and BKc2 are well axiomatized in respect of BK+ (that is, the
negation axioms are, in each case, mutually independent).

Proof. (1) See [8], §6. (2), (3) by MaGIC.

We now turn to semantics. Consider the following postulates

P12. (Rabc & c ∈ S) ⇒ a ∈ S

P13. (Rabc & c ∈ S) ⇒ (∃x ∈ K)(∃y ∈ S)Rcxy

P14. (R2abcd & d ∈ S) ⇒ (∃x ∈ K)(∃y ∈ S)(Racx & Rbxy)

P15. (R2abcd & d ∈ S) ⇒ (∃x ∈ K)(∃y ∈ S)(Rbcx & Raxy)

P16. (R2abcd & d ∈ S) ⇒ (∃x ∈ S)R2acbx

P17. (R2abcd & d ∈ S) ⇒ (∃x ∈ S)R2bcax

A BKc1 model is a quadruple 〈K, S, R, �〉 where S is a non-empty subset
of K, and K, R and � are defined, in a similar way, as in BK+ models, except
for the addition of the following clause

(v) a � ¬A iff for all b, c ∈ K, (Rabc & c ∈ S) ⇒ b 2 A

and postulates P12 and P13. Then, BKc1’ models (BKc2 models) are, simi-
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larly, defined as BKc1 models, save for the addition of P14, P15 (P16, P17).
In the three cases validity is defined in respect of all points of K.

The BKc1 canonical model is the quadruple 〈KC , SC , RC , �C〉 where KC ,
RC and �C are defined in a similar way to which they are defined in the
BK+ canonical model, and SC is interpreted as the set of all non-null prime
w-consistent theories. A theory a is w-inconsistent iff for some theorem A
of BKc1, ¬A ∈ a. A theory a is w-consistent iff it is not w-inconsistent (cf.
definition 1). The BKc1’ canonical model and the BKc2 canonical model are
defined, similarly, as the BKc1 canonical model, its items being referred now,
of course, to BKc1′ and BKc2 theories, respectively.

Remark 4. Clause (v) is an adaptation of the negation clause characteristic
of minimal intuitionistic logic in binary relational semantics. The intuition-
istic clause reads

a � ¬A iff (Rab & b ∈ S) ⇒ b 2 A

That is, a formula of the form ¬A is true at point a iff A is false in all consis-
tent points accessible from a –‘inconsistent’ is here understood in the (min-
imal) intuitionistic way–. So, in ternary relational semantics, the (minimal)
intuitionistic clause would be translated as clause (v). That is, a formula of
the form ¬A is true in point a iff A is false in all points b such that Rabc for
all consistent points c –consistent’ is here understood as w-consistent–.

Now, in [8] it is proved that BKc1 and BKc2 are sound and complete
in respect of the corresponding semantics just defined. So, we proceed to
prove the soundness and the completeness of BKc1’. We first prove a useful
proposition stating that w-consistency of theories is preserved when they
are extended to prime theories (this proposition is implicitly used in what
follows). Let B+,¬ be any extension of B+ in which the rule contraposition

con. ⊢ A → B ⇒ ⊢ ¬B → ¬A

is provable. We note that the following De Morgan law

dm. ⊢ (¬A ∨ ¬B) → ¬(A ∧ B)

is provable in B+,¬ (A2, A5, con.). Note also that con. is provable in BKc1:
it is T1BKc1

.
We have

Proposition 4. Let a be a B+¬ w-consistent theory. Then, there is some
prime w-consistent theory x such that a ⊆ x.
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Proof. Define from a a maximal w-consistent theory x such that a ⊆ x.
If x is not prime, then A ∨ B ∈ x, A /∈ x, B /∈ x for some wff A, B.
Define the theory [x, A] = {C | ∃D[D ∈ x & ⊢B+,¬

(A ∧ D) → C]}. Define
[x, B] similarly. It is not difficult to prove that [x, A] and [x, B] are theories
strictly including x. Therefore, they are w-inconsistent. So, ¬C ∈ [x, A],
¬D ∈ [x, B] for some theorems of B+,¬ C and D. By definitions, ⊢B+,¬

[(A∨B)∧(G∧G′)] → (¬C∨¬D) for G ∈ x, G′ ∈ x. As (A∨B)∧(G∧G′) ∈ x,
¬C ∨ ¬D ∈ x. Then, ¬(C ∧ D) ∈ x by dm. But ⊢B+,¬

C ∧ D, by Adj.
Consequently, x is w-inconsistent, which is impossible, so x is prime.

Thus, in any logic including B+ plus con., w-consistent theories can be
extended to prime w-consistent theories.

Next, we prove

Proposition 5. Given the logic BKc1 and BKc1 semantics,

1. P14 is the corresponding postulate to A15, and

2. P15 is the corresponding postulate to A16.

Proof. We prove case 1. The proof of case 2 is similar and is left to the
reader.

A15 is BKc1’ valid: Suppose a � A → B, a 2 ¬B → ¬A for wff A, B
and a ∈ K in some model. Then, b � ¬B, d � A for b, c, d ∈ K and e ∈ S
such that Rabc and Rcde. By d2, R2abde, and by P14, Radz and Rbzu for
z ∈ K and u ∈ S. By clause (v), (Rbxy & y ∈ S) ⇒ x 2 B for all x ∈ K and
y ∈ S. So, z 2 B (Rbzu, u ∈ S). But, by clause (iv), z � B (Radz, d � A).

P14 holds canonically: it follows immediately from the following lemma:

Lemma 1. Let a, b, c be non-null elements in KT and d a non-null w-
consistent member in KT such that RT 2abcd. Then, there are non-null x in
KT and some non-null w-consistent y in KT such that RT acx and RT bxy.

Let a, b, c be non-null elements in KT and d a w-consistent element
in KT such that RT 2abcd, i.e., by d2, RT abz and RT zcd for some z ∈
KT . Define the non-null theories x = {B | ∃A[A → B ∈ a & A ∈ c]},
y = {B | ∃A[A → B ∈ b & A ∈ x]} such that RT acx and RT bxy. We
prove that y is w-consistent. Suppose it is not. Then, ¬A ∈ y, A being a
theorem. So, B → ¬A ∈ b, C → B ∈ a for some wff B and C ∈ c. As
A is a theorem, ⊢BKc1

(B → ¬A) → ¬B by T4BKc1
. So, ¬B ∈ b. Now,

¬B → ¬C ∈ a by A15. Therefore, ¬C ∈ z (RT abz, ¬B ∈ b) whence by A13,
C → ¬(C → C) ∈ z and, consequently, ¬(C → C) ∈ d (RT zcd, C ∈ c),
contradicting the w-consistency of d.
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Now, given the soundness and completeness of BKc1, by Proposition 5,
it follows:

Theorem 1 (soundness and completeness of BKc1′). ⊢BKc1’
A iff �BKc1’

A.

4. The logic BKc1F and its extensions

We add the propositional falsity constant F to the positive language together
with the definition

D¬: ¬A ↔ A → F

Now, consider the following axioms:

A19. F → (A → F )

A20. ⊢ A ⇒ � (A → F ) → F

A21. (A → B) → [(B → F ) → (A → F )]

A22. (B → F ) → [(A → B) → (A → F )]

A23. [A → (B → F )] → [B → (A → F )]

A24. B → [[A → (B → F )] → (A → F )]

Then, the following logics are defined:

1. BKc1F : BK+ + A19 + A20

2. BKc1F ′ : BK+ + A19 + A20 + A21 + A22

3. BKc2F : BK+ + A23 + A24

We shall prove that BKc1F and BKc1, BKc1F ′ and BKc1′ , and BKc2F and
BKc2 are definitionally equivalent. So, the relations between the logics stated
in Proposition 3 correspondingly hold for the definitionally equivalent logics
defined with the falsity constant. Moreover, we remark that BKc1F , BKc1F ′

and BKc2F are well axiomatized in respect of BK+ (MaGIC, cf. Proposi-
tion 3).

We note the following theorems of BKc1F

T1BKc1F
. ¬A → [A → ¬(A → A)] A19, Pref., D¬

T2BKc1F
. [B → ¬(A → A)] → ¬B A20, Pref., D¬

We now define the semantics. Consider the following postulate

P18. a ∈ S ⇒ (∃x ∈ K)(∃y ∈ S)Raxy
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A BKc1F model is a quadruple 〈K, S, R,�〉, where K, S, R and � are
defined, in a similar way, as in a BKc1 model, except that clause (v) is
substituted by the clauses

(vi) (a ≤ b & a � F ) ⇒ b � F

and

(vii) a � F iff a /∈ S

and that postulate P13 is substituted by P18.
BKc1F ′ models (BKc2F models) are defined similarly as BKc1F models save

for the addition of P14 and P15 (P16, P17). In the three cases validity is
defined in respect of all points of K.

Now, we introduce the following definition:

Definition 2. Let LF be a logic whose language has the propositional falsity
constant F . Further, let a be a LF theory. Then, a is inconsistent iff F ∈ a;
a is consistent iff a is not inconsistent.

The BKc1F canonical model is the quadruple 〈KC , SC , RC ,�C〉, where
KC , RC and �C are defined in a similar way to which they are defined
in the BKc1 (or BK+) canonical model, and SC is the set of all non-null
prime consistent theories, ‘consistent’ being understood as in definition 2.
The BKc1F ′ canonical model and the BKc2F canonical model are defined
similarly, but with its items referred to BKc1F ′ theories and BKc2F theories,
respectively.

Now, in [9] it is proved that BKc1F is sound and complete in respect of
the semantics just defined. So, we shall prove the soundness and complete-
ness of BKc1F ′ and BKc2F . As in the case of BKc1, a proposition on the
preservation of consistency in building prime theories is provable. Let B+,F

be the result of extending the positive language of B+ with the propositional
falsity constant F , no new axioms, however, being added. We have:

Proposition 6. Let a be a consistent B+,F theory. Then, there is some
prime consistent theory x such that a ⊆ x.

Proof. Define from a a maximal consistent theory x such that a ⊆ x.
If x is not prime, then A ∨ B ∈ x, A /∈ x, B /∈ x for some wff A, B.
Define the theories [x, A] and [x, B] strictly including x, similarly, as in
Proposition 4. Then, [x, A] and [x, B] are inconsistent, i.e., F ∈ [x, A],
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F ∈ [x, B] whence, by definitions, ⊢B+,F
(A ∧ C) → F , ⊢B+,F

(B ∧ C ′) → F
for C ∈ x, C ′ ∈ x. Then, F ∈ x (cf. Proposition 4), which is impossible.
Therefore, x is prime.

Thus, in any logic including B+,F , consistent theories can be extended
to prime consistent theories.

We now prove

Proposition 7. Given the logic BKc1F and BKc1F semantics, P14, P15,
P16 and P17 are the corresponding postulates to A21, A22, A23 and A24,
respectively.

Proof. We prove, e.g., that P16 is the corresponding postulate to A23.
The rest of the cases are proved similarly and are left to the reader.

A23 is BKc2F valid: suppose a � A → (B → F ), a 2 B → (A → F ) for
wff A, B and a ∈ K in some models. Then, b � B, d � A, e 2 F for b, c,
d, e ∈ K such that Rabc and Rcde. By d2, R2abde, and as e ∈ S, by P16,
Radx and Rxby for x ∈ K and y ∈ S. So, x � B → F and then, y � F , i.e.,
y /∈ S (clause (vii)), a contradiction.

P16 holds canonically: It follows immediately from the following lemma:

Lemma 2. Let a, b, c be non-null members in KT and d a non-null consistent
member in KT such that RT 2abcd. Then, there are non-null y in KT and
non-null consistent x in KT such that RT acy and RT ybx, i.e., RT 2acbx.

Proof. Suppose non-null a, b, c in KT and non-null consistent d in KT such
that RT 2abcd, i.e., RT abz and RT zcd for some (non-null) z ∈ KT . Define
the non-null theories y = {B | ∃A[A → B ∈ a & A ∈ c]}, x = {B | ∃A[A →
B ∈ y & A ∈ b]} such that RT acy and RT ybx. We prove that x is consistent.
Suppose it is not. Then, F ∈ x. So, B → (A → F ) ∈ a for some A ∈ b,
B ∈ c. By A23, A → (B → F ) ∈ a. So, B → F ∈ z (RT abz) and so, F ∈ d
(RT zcd), contradicting the consistency of d.

Now, given the soundness and completeness of BKc1F , by Proposition 7,
it follows:

Theorem 2 (soundness and completeness of BKc1F ′ and BKc2F ).

1. ⊢BKc1F ′
A iff �BKc1F ′

A

2. ⊢BKc2F
A iff �BKc2F

A

We end this section with the following proposition:
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Proposition 8. Let a be a BKc1F theory. Then, a is inconsistent iff a is
w-inconsistent.

Proof. (1) Suppose F ∈ a and let A be a theorem. By A19, A → F ∈ a.
(2) Let A be a theorem and A → F ∈ a. Then, F ∈ a by A20.

Therefore, in BKc1F (and in all logics included in it) inconsistency (as
the presence of F ) and w-inconsistency are coextensive.

5. The definitional equivalence between BKc1 and BKc1F

and their respective extensions

Firstly, we introduce F by definition in BKc1. Note that for any formulas A,
B, ¬(A → A) and ¬(B → B) are equivalent by T2BKc1

. Then, we state:

Let A be a wff. Then,

DF : F ↔ ¬(A → A)

That is, F replaces any wff of the form ¬(A → A) (note that the defining
formula does not depend on the choice of A). We remark:

Proposition 9. Let a be a BKc1 theory. Then, a is w-inconsistent iff for
some wff A, ¬(A → A) ∈ a.

Proof. By T2BKc1
.

Therefore, in BKc1 (and in all logics including it) a theory is w-
inconsistent iff it contains F . In fact, this proposition is a corollary of the
following:

Proposition 10. Let a be a BKc1 theory. Then, a is w-inconsistent iff a
contains the negation of any theorem.

Proof. By T2BKc1
.

And this proposition is, in turn, a corollary of this one:

Proposition 11. Let a be a BKc1 theory. Then, a is w-inconsistent iff a
contains every negative formula.
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Therefore, in BKc1 (and in all logics which include it) w-inconsistency
is equivalent to the presence of every negative formula, the presence of the
negation of any theorem or, finally, the presence of F (as defined above).
Next, we turn to the proof of the definitional equivalence. We shall un-
derstand the notion as ‘definitional equivalence via translations’ (see, e.g.,
[6]). We have to prove the following two propositions (Proposition 12 is not
sufficient: cf. [2]):

Proposition 12. 1. BKc1F ⊆ BKc1 ∪ {DF}

2. BKc1 ⊆ BKc1F ∪ {D¬}

Proposition 13. 1. D¬ is provable in BKc1 ∪ {DF}

2. DF is provable in BKc1F ∪ {D¬}

Propositions 12 and 13 are proved in [9]. So, in order to prove the defi-
nitional equivalence between BKc1′ and BKc1F ′ , BKc2 and BKc2F , it suffices
to prove propositions 14 and 15 that follow:

Proposition 14. 1. BKc1′ ⊆ BKc1F ′ ∪ {D¬}

2. BKc1F ′ ⊆ BKc1′ ∪ {DF}

Proof. 1. A21 = A15, A22 = A16, by D¬.

2. T1BKc1′
= A21, T2BKc1′

= A22, by DF .

Proposition 15. 1. BKc2 ⊆ BKc2F ∪ {D¬}

2. BKc2F ⊆ BKc2 ∪ {DF}

Proof. 1. A23 = A17, A24 = A18, by D¬.

2. T1BKc2
= A23, T2BKc2

= A24, by DF .

6. Strengthening the positive logics

We take up again the extensions of BK+ defined in §2. Now, negation can
be introduced in these logics in a similar way to which it was introduced in
BK+. Thus, the following logics can be defined:

1. TWKc1, EWKc1, RWKc1 (= JWc1), LCWc1



Extensions of the Basic Constructive Logic . . . 327

2. TWKc1′ , EWKc1′ , RWKc1′ (= JWc1′), LCWc1′

3. TWKc2, EWKc2, RWKc2 (= JWc2), LCWc2

It is clear that, given propositions 14 and 15, the logics definitionally
equivalent to those in groups 1–3, can be defined:

1′. TWKc1F , EWKc1F , RWKc1F (= JWc1F ), LCWc1F

2′. TWKc1F ′ , EWKc1F ′ , RWKc1F ′ (= JWc1F ′), LCWc1F ′

3′. TWKc2F , EWKc2F , RWKc2F (= JWc2F ), LCWc2F

We prove:

Proposition 16. TWKc1 and TWKc1′ are deductively equivalent logics. So,
EWKc1 and EWKc1′ , RWKc1 (= JWc1) and RWKc1′ (= JWc1′) and LCWc1

and LCWc1′ are deductively equivalent logics.

Proof. A15 is derivable by A8, A13 and A14; A16 is derivable by A7, A13
and A14.

Proposition 17. RWKc1 (= JWc1) and RWKc2 (= JWc2) and LCWc1 and
LCWc2 are deductively equivalent logics.

Proof. Firstly, we note that A15 and A16 are derivable. Next, by A11 and
A15,

1. A → [¬A → ¬(A → A)]

By 1 and A14

2. A → ¬¬A

Then, A17 and A18 are easily provable with, respectively, A15 and A16
together with introduction of double negation (2).

Now, as EWKc1 and TWKc2 (so, TWKc1 and TWKc2, EWKc1 and EWKc2)
and EWKc2 and RWKc1 are different logics (MaGIC), the relations between
these logics can be summarized in the following diagram where the arrow
(→) stands for set inclusion.
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LWc1

↑
RWKc1

↑
EWKc2

րտ
EWKc1 TWKc2

տ ր
TWKc1

A similar diagram is, of course, obtained for the definitionally equivalent
logics defined with the propositional falsity constant.

Remark 5. Recall that LCWc1, RWKc1, EWKc2 and TWKc2 are the result
of adding the strong constructive contraposition axioms A17 and A18 to
LCW+, RWK+ (= JW+), EWK+ and TWK+, and that EWKc1 and TWKc1

are, respectively, EWK+ and TWKc+ plus the weak constructive contrapo-
sition axioms A15 and A16.

Remark 6. EWKc2, EWKc1, TWKc2 and TWKc1 are constructive modal
logics (the arrow in these logics is some kind of strict implication). But we
note that these logics are not included in, e.g., Lewis’ modal S5 as axiom-
atized by Hacking [4] (and, of course, neither do they include it): A13, for
example, is not a theorem of S5. On the other hand, we remark that a ne-
cessity operator � can be introduced (as in [1], §4.3) in EWKc2 and EWKc1

via the definition �A =df (A → A) → A. Generally speaking, the operator
thus introduced has the characteristic properties of the necessity operator
of Lewis’ S4 but with interesting relations with a possibility operator ♦ de-
finable from it, due to the absence of elimination of double negation and
its accompanying theses. The analysis of this question cannot, however, be
pursued here.

Regarding soundness and completeness of the logics introduced in this
section, it is obvious that they follow immediately from those of the positive
logics and BKc1 (BKc1F ), BKc1′ (BKc1F ′) and BKc2 (BKc2F ).

We end this section with the following propositions

Proposition 18. Let a be a theory of BKc1. Then, if a is w-inconsistent,
a contains a contradiction.

Proof. Suppose ¬A ∈ a, A being a theorem. By the K rule, ⊢BKc1
¬A → A.

So, A ∈ a and, consequently, A ∧ ¬A ∈ a.
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However, the converse of this proposition does not hold because it is
proved:

Proposition 19. The ECQ axioms (iii) (A∧¬A) → B, (iv) (A∧¬A) → ¬B
and the EFQ axioms (v) ¬A → (A → B), (vi) A → (¬A → B) (cf. §1) are
not provable in LCWc1.

Proof. By MaGIC.

Therefore, in LCWc1 (and all logics included in it), w-consistency is not
equivalent to negation-consistency or absolute consistency.

Finally, we note:

Proposition 20. The reductio and contraction axioms cannot be added to
BKc1 if we do not want w-consistency to collapse in negation consistency.

Proof. 1. Suppose that the principle of non-contradiction

(xviii) ¬(A ∧ ¬A)

is added to BKc1. Then, the ECQ axiom

(iii) (A ∧ ¬A) → ¬B

is derivable by T3BKc1
.

2. Suppose the contraction axiom

(xix) [A → (A → B)] → (A → B)

is added to B+. Then,

(xx) [A → (B → C)] → [(A ∧ B) → C]

is provable, and so, the ECQ axiom (iii) follows by T3BKc1
.

3. Not even

(xxi) [A ∧ (A → B)] → B

can be added, because (iii) is again provable by T3BKc1
.

Now, if (iii) is provable, w-consistency collapses in negation-consistency,
by Proposition 18.
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7. Introducing the EFQ axioms

In [8], the EFQ axioms are added to JWKc1 and it is proved that, though
w-consistency is then equivalent to absolute consistency, it is not equivalent
to negation-consistency. We shall prove that this result still holds if the EFQ
axioms are added to LCWc1.

Consider the EFQ axioms

A25. ¬A → (A → B)

A26. A → (¬A → B)

and in the form

A27. (A → F ) → (A → B)

A28. A → [(A → F ) → B]

The logics are:

1. LCWc1 + A25 (= LCWc1 + A26).

2. LCWc1F + A27 (= LCWc1F + A28).

We note the following theorem of LCWc1 + A25:

t1LCWc1+A25. [A → ¬ (A → A)] → (A → B) A14, A25

Remark 7. Semantics for LCWc1 + A25 (or LCWc1F + A27) are consider-
ably different from those of the logics treated so far. The reader is referred
to [8] for details.

We prove:

Proposition 21. LCWc1+A25 and LCWc1F +A27 are definitionally equiv-
alent logics.

Proof. Given propositions 14, 15, it follows immediately by t1LCWc1+A25

with DF and by A27 with D¬.

Now, we have, of course, by A26:

Proposition 22. Let a be a LCWc1 +A25 theory. Then, a is w-inconsistent
iff a contains every wff.
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However, we note (MaGIC):

Proposition 23. The ECQ axioms (iii) and (iv) (cf. §1) are not provable
in LCWc1 + A25.

Therefore, in LCWc1 + A25 (and all logics included in it), w-consistency
is not equivalent to negation-consistency. So, all logics defined in this pa-
per are paraconsistent logics in the sense of [7]. And, we note, they are
paraconsistent in respect of a precisely defined concept of consistency, i.e.,
w-consistency.
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