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1. Introduction

A theory T satisfies the Existential Property (E.P.) if from T ⊢ ∃xF [x]
we can always get a term t such that T ⊢ F [t]. This property is vi-
olated by theories with classical logic as (e.g.) the classical validity of
∃x [D(x) → ∀yD(y) ] and the nonvalidity of D(a) → ∀yD(y) show. In
dynamic logic, the construct 〈〈〈〈〈〈 π⋆ 〉〉〉〉〉〉ϕ means there is a natural number k
with 〈〈〈〈〈〈 πk 〉〉〉〉〉〉ϕ, where πk is the k-th iterate of the program π. Therefore,
〈〈〈〈〈〈 π⋆ 〉〉〉〉〉〉ϕ behaves as an existentially quantified sentence. If the surround-
ing logic is classical, the pertinent E.P. fails. For example, the schema
〈〈〈〈〈〈 ρ⋆ 〉〉〉〉〉〉 (〈〈〈〈〈〈 ρ⋆ 〉〉〉〉〉〉ϕ → ϕ) is valid although 〈〈〈〈〈〈 qk 〉〉〉〉〉〉 (〈〈〈〈〈〈 q⋆ 〉〉〉〉〉〉 a → a) is valid
for no natural number k (where q is an atomic program and a a proposi-
tional letter). Can we restore the E.P. for dynamic logic if we make the
surrounding logic intuitionistic?

We sketch in the present paper intuitionistic propositional dynamic logic,
iPDL; let us remark, that the first-order extension of iPDL is definitely
beyond present-day methods.
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We have a set of propositional letters (including ⊥ = false), and a set of
program letters (or atomic programs). As usual we define by simultaneous
induction formulae and programs:

1. Every propositional letter [program letter] is a formula [a program].

2. If ϕ und ψ are formulae, π and ρ programs, then

• ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, 〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ and [[[[[ π ]]]]]ϕ are formulae and

• π; ρ, π ∪ ρ, π⋆ and ϕ? are programs.

We define ¬ϕ by ϕ → ⊥.

An intuitionistic dynamic Kripke model K is a triple K = (W K,�K,mK)
where W K is a (e.g. non-empty) set of states, �K ⊆ W K × W K is reflexive
and transitive; �K will be used for the intuitionistic interpretation of →. We
have mK(p) ⊆ W K × W K for every atomic program p. For all propositional
letters a we require mK(a) ⊆ W K to be the set of states where a is true with
the condition that for every two states u, v ∈ W K u �K v and u ∈ mK(a)
implies v ∈ mK(a). The extension of mK to complex programs and fromulae
is defined as expected (see definition 3). For the sake of simplicity we will
not distinguish between mK and its extension.

We have the small model property for iPDL: if ϕ is satisfiable, then it is
satisfiable in an intuitionistic Kripke model with at most 2c|ϕ| states, c being
a universal constant. Furthermore, validity in iPDL is log-space reducible to
validity in classical dynamic logic. (This is not true for intuitionistic versus
classical (nonmodal) propositional logic unless PSPACE = co-NP.)

Our intuitionistic dynamic Kripke models exhibit several algebraic and
combinatorial properties worth considering; and by them we can separate
dynamic-logical laws which are classically equivalent. For example, the in-
duction principle ϕ ∧ [[[[[ π⋆ ]]]]] (ϕ → [[[[[ π ]]]]]ϕ) → [[[[[ π⋆ ]]]]]ϕ is intuitionistically
valid; the classically equivalent schema 〈〈〈〈〈〈 π⋆ 〉〉〉〉〉〉ϕ → ϕ∨〈〈〈〈〈〈 π⋆ 〉〉〉〉〉〉 (¬ϕ∧〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ)
is not intuitionistically valid.

Nevertheless, our models are still of a rather tentative character, and
may be even the “wrong" models, for the following reasons.

• We have no nontrivial E.P. of the form: Φ |= 〈〈〈〈〈〈 p⋆ 〉〉〉〉〉〉ϕ implies Φ |=
〈〈〈〈〈〈 pk 〉〉〉〉〉〉ϕ for some k. (Φ a set of formulae.)

• Concerning a (correct and complete) calculus, the main obstacle is the
impure rule for right → introduction, namely
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α,Γ ⇒ β
(if all γ ∈ Γ are monotonic)

Γ ⇒ α → β

Here a formula γ is called monotonic if in every model K and any of
its worlds u, v ∈ W K: u �K v, u ∈ mK(γ) implies v ∈ mK(γ). Unfortu-
nately, we have yet no syntactic characterization of monotonicity.

• There does not exist a good negative interpretation of classical dynamic
Logic in intuitionistic dynamic Logic.

Let us conclude this introduction by some remarks about G. Fischer-
Servi’s paper [FS76]. The author asks the following important question (p.
141):

Can we find a general criterion that will give us “the" intuition-
istic analogue of some of the most usual modal systems?

This quotation immediately continues with a sort of disclaimer:

The problem as stated is of a technical nature and therefore the
philosophical issues relating to the plausibility of an intuitionistic
logic of modality will be in this context ignored.

Despite some technically interesting developments, the paper [FS76] does
neither address nor answer the following questions which we think are crucial
w.r.t. intuitionistification of modal logics:

1. Is there a reasonable and uniform method M such that given a classical
modal calculus C, M(C) will be “the" intuitionistic counterpart of C?

2. Which properties typical for intuitionistic systems should be satisfied
by “the" intuitionistic counterpart of a classical modal system?

Remark 1. Typical properties of intuitionistic systems are

A) the disjunctive and existential property, and

B) a sort of negative translation of the classical version into the intuition-
istic one.

It is especially A) and B) which are addressed in the present paper about
classical versus intuitionistic dynamic logic (as a prominent modal logic
nonexistent around 1976).
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2. Semantics

We define the classical Kripke models and its denotation function as in
[HKT00].

Definition 1. A Kripke model K (KM) is a pair K = (WK,mK), where

• WK a nonempty set of states

• mK : is a function with

1. for every atomic propositional a: mK(a) ⊆ WK
2. for every atomic program p: mK(p) ⊆ WK ×WK

We construct the new class of models, by adding an accessibility relation.

Definition 2. An intuitionistic Kripke model K (iKM) is a tripel K =
(W K,�K,mK), where

• W K a nonempty set of states

• �K⊆ W K ×W K the intuitionistic (reflexive and transitive) accessibility
relation

• mK : is a function with

1. for every atomic propositional a: mK(a) ⊆ W K monotonic in re-
lation to �K,
this means: w ∈ mK(a) and w �K w′ implies w′ ∈ mK(a).

2. for every atomic program p: mK(p) ⊆ W K ×W K
We will also refer to the classical Kripke models as PDL-models and the

just introduced intuitionistic models as iPDL-models.
The extension of the denotation functions mK and mK to complex expression
is done recursively in the usual ways. For example the intuitionistic case is
done as follows:

Definition 3.

• mK(π ∪ ρ) := mK(π) ∪mK(ρ)

• mK(π; ρ) := mK(π) ◦mK(ρ) (composition of relations)

• mK(π⋆) := mK(π)⋆ =
⋃

i∈N

mK(π)i (reflexive-transitive closure)

• mK(ϕ ?) := {(w,w)| w ∈ mK(ϕ)}
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• mK(⊥) := ∅

• mK(ψ ∧ η) := mK(ψ) ∩mK(η)

• mK(ψ ∨ η) := mK(ψ) ∪mK(η)

• mK([[[[[ π ]]]]]ψ) := {w ∈ W K| {w′| (w,w′) ∈ mK(π)} ⊆ mK(ψ)}

• mK(〈〈〈〈〈〈 π 〉〉〉〉〉〉ψ) := {w ∈ W K| {w′| (w,w′) ∈ mK(π)} ∩mK(ψ) 6= ∅}

• mK(ψ → η) := {w ∈ W K| {w′| w �K w′} ∩mK(ψ) ⊆ mK(η)}

The only difference to the classical case is the interpretation of the con-
nector →. To work with our new model class we also need a definition for
satisfiability.

Definition 4. A formula ϕ is satisfiable (in iPDL), if there are an iPDL-
model K and a state w ∈ W K, with w ∈ mK(ϕ).

In analogy to this we will call a formula ϕ to be satisfied in a state w,
when w ∈ mK(ϕ).

Definition 5. A formula ϕ is valid (in iPDL), if in every iPDL-model K and
every state w ∈ W K w ∈ mK(ϕ) holds. We say also that ϕ is intuitionistically
valid.

Definition 6. Let F be a set of formulae, K a iPDL-model and ϕ an arbi-
trary formula.
We say K models F (written K � F ), if every formula η ∈ F is satisfied in
every state w ∈ K (w ∈ mK(η)). For the sake of simplicity we omit the set
braces if F contains just one formula.
We say F implies semantically ϕ (written F � ϕ), if for every intuitionistic
Kripke model L with L � F also L � ϕ.

3. Separation of classical and intuitionistic PDL

Separation of [[[[[ ]]]]] and 〈〈〈〈〈〈 〉〉〉〉〉〉

In the classical PDL there is just one of the operators [[[[[ ]]]]] and 〈〈〈〈〈〈 〉〉〉〉〉〉 . The
other one is either given by the defining axiom [[[[[ π ]]]]]ϕ ↔ ¬〈〈〈〈〈〈 π 〉〉〉〉〉〉 ¬ϕ or
〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ ↔ ¬[[[[[ π ]]]]] ¬ϕ. In iPDL each of these axioms is invalid.
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Example 1. The shown model K is a counterexample to the validity of the
formulae [[[[[ p ]]]]] a → ¬〈〈〈〈〈〈 p 〉〉〉〉〉〉 ¬a (1).

GFED@ABCw1
∅ �K //

p
MM

MM
MM

&&M
MM

MM
M

GFED@ABCw2
∅

p //GFED@ABCw3
∅

ONMLHIJKw4
{a}

(1) not satisfied in state w1. Observe that the shown model also contradicts
the formula 〈〈〈〈〈〈 p 〉〉〉〉〉〉 a → ¬[[[[[ p ]]]]] ¬a (2)

In contradiction to the falsity of (1) there is a intuitionistically valid
first order formula, namely ∀xϕ(x) → ¬∃x¬ϕ(x). If one interprets the
possiblilitas operator as existential quantifier and the neccessitas operator
as universal quantifier, the given formula seems to be reverted.
The other direction of the axiom is also invalid:

Example 2. Counter model against ¬[[[[[ p ]]]]] ¬a → 〈〈〈〈〈〈 p 〉〉〉〉〉〉 a and ¬〈〈〈〈〈〈 p 〉〉〉〉〉〉 ¬a →
[[[[[ p ]]]]] a:

GFED@ABCw1
∅

p //GFED@ABCw2
∅ �K // ONMLHIJKw3

{a}

Both formulae are not satisfied in state w1.

Induction principles

The Segerberg induction schema consists of the following two axioms

• ϕ ∧ [[[[[ π⋆ ]]]]] (ϕ → [[[[[ π ]]]]]ϕ) → [[[[[ π⋆ ]]]]]ϕ (Necessitas or [[[[[ ]]]]] form)

• 〈〈〈〈〈〈 π⋆ 〉〉〉〉〉〉ϕ → ϕ ∨ 〈〈〈〈〈〈 π⋆ 〉〉〉〉〉〉 (¬ϕ ∧ 〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ) (Possibilitas or 〈〈〈〈〈〈 〉〉〉〉〉〉 form)

As commonly known these two axioms are classically (in PDL) equivalent
by dualisation. However this is not possible in iPDL.

Lemma 1. The Possibilitas form of the Segerberg induction is not valid.

Proof. We give a counterexample against the instance 〈〈〈〈〈〈 p⋆ 〉〉〉〉〉〉 a → a ∨
〈〈〈〈〈〈 p⋆ 〉〉〉〉〉〉 ((a → ⊥) ∧ 〈〈〈〈〈〈 p 〉〉〉〉〉〉 a):
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ONMLHIJKw2
{a}

ONMLHIJKw3
{a}

GFED@ABCw1
∅

pBBBB

`B̀BBB
�K
||||

>>|||

Again in state w1 the formula is invalidated.

Lemma 2. The Necessitas form of Segerberg induction is valid.

Proof (Sketch). One has to check that the proposition has the following
equivalence: In every intuitionistic Kripke model K and on every state w ∈
W K

mK(ϕ ∧ [[[[[ π⋆ ]]]]] (ϕ → [[[[[ π ]]]]]ϕ)) ⊆ mK([[[[[ π⋆ ]]]]]ϕ)

By using mK([[[[[ π⋆ ]]]]]ϕ) =
⋂

i∈N

mK([[[[[ πi ]]]]]ϕ) it satisfies to prove

mK(ϕ ∧ [[[[[ π⋆ ]]]]] (ϕ → [[[[[ π ]]]]]ϕ)) ⊆ mK([[[[[ πk ]]]]]ϕ)

This is done by induction on k using mK([[[[[ πk+1 ]]]]]ϕ) = mK([[[[[ πk ]]]]] [[[[[ π ]]]]]ϕ).

4. Definability within iPDL

As in some versions of second order systems (see [Pra70]) several logic signs
in iPDL can be eliminated for others. (Whereas in first order intuitionistic
logic all logic signs are independent.)

Lemma 3. In every intuitionistic Kripke model K = (W K,�K,mK) holds

1. mK([[[[[ ψ? ]]]]] ⊥) = W K \mK(ψ)

2. mK(〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ) = mK([[[[[ ([[[[[ π ]]]]] [[[[[ ϕ? ]]]]] ⊥)? ]]]]] ⊥)

3. mK(ψ ∧ η) = mK(〈〈〈〈〈〈 ψ ? 〉〉〉〉〉〉 η) = mK([[[[[ ([[[[[ ψ? ]]]]] [[[[[ η? ]]]]] ⊥)? ]]]]] ⊥)

4. mK(ψ ∨ η) = mK([[[[[ ([[[[[ ψ? ]]]]] ⊥)? ]]]]] η)

5. mK([[[[[ π ∪ ρ ]]]]]ϕ) = mK([[[[[ π ]]]]]ϕ ∧ [[[[[ ρ ]]]]]ϕ) =
= mK([[[[[ ([[[[[ ([[[[[ π ]]]]]ϕ)? ]]]]] [[[[[ ([[[[[ ρ ]]]]]ϕ)? ]]]]] ⊥)? ]]]]] ⊥)

6. mK(〈〈〈〈〈〈 π ∪ ρ 〉〉〉〉〉〉ϕ) = mK(〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ ∨ 〈〈〈〈〈〈 ρ 〉〉〉〉〉〉ϕ) =
= mK([[[[[ ([[[[[ π ]]]]] [[[[[ ϕ? ]]]]] ⊥)? ]]]]] [[[[[ ([[[[[ ρ ]]]]] [[[[[ ϕ? ]]]]] ⊥)? ]]]]] ⊥)
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7. mK(〈〈〈〈〈〈 π 〉〉〉〉〉〉 〈〈〈〈〈〈 ρ 〉〉〉〉〉〉ϕ) = mK(〈〈〈〈〈〈 π; ρ 〉〉〉〉〉〉ϕ)

8. mK([[[[[ π ]]]]] [[[[[ ρ ]]]]]ϕ) = mK([[[[[ π; ρ ]]]]]ϕ)

Proof. The proof is straight forward by applying the definitions.

As an immediate consequence of this lemma it is sufficient to assume
that a formula ϕ contains only ⊥, ⋆ (with arbitrary programs), →, [[[[[ ]]]]]
and ? as logical connectors. An unpleasant implication of Lemma 3.1 is the
intuitionistic validity of [[[[[ a? ]]]]] ⊥ ∨ a. This is of course very counterintuitive.
Formally, this phenomenon destroys every hope to get a significant theorem
on disjunctive and existential properties for iPDL.

5. Small model property

There is a direct way to the small model property for iPDL without using
classical PDL-models as an intermediary step. This direct intuitionistic pro-
cedure would require the construction of a Fisher-Ladener-closure and the
proof of a filtration lemma for iPDL. However, there is a shortcut using the
classical theorem.

Throughout this chapter we fix an atomic program p, which will serve in
the following lemmata as a means of translation of the intuitionistic acces-
sibility relation.

Definition 7. Let ϕ be a formula, which does not contain p. The translation
ϕT is recursively defined as follows.
Let ψ, η be formulae and π, ρ, σ programs.

• If ϕ = ⊥, then ϕT = ⊥

• If ϕ = a (a is a propositional letter), then ϕT = [[[[[ p⋆ ]]]]] a

• If ϕ = ψ → η, then ϕT = [[[[[ p⋆ ]]]]] (ψT → ηT )

• If ϕ = [[[[[ π ]]]]] η, then ϕT = [[[[[ πT ]]]]] ηT

• If π = q is atomic, then πT = q

• If π = ρ;σ, then πT = ρT ;σT

• If π = ρ ∪ σ, then πT = ρT ∪ σT

• If π = η?, then πT = ηT ?

• If π = ρ⋆, then πT = (ρT )⋆
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Let K = (W K,�K,mK) be an intuitionistic Kripke model. The PDL-modelKT = (WKT ,mKT ), called the translation of K, is defined by

• WKT := W K
• Let a be a propositional. Set mKT (a) := mK(a)

• Let q be an atomic program with p 6= q. Set mKT (q) := mK(q).

• Set mKT (p) :=�K.

Lemma 4. Let ϕ be a formula which does not contain p, K a iPDL-model
and w ∈ W K a state.
Then w ∈ mK(ϕ) if and only if w ∈ mKT (ϕT ).

Proof. by induction on the structure of ϕ:

• Assume ϕ = ⊥. This case is obvious.

• From w ∈ mK(a) it follows per definitionem, that for each state w′ ∈
W K satisfying w �K w′, also w′ ∈ mK(a). Since (also per definitionem)
mKT (p) =�K is reflexive and transitive also mKT (p⋆) = mKT (p) =�K.
Hence we have for each state w′ ∈ WKT with (w,w′) ∈ mKT (p⋆) =�K
that w′ ∈ mKT (a) = mK(a). It follows w ∈ mKT ([[[[[ p⋆ ]]]]] a) = mKT (aT ).
Assume a /∈ mK(a) then, since mKT (a) = mK(a) and p⋆ being reflexive,
also w /∈ mKT ([[[[[ p⋆ ]]]]] a) = mKT (aT ).

• Let ϕT = [[[[[ p⋆ ]]]]] (ψT → ηT ) be translation of ψ → η. Since the
evaluation of → is local in PDL, the proposition follows similary as
above.

• The other cases are similar.

Definition 8. Let K = (WK,mK) be a PDL-model. Then the iPDL-modelKP = (W KP

,�KP

,mKP

), called the pullback of K, is defined by:

• W KP

:= WK
• For each atomic propositional a: mKP

(a) := mK([[[[[ p⋆ ]]]]] a)

• For each atomic program q: mKP

(q) := mK(q)

• �KP

:= (mK(p))⋆

Notice that KP = (W KP

,�KP

,mKP

) is a well defined iPDL-model, since
the only additional condition for the propositions, namely to be monotonic,
is satisfied.
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Lemma 5. Let ϕ be a iPDL-formula not containing p and K = (WK,mK) be

a PDL-model. Then w ∈ mKP

(ϕ) if and only if w ∈ mK(ϕT )

Proof. By induction on the structure of ϕ.

• The cases where ϕ = ⊥ or ϕ = a are obvious.

• Let ϕ = ψ → η. Assume w ∈ mK(ϕT ) = mK([[[[[ p⋆ ]]]]] (ψT → ηT )).

Now apply �KP

:= (mK(p))⋆ = mK(p⋆) and I.H..
Now assume w /∈ mK(ϕT ). This means there is a state w′ with (w,w′) ∈
mK(p⋆) and w′ /∈ mK(ψT → ηT ). This means w′ ∈ mK(ψT ) and w′ /∈

mK(ηT ). Hence by I.H. w′ ∈ mKP

(ψ) and w′ /∈ mKP

(η). Therefore

w′ /∈ mKP

(ψ → η) and (w �KP

w′) w /∈ mKP

(ψ → η).

• The other cases are similar.

Theorem 1. Every formula ϕ, which is satisfiable in a iPDL-model K, is
also satisfiable in a model with less than 2c·|ϕ| states, for some constant c.

Proof. We construct the new model using the small model property from
PDL.

Step 1) Choose a new (fresh) atomic program letter p, which is not con-
tained in ϕ.

Step 2) Translate ϕ recursively into ϕT

Notice that |ϕT | ≤ c · |ϕ|

Step 3) Transform also the iPDL-model K = (W K,�K,mK) into an PDL-
model KT = (WKT ,mKT )

Notice that KT is a PDL-model for ϕT by Lemma 4

Step 4) By the small model theorem of the PDL one can choose a (PDL-)
model L = (WL,mL), which satisfies:

• There is a state u ∈ WL, such that u ∈ mL(ϕT )

• |WL| ≤ 2|ϕT | ≤ 2c·|ϕ|

Step 5) Pull L back to an iPDL-model LP = (W LP ,�LP

,mLP

)

Notice that LP satisfies u ∈ mLP (ϕ) by Lemma 5
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As an immediate consequence of the above theorem we have the de-
cidability of the validity problem. Moreover, this guarantees the existence
of some sort of complete and correct calculus for iPDL. However, we were
unable to construct a useful and structurally perspicuous calculus for iPDL.

6. Monotonic formulae

The program-free formulae, interpreted intuitionistically, are all monotonic.
Unfortunately, this property is lost in iPDL for formulae with programs.

Example 3. Let K = (W K,�K,mK) be represented by

ONMLHIJKw2
{a}

ONMLHIJKw3
{a}

GFED@ABCw1
∅

pBBBB

`B̀BBB
�K
||||

>>|||

Observe that in state w1 the formula 〈〈〈〈〈〈 p 〉〉〉〉〉〉 a is satisfied, but not in w3.

The most critical consequence of the lack of monotonicity is that the
⇒→ rule in Gentzen style sequent calculi is not correct.

Lemma 6. The rule

α,Γ ⇒ β
(⇒→)

Γ ⇒ α → β

is not correct in iPDL.

Proof. It is easily checked that the sequent 〈〈〈〈〈〈 p 〉〉〉〉〉〉 ⊤,⊤ ⇒ 〈〈〈〈〈〈 p 〉〉〉〉〉〉 ⊤ is valid.
We give a countermodel for the derived sequent 〈〈〈〈〈〈 p 〉〉〉〉〉〉 ⊤ ⇒ ⊤ → 〈〈〈〈〈〈 p 〉〉〉〉〉〉 ⊤.
Let the intuitionistic Kripke model K = (W K,�K,mK) be defined by

GFED@ABCw2
∅

GFED@ABCw3
∅

GFED@ABCw1
∅

�K
@@@

__@@@

p
~~~

??~~~

Notice that in state w2 the right side ⊤ → 〈〈〈〈〈〈 p 〉〉〉〉〉〉 ⊤ of the sequent is not sat-
isfied. Thus (by the forced monotonicity of →) also w1 6∈ mK(⊤ → 〈〈〈〈〈〈 p 〉〉〉〉〉〉 ⊤).
But obviously the left side of the sequent is satisfied in w1. Therefore the
sequent is not satisfied in w1.
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The lack of monotonicity has, among others, the following more serious
consequence.

Corollary 2 (Failure of substitution). The valid formulae from iPDL are
not closed under substitution of atomic propositions for arbitrary formulae.

Proof. The formula a → (b → a) is valid in iPDL for atomic propositions a
and b. As shown above the substitution 〈〈〈〈〈〈 p 〉〉〉〉〉〉 ⊤ → (⊤ → 〈〈〈〈〈〈 p 〉〉〉〉〉〉 ⊤) is not.

However, the ⇒→ rule can partially be rescued just by adding a mono-
tonicity restriction.

Lemma 7. The rule

α,Γ ⇒ β
(⇒→ mono)

Γ ⇒ α → β

is correct in iPDL if all of the formulae in Γ are monotonic.

Proof. This follows immediate from the definitions and the required mono-
tonicity property.

The major open problem with ⇒→ mono is the fact that until now we
have no syntactical criterion for the monotonicity.

Lemma 8. Let ϕ,ψ be arbitrary formulae.

1. Atomic propositions (including ⊥) are monotonic,

2. ϕ → ψ is monotonic,

3. from ϕ and ψ monotonic follows, that ϕ ∨ ψ is also monotonic,

4. from ϕ and ψ monotonic follows, that ϕ ∧ ψ is also monotonic.

Proof. Apply definitions.

It follows immediately that all formulae which do not contain modal
operators are monotonic. It is also straight-forward to prove that all intu-
itionistically correct inference rules from the (non dynamic) propositional
calculus can be applied to monotonic formulae. Hence the valid formulae
from iPDL are closed under substituting the atomic propositions for mono-
tonic formulae.
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Existential property

One of the reasons to investigate the intuitionistic modification of PDL, as
described, has been the hope to determine for any given iPDL-valid formula
〈〈〈〈〈〈 π⋆ 〉〉〉〉〉〉 η a natural number k ∈ N for which the formula 〈〈〈〈〈〈 πk 〉〉〉〉〉〉 η is valid.
This hope was based on the existential properties of usual intuitionistic first
order logics. Also, a version of the disjunctive property is interesting since
〈〈〈〈〈〈 π ∪ ρ 〉〉〉〉〉〉ϕ should induce the validity of 〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ or 〈〈〈〈〈〈 ρ 〉〉〉〉〉〉ϕ. But in view
of the shown equivalence between 〈〈〈〈〈〈 π ∪ ρ 〉〉〉〉〉〉ϕ and 〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ ∨ 〈〈〈〈〈〈 ρ 〉〉〉〉〉〉ϕ it is of
minor interest.
As usual (compare [Tak87] or [TS00]) we try to construct a class of formulae
H from which to take subsets which define subclasses of the iPDL-model.

Definition 9. The set H of Harrop formulae is recursively defined as fol-
lows:

• every atomic proposition is in H

• if ψ, η ∈ H then is also ψ ∧ η ∈ H

• if p is an atomic program and ϕ ∈ H then is also [[[[[ p ]]]]]ϕ ∈ H

• if [[[[[ π ]]]]]ϕ, [[[[[ ρ ]]]]]ϕ ∈ H then is also [[[[[ π ∪ ρ ]]]]]ϕ ∈ H

• if [[[[[ π ]]]]] [[[[[ ρ ]]]]]ϕ ∈ H then is also [[[[[ π; ρ ]]]]]ϕ ∈ H

• if ϕ ∈ H and ψ is a monotonic formula, then is also ψ → ϕ ∈ H

This definition is already very strong as one can see in the following
lemma’s proof.

Lemma 9. Let F ⊆ H be a set of Harrop formulae, π an arbitrary program
and η an arbitrary formula, then holds: if F � 〈〈〈〈〈〈 π⋆ 〉〉〉〉〉〉 η and η is monotonic,
then there exists a number k ∈ N with F � 〈〈〈〈〈〈 πk 〉〉〉〉〉〉 η.

Proof. We will prove, that k = 0.
The claim of the lemma is then equivalent to:
If F � 〈〈〈〈〈〈 π⋆ 〉〉〉〉〉〉 η and η is monotonic, then F � η.
Assume in contradiction that F 6� η. This means that there is a iPDL-modelK with K � F , but w 6∈ mK(η) for a state w ∈ W K. We choose a fresh state
w′ /∈ W K and construct a new iPDL-model by inserting w′ as follows.

(1) W L := W K ∪ {w′}

(2) for every atomic proposition a with w /∈ mK(a): mL(a) = mK(a)

(3) for every atomic proposition a with w ∈ mK(a): mL(a) = mK(a) ∪ {w′}
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(4) for every atomic program p: mL(p) = mK(p)
(remark that no atomic program leads to or leaves w′).

(5) �L:=�K ∪{(w′, w)} ∪ {(w′, w′′)| (w,w′′) ∈�K}

Claim 1: for every formula ϕ and every state u ∈ W K holds: u ∈ mK(ϕ) iff.
u ∈ mL(ϕ).
This can easily be seen by induction on the structure of formulae and the
fact that the new state w′ can not be seen from any “old" state u. Neither
by a atomic program nor the accessibility relation.
Claim 2: L � F .
From claim 1 it follows that it is sufficient to prove the following:
For every ϕ ∈ H holds: if w ∈ mL(ϕ) then w′ ∈ mL(ϕ).
This is also proven by induction on the structure of Harrop formulae.
Induction basis:

• Let a be an atomic proposition (in H). This case follows from con-
struction step (3).

• Let [[[[[ p ]]]]]ϕ ∈ H. Since {u| (w′, u) ∈ mL(p)} = ∅ it follows that
w′ ∈ mL([[[[[ p ]]]]]ϕ)

Induction hypothesis (IH): The claim shall hold for ψ0, ψ1, [[[[[ π ]]]]]ψ2, [[[[[ ρ ]]]]]ψ2 ∈
H.
Induction step:

• Case ϕ = ψ0 ∧ ψ1: Assume w ∈ mL(ψ0 ∧ ψ1). then w ∈ mL(ψ0) and
w ∈ mL(ψ1). Now use IH and compound the statements.

• Case ϕ = ψ → ψ0 for a monotonic formula ψ: Assume w ∈ mL(ψ →
ψ0).

There are two cases:

– w′ /∈ mL(ψ): Then it is easy to see w′ ∈ mL(ϕ).

– w′ ∈ mL(ψ): Since ψ is monotonic follows w ∈ mL(ψ). Hence
follows w ∈ mL(ψ0). By IH follows also w′ ∈ mL(ψ0) and therefore
w′ ∈ mL(ϕ).

• The cases ϕ = [[[[[ ψ∪ρ ]]]]]ψ2 and [[[[[ ψ; ρ ]]]]]ψ follow straight from Lemma 3.

Because of F � 〈〈〈〈〈〈 π⋆ 〉〉〉〉〉〉 η and L � F it follows that w′ ∈ mK(〈〈〈〈〈〈 π⋆ 〉〉〉〉〉〉 η).
But since {u| (w′, u) ∈ mL(p)} = ∅ for every atomic program p the state
w′ can not be left by π. Hence w′ ∈ mK(η) holds, which contradicts by
monotonicity of η the demand w /∈ mK(η).
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By slightly modifying this proof one gets a similar disjunctive property
as well.

Lemma 10. Let F ⊆ H be a set of Harrop formulae and η and ψ monotonic
formulae.
If F � η ∨ ψ, then we have F � η or F � ψ.

Whether the given restrictions on the notion of Harrop formulae together
with the requirement of monotonicity can be made more liberal we do not
know. It is however clear that they can not be removed completely.

Example 4. Let F := {[[[[[ a? ]]]]] ⊥ → b, [[[[[ b? ]]]]] ⊥ → a}.
Claim: It holds F � a ∨ b.

Let K be an iPDL model with K � F .
Let w ∈ W K be a state. Assume w /∈ mK(a). Hence w ∈
mK([[[[[ a? ]]]]] ⊥). Since w ∈ mK([[[[[ a? ]]]]] ⊥ → b) holds by assump-
tion, therefore we have w ∈ mK(b).

Never the less neither F � a, nor F � b, holds. This is shown in the following
iPDL-model

ONMLHIJKw0
{a}

ONMLHIJKw1
{b}

Observe that this is obviously a model for F , but neither for a nor for b

7. Modal translation of PDL into iPDL

Usually in intuitionistic calculi there is a possibility for transforming classical
tautologoids into intuitionistic ones. It turns out that there exists a simple
way to realize such a translation. This translation is based on the fact that
the test-operator in combination with the necessitas-operator behaves in
iPDL like a classical implication.

Definition 10. The modal translation ϕ of a formula ϕ, resp. π of a pro-
gram π, is recursively defined, as follows:
Let ϕ, η, ψ be formulae and π, ρ, σ be programs

• ⊥ :≡ ⊥.

• for atomic propositions a: a :≡ a

• for atomic programs p: p :≡ p
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• let ϕ ≡ ψ ∧ η: then ϕ :≡ ψ ∧ η.

• let ϕ ≡ ψ ∨ η: then ϕ :≡ ψ ∨ η.

• let ϕ ≡ ψ → η: then ϕ :≡ [[[[[ ψ? ]]]]] η.

• let π ≡ ρ;σ: then π :≡ ρ;σ.

• let π ≡ ρ ∪ σ: then π :≡ ρ ∪ σ.

• let π ≡ ρ⋆: then π :≡ (ρ)⋆.

• let π ≡ η?: then π :≡ η?.

• let ϕ ≡ [[[[[ ρ ]]]]] η: then ϕ :≡ [[[[[ ρ ]]]]] η.

• let ϕ ≡ 〈〈〈〈〈〈 ρ 〉〉〉〉〉〉 η: then ϕ :≡ 〈〈〈〈〈〈 ρ 〉〉〉〉〉〉 η

The given modal translation leaves all connectors fixed except one.
Whereas the usual negative translations leave the implication identical, it is
to note that our modal translation changes ϕ → ψ into [[[[[ ϕ? ]]]]]ψ which is
quite different from identity.

Theorem 3. Let ϕ be a formula.
Then ϕ is valid in PDL iff ϕ is valid in iPDL.

Proof. It is easy to see that the formulae [[[[[ ϕ? ]]]]]ψ and ϕ → ψ are equiva-
lent in PDL. Therefore the validity of ϕ in PDL implies the validity of ϕ in
PDL.
Since ϕ does not contain any implications, it does not relate to the acces-
sibility relation on it’s evaluation. Thus ϕ behaves in every iPDL-model
exactly as in a PDL-model and therefore it is valid.

The major disadvantage of the modal translation is a certain lack of
conceptual purity: it introduces extra modalities.

8. On negative translations

We treat only test-free formulae and programs, and consider the following
double negation translation (of a usual brand):

Definition 11. The negative translation ϕ′ of a formula ϕ (which does not
contain tests) and π′ of a program π is defined by recursion as follows:

• For atomic propositions a: a′ := ¬¬a (⊥′ = ⊥)

• For atomic programs p: p′ := p
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• (ϕ ∧ ψ)′ = ϕ′ ∧ ψ′

• (ϕ ∨ ψ)′ = ¬(¬ϕ′ ∧ ¬ψ′)

• (ϕ → ψ)′ = ϕ′ → ψ′

• (π; ρ)′ = π′; ρ′

• (π ∪ ρ)′ = π′ ∪ ρ′

• (π⋆)′ = (π′)⋆

• ([[[[[ π ]]]]]ϕ)′ = ¬¬[[[[[ π′ ]]]]]ϕ′

• (〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ)′ = ¬¬¬[[[[[ π′ ]]]]] ¬ϕ′

Lemma 11. ϕ ↔ ϕ′ is classically valid.

Proof. By induction on the structure of formulae.

Definition 12. The Segerberg system (without test) is defined as follows.
Axioms:

1. Tautologoids of propositional logic

2. 〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ ↔ ¬[[[[[ π ]]]]] ¬ϕ

3. [[[[[ π ]]]]] (ϕ → ψ) → ([[[[[ π ]]]]]ϕ → [[[[[ π ]]]]]ψ)

4. [[[[[ π ]]]]] (ϕ ∧ ψ) ↔ ([[[[[ π ]]]]]ϕ ∧ [[[[[ π ]]]]]ψ)

5. [[[[[ π ∪ ρ ]]]]]ϕ ↔ [[[[[ π ]]]]]ϕ ∧ [[[[[ ρ ]]]]]ϕ

6. [[[[[ π; ρ ]]]]]ϕ ↔ [[[[[ π ]]]]] [[[[[ ρ ]]]]]ϕ

7. ϕ ∧ [[[[[ π ]]]]] [[[[[ π⋆ ]]]]]ϕ ↔ [[[[[ π⋆ ]]]]]ϕ

8. ϕ ∧ [[[[[ π⋆ ]]]]] (ϕ → [[[[[ π ]]]]]ϕ) → [[[[[ π⋆ ]]]]]ϕ

Deduction rules:

ϕ ϕ → ψ
(M.P.)

ψ

ϕ
(Nec.)

[[[[[ π ]]]]]ϕ

Observe that it follows from Lemma 8, that all formulae ϕ′ are mono-
tonic.

We would like to prove a result of the form:

For all (test-free) formulae ϕ: ϕ is classically valid iff ϕ′ is in-
tuitionistically valid.
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Unfortunately, we were not able to achieve this result. Nevertheless the
following lemma is a good exercise of the use of monotonicity.

Lemma 12. ϕ′ ↔ ¬¬ϕ′ is intuitionistically valid for arbitrary formulae ϕ.

Proof. By induction on the number of outermost signs ∧, ∨, →, [[[[[ ]]]]] and
〈〈〈〈〈〈 〉〉〉〉〉〉 .

1. Let a be an atomic propositional: ¬¬a ↔ ¬¬¬¬a is intuitionistically
valid, since ¬ϕ ↔ ¬¬¬ϕ is.

2. (ϕ ∧ ψ)′ = ϕ′ ∧ ψ′. By I.H. we have ϕ′ ↔ ¬¬ϕ′ and ψ′ ↔ ¬¬ψ′

The direction (ϕ → ψ)′ → ¬¬(ϕ′ → ψ′) is trivial.
For the other direction: since all ϕ′ and ψ′ are monotonic we have after
easy intuitionistic derivations and applying I.H. ¬¬(ϕ∧ψ)′ → ¬¬ϕ′ →
ϕ′ and ¬¬(ϕ∧ψ)′ → ¬¬ψ′ → ψ′, hence we have ¬¬(ϕ∧ψ)′ → (ϕ∧ψ)′

3. (ϕ ∨ ψ)′ = ¬(¬ϕ′ ∧ ¬ψ′). We do not need the I.H. since ¬¬¬(¬ϕ′ ∧
¬ψ′) ↔ ¬(¬ϕ′ ∧ ¬ψ′) is intuitionistically valid.

4. We need to show (ϕ′ → ψ′) ↔ ¬¬(ϕ′ → ψ′).
The formula (¬¬(ϕ′ → ψ′) ∧ϕ′) → ¬¬ψ′ is intuitionistically valid. By
I.H. we have ¬¬ψ′ → ψ′, hence ¬¬(ϕ′ → ψ′) → (ϕ′ → ψ′)

5. ([[[[[ π ]]]]]ϕ)′ = ¬¬[[[[[ π′ ]]]]]ϕ′

The direction ¬¬[[[[[ π′ ]]]]]ϕ′ → ¬¬¬¬[[[[[ π′ ]]]]]ϕ′ is trivial.
The other direction follows from the validity of ¬¬¬a → ¬a and sub-
stituting a by the monotonic formula ¬[[[[[ π′ ]]]]]ϕ′ .

6. (〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ)′ = ¬¬¬[[[[[ π′ ]]]]] ¬ϕ′. This case is again immediate from the in-
tuitionistic validity of ¬a ↔ ¬¬¬a and ¬¬[[[[[ π′ ]]]]] ¬ϕ′ being monotonic.

The first two schemata of the Segerberg system translate into intuition-
istically valid formulae.

• Let ϕ a tautologoid. We write ϕ and its subformulae as a tree, with
the leaves being atomic propositions or formulae beginning with [[[[[ ]]]]] or
〈〈〈〈〈〈 〉〉〉〉〉〉 . These two types of leaves we call relative atoms. In ϕ′ the relative
atoms are changed to monotonic formulae. That ϕ′ is intuitionistically
valid can be seen by the usual negative interpretation.

• (〈〈〈〈〈〈 π 〉〉〉〉〉〉ϕ ↔ ¬[[[[[ π ]]]]] ¬ϕ)′ = ¬¬¬[[[[[ π′ ]]]]] ¬ϕ′ ↔ ¬¬¬[[[[[ π′ ]]]]] ¬ϕ′
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Also the rules M.P. and Nec. translate into intuitionistically correct infer-
ences.

Unfortunately, the negative translation of the Segerberg axiom 6 has an
instance which is not intuitionistically valid.

Example 5. We falsify the instance ¬¬[[[[[ p; q ]]]]] ¬¬a ↔ ¬¬[[[[[ p ]]]]] ¬¬[[[[[ q ]]]]] ¬¬a
in the following model

GFED@ABCw4
∅

q //GFED@ABCw5
∅

GFED@ABCw1
∅

p //GFED@ABCw2
∅

q //

�KOO
ONMLHIJKw3

{a}

Notice that in state w1 the left hand side of the formula is satisfied.
The right hand side is less obvious. From w5 /∈ mK(a) and no other world
can be seen via �K from w5 follows that w5 /∈ mK(¬¬a). Thus w4 /∈
mK([[[[[ q ]]]]] ¬¬a) and w4 /∈ mK(¬¬[[[[[ q ]]]]] ¬¬a). Since the formula ¬¬[[[[[ q ]]]]] ¬¬a
is monotonic and w2 �K w4 follows w2 /∈ mK(¬¬[[[[[ q ]]]]] ¬¬a). Thus w1 /∈
mK([[[[[ p ]]]]] ¬¬[[[[[ q ]]]]] ¬¬a) and w1 /∈ mK(¬¬[[[[[ p ]]]]] ¬¬[[[[[ q ]]]]] ¬¬a). This falsifies the
given instance.

We leave the translations of the axioms 3, 4, 5, 7 and 8 as an exercise to
the reader for analogous treatment.

Remark 2. Surprisingly, all Segerberg axioms 4 to 8 are intuitionistically
valid.
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