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EXTERNALLY COMPATIBLE ABELIAN

GROUPS OF THE TYPE (2, 1, 0)

Abstract. In [4] the lattice of all subvarieties of the variety Gn

Ex defined by
so called externally compatible identities of Abelian groups together with
the identity xn ≈ yn, for any n ∈ N and n ≥ 1 was described. In that
paper classes of models of the type (2, 1) where considered. It appears that
diagrams of lattices of subvariaties defined by externally compatible iden-
tities satisfied in a given equational theory depend on the language of the
considered class of algebras.

A question was asked to what extent the diagram of the lattice of sub-
varieties of the variety defined by externally compatible identities of a given
variety will depend on changing the type of algebras. In general case, the
answer to this question seems to be very complicated. In this paper we de-
scribe the variety of Abelian groups of exponent p · q, where p, q are different
primes of type (2, 1, 0).
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1. Preliminaries

We consider a given type of algebras τ : F → N , where F is a set of funda-
mental operation symbols and N is a set of non-negative integers. Let P be
a partition of F. An identity ϕ ≈ ψ is called P -compatible (see [9]) iff it is of
the form x ≈ x or of the form f(ϕ0, . . . , ϕτ(f)−1) ≈ g(ψ0, . . . , ψτ(g)−1), where
f and g belong to the same block [f ]P of P and ϕ0, . . . , ϕτ(f)−1, ψ0, . . . ,

Received November 31, 2006
© 2007 by Nicolaus Copernicus University ISSN: 1425-3305

http://dx.doi.org/10.12775/LLP.2006.014


240 Krystyna Mruczek-Nasieniewska

ψτ(g)−1 are terms of type τ . An identity ϕ ≈ ψ is externally compatible
(see [2]) iff it is P -compatible, where P contains singletons only. An identity
ϕ ≈ ψ is normal (see [8] and [5]) iff it is of the form x ≈ x or neither ϕ nor
ψ is a variable.

We denote the set of all P -compatible identities of type τ by P (τ) and
the set of all identities of type τ by Id(τ). We will also denote by Ex(τ) the
set of all externally compatible identities of type τ and by N(τ) the set of
all normal identities of type τ . If V is a variety then P (V ) denotes the set
of all P -compatible identities of type τ which are satisfied in V . We have
P (V ) = P (τ) ∩ Id(V ), where Id(V ) denotes the set of all identities satisfied
in V .

Obviously, Ex(V ) ⊆ P (V ) ⊆ N(V ) ⊆ Id(V ) for any partition P .

If Σ is a set of the identities of type τ then Cn(Σ) denotes the deductive
closure of Σ, i.e. Cn(Σ) is closed under the rules of the interference ([1] and
[10]). If Σ = Cn(Σ) then Σ is called equational theory. It is easy to see that
P (τ) and P (V ) are equational theories.

By Mod(Σ) we denote the class of all models of Σ, that is the class of
all algebras of type τ satisfying the identities from Σ. So, if Σ = P (V ) then
Mod(Σ) = VP . A variety V such that Id(V ) = P (V ) is called P -compatible.
Let L(V ) be the lattice of all subvarieties of V .

Let Σ be an equational theory. It is well known that the lattice L(Σ)
of all equational theories extending Σ is dually isomorphic to the lattice
L(Mod(Σ)) of all subvarieties of the variety Mod(Σ) determined by the the-
ory Σ.

2. The variety G
p·q

Ex
of type τ0

Let us fix the type τ0, where τ0 : {·,−1 } → N , τ0(·) = 2, τ0(−1) = 1. Let
x0 and xn denote x · x−1 and xn−1 · x, respectively i.e. let x0 = x · x−1,
xn = xn−1 · x for n ∈ N .
Of course, in the case of the set {·,−1 } we have only two partitions: Ex =
{{·}, {−1}}, N = {{·,−1 }}.

Let Gn denotes the variety of all Abelian groups of type τ0 satisfying
identity xn ≈ y0, where n ∈ N and let Gn

Ex
denotes the variety defined by all

externally compatible identities of Abelian groups of exponent n of type τ0.
An identity (x · y)−1 ≈ x−1 · y−1 belongs to Id(Gn), but it is not externally
compatible. It means that the variety Gn

Ex
is larger then Gn and it may be

interesting to characterise the lattice of all subvarieties of Gn
Ex

.
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We will use the following notations:

P{k1,...,ks}
n = Mod(Ex(Gn) ∪

s⋃

i=1

{x0 · xki ≈ ((xki)−1)−1}),

where ki ∈ {0, 1, . . . , n − 1} for i = 1, . . . , s, and

Cn = Mod(Ex(Gn) ∪ {x0 ≈ ((x0)−1)−1}).

Let Kn be the set of all natural divisors of n. In [4] it was proved the
following theorem:

Theorem 2.1. Let n be a natural number such that n > 0. If V is a

subvariety of Gn
Ex

of type τ0 then V is one of the following classes: Gr, Gr
N ,

P
{k1,...,ks}
r , Cr, Gr

Ex
, where r ∈ Kn and k1, . . . , ks ∈ Kr.

Using the above theorem we obtain the next corollary:

Corollary 2.1. If V is a subvariety of the variety Gp·q
Ex

, where p, q are prime

numbers, then V is a one of the following classes: Gr, Gr
N , P

{k1,...,ks}
r , Cr,

Gr
Ex

, where r ∈ {1, p, q, p · q} and k1, . . . , ks ∈ Kr.

3. The variety G
p·q

Ex
of type τ1

Let us fix the type τ1 : {·,−1 , e} −→ N ,where τ1(·) = 2, τ1(−1) = 1, τ1(e) = 0.
The variety of Abelian groups of type τ1 is denoted by G and the variety

of Abelian groups of type τ1 satisfying identity xn ≈ x · x−1, for n ∈ N is
denoted by Gn.

In the current section we will describe the lattice of all subvarieties of
the variety Gn

Ex
defined by externally compatible identities Abelian groups

of exponent n of type τ1 in the case n = p · q, where p, q are prime numbers.
In [7] it was proved that:

Theorem 3.1. The following identities of the type τ1:

(3.1) (x · y) · z ≈ x · (y · z),

(3.2) x · y ≈ y · x,

(3.3) x · y · e ≈ x · y,

(3.4) (x · e)−1 ≈ x−1,
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(3.5) x · x−1 ≈ e · e

form an equational base of the class determined by all externally compatible

identities of Abelian groups.

From that we deduce that the identities (3.1)–(3.5) together with the
identity xn ≈ x · x−1 form an equational base of the variety Gn

Ex
.

It is known that to find all subvarieties of the variety Gn
Ex

, all of the classes
Mod(Cn(Ex(Gn)∪E)), where E ⊆ Id(τ1), must be taken into consideration.

In the next lemma we will give the canonical form of terms from the class
Gn

Ex
. This lemma below is obvious so we skip its proof.

Lemma 3.1. Every term φ of type τ1 on variables x1, . . . , xs is equivalent

in Gn
Ex

to a term φ∗ being one of the following form: e, x0
1 · xk1

1 · ... · xks

s ,

((xk1
1 · ... · xks

s )−1)−1, xi, where i ∈ {1, . . . , s}, k1, . . . ks ∈ {0, 1, . . . , n − 1}.

It follows that any identity of the type τ1 is equivalent, on the basis of
the theory Ex(Gn), to one of the following identities:

(3.6) xj ≈ xi,

(3.7) e ≈ x0
1 · xk1

1 · ... · xks

s ,

(3.8) e ≈ ((xk1
1 · ... · xks

s )−1)−1,

(3.9) x0
1 · xk1

1 · ... · xks

s ≈ xj ,

(3.10) ((x0
1 · xk1

1 · ... · xks

s )−1)−1 ≈ xj ,

(3.11) x0
1 · xk1

1 · ... · xks

s ≈ x0
1 · xl1

1 · ... · xls
s ,

(3.12) ((x0
1 · xk1

1 · ... · xks

s )−1)−1 ≈ ((x0
1 · xl1

1 · ... · xls
s )−1)−1,

(3.13) x0
1 · xl1

1 · ... · xls
s ≈ ((x0

1 · xk1
1 · ... · xks

s )−1)−1,

where j, i ∈ {1, ..., s}, k1 , ..., ks, l1, ..., ls ∈ {0, 1, . . . , n− 1}.
For k1, . . . , ks ∈ N , where k2

1 +. . .+k2
s > 0, let (k1, . . . , ks) be the greatest

common divisor of k1, . . . , ks.

Theorem 3.2. For any identity φ ≈ ϕ of the type τ1, there is a finite set E1 of

identities of one variable such that Cn(Ex(G)∪{φ ≈ ϕ}) = Cn(Ex(G)∪E1).
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Proof. Let us consider the following identities of the type τ0:

(3.14) x ≈ x0 · xk,

(3.15) x ≈ ((xk)−1)−1,

(3.16) ((xk)−1)−1 ≈ ((xl)−1)−1,

(3.17) x0 · xk ≈ x0 · xl,

(3.18) x0 · xk ≈ ((xl)−1)−1,

where k, l ∈ {0, 1, . . . , n − 1}
In [3] it was shown that for any finite subset E of the set Id(τ0) there is

a set E1 of identities of the form (3.14)–(3.18), such that Cn(Ex(Gn) ∪E) =
Cn(Ex(Gn) ∪ E1).

It follows that if to the set E belong only identities (3.6), (3.9)–(3.13),
there is a set E1 of identities of one variable such that Cn(Ex(Gn) ∪ E) =
Cn(Ex(Gn) ∪ E1). Thus, we have to consider the following theories:
Cn(Ex(G) ∪ {(3.7)}) and Cn(Ex(G) ∪ {(3.8)}).

We will show that if k1 = k2 = . . . ks−1 = ks = 0, then Cn(Ex(G) ∪
{(3.7)}) = Cn(Ex(G) ∪ {e ≈ x0

1}) and for k2
1 + k2

2 + ... + k2
s > 0, we have

Cn(Ex(G) ∪ {(3.7)}) = Cn(Ex(G) ∪ {x0
1 · xd

1 ≈ e}), where d = (k1, ..., ks).
Indeed, to prove that Cn(Ex(G) ∪ {(e ≈ x0

1 · x0
1 · · · · · x0

s)}) = Cn(Ex(G) ∪
{e ≈ x0

1}) it is enough to notice that the identity x0
1 ≈ x0

1 · · · · · x0
s belongs

to the set Ex(G). Now, we consider the theory Cn(Ex(G) ∪ {(3.7)}) for
k2

1 + k2
2 + ... + k2

s > 0. By the fact that d = (k1, . . . , ks), we see that there
are integers p1, ..., ps, such that d = k1 · p1 + ...+ ks · ps. By the substitution
in the identity (3.7) of the term x

pi

1 for variable xi for every i = 1, . . . , s, we
conclude x0

1 · xd
1 ≈ e ∈ Cn(Ex(G) ∪ {(3.7)}). For the proof of the reverse

inclusion it is enough to substitute the term x
k1
d

1 · ... · x
ks

d
s for the variable x1

in the identity x0
1 · xd

1 ≈ e. Similarly we prove that if k1 = k2 = ... = ks−1 =
ks = 0, then Cn(Ex(G) ∪ {(3.8)}) = Cn(Ex(G) ∪ {e ≈ (x0

1)−1)−1}), and if
k2

1 +k2
2 + ...+k2

s > 0, then Cn(Ex(G)∪{(3.8)}) = Cn(Ex(G)∪{((xd
1)−1)−1 ≈

e}), for d = (k1, ..., ks).

We introduce the following notation:

(3.19) L(n) = {V ∈ L(Gn
Ex

); Gn ⊆ V )}, for n ∈ N .
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Lemma 3.2. Let k, n ∈ N .

1. (L(n); ⊆) is a sublattice of the lattice L(Gn
Ex

).

2. If k 6= n, then L(k) ∩ L(n) = ∅.

Proof. 1. The proof follows directly from (3.19).
2. Assume for contradiction that k 6= n and L(k) ∩ L(n) 6= ∅. Without

a loss of generality we can assume that k < n. Since L(k) ∩ L(n) 6= ∅, then
there is a variety V1, which belongs to L(k) ∩ L(n). By (3.19) it follows
that V1 ∈ L(Gk

Ex
), Gk ⊆ V1 and V1 ∈ L(Gn

Ex
), Gn ⊆ V1. By the fact that

V1 ∈ L(Gk
Ex

) and by condition Gn ⊆ V1 we have that the class of algebras Gn

belongs to L(Gk
Ex

). Thus, Gn ⊆ Gk
Ex

. But the last statement is equivalent to
the following one Ex(Gk) ⊆ Id(Gn). It is obvious that the identity x0 ≈ x0·xk

belongs to the set Ex(Gk). Therefore x0 ≈ x0 ·xk ∈ Id(Gn). Also the identity
x0 ≈ x0 · xn is fulfilled in the variety Gn, by the well known fact that if a
and b are integers not equal 0, then there is an integer being a solution of
the identity a · x + b · y = (a, b). By the last two identities we have that
x0 ≈ x0 ·x(n,k) ∈ Id(Gn). Since (k, n) < n, therefore x0 ≈ x0 ·x(n,k) 6∈ Id(Gn),
which is a contradiction.

Theorem 3.3. If V is a subvariety of the variety Gn
Ex

, then there is a unique

natural number d ∈ Kn such that V ∈ L(d).

Proof. By the theorem (3.2) we have that every subvariety of the variety
Gn

Ex
is generated by an identity of one variable. So, if V ∈ L(Gn

Ex
), then

there is a subset E of the set of the form (3.14)–(3.18), e ≈ x1, e ≈ x0 · xk

or e ≈ ((xk)−1)−1 such that V = Mod(Ex(Gn) ∪ E). Now we introduce the
following conventions: a number k will be called an exponent of the term
x0 · xk and of the term ((xk)−1)−1, 1 will be treated as the exponent of the
term x, and finally let 0 be an exponent of the term e. To any identity
φ ≈ ϕ ∈ E we assign the absolute value of difference of exponents of φ and
ϕ. Let d be the greatest common divisor of the number n and of all absolute
values of differences of exponents of φ and ϕ, for any φ ≈ ϕ ∈ E. We will
show that V ∈ L(d). One can see that the identity x0 ≈ x0 · xd is fulfilled
in the class of algebras V . Since every externally compatible identity of
Abelian groups is fulfilled in the variety V , thus, we obtain that V ⊆ Gd

Ex
.

To prove that Gd ⊆ V , it is enough to show that every identity of the set E
and every base identity of the equational theory Ex(Gn) belong to the set
Id(Gd). It is obvious that every externally compatible identity of Abelian
groups is fulfilled in the variety Gd. Since d is a divisor of n, so the identity
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x0 ≈ x0 · xn belongs to the set Id(Gd). If φ ≈ ϕ ∈ E, then d divides the
absolute value of difference of exponents of terms φ and ϕ, therefore we have
that φ ≈ ϕ belongs to Id(Gd). We have proved that Gd ⊆ V . From that and
by the fact that V ⊆ Gd

Ex
, by (3.19) it follows that V ∈ L(d). By the choice

of d, we see that d ∈ Kn. Uniqueness of d follows from the lemma (3.2).

Now we will describe sublattices L(n) for any natural number of the form
n = p · q, where p and q are prime.

Since 1, p, q, p · q are the only natural divisors of the number p · q, to
find all subvarieties of the variety Gp·q

Ex
it is enough to describe lattices: L(1),

L(p), L = (p · q).
There are the following partitions of the set {·,−1 , e}:

P0 = {{·}, {−1}, {e}},

P1 = {{·,−1 }, {e}},

P2 = {{·, e}, {−1}},

P3 = {{−1, e}, {·}},

P4 = {{·,−1 , e}}.

The partition P0 we will traditionally denote by Ex, and the partition
P4 by N .

Let us put:

(3.20) Cn = Mod(Cn(Ex(Gn) ∪ {e · e ≈ e−1})),

(3.21) Cn
N = Mod(Cn(Ex(Gn) ∪ {e ≈ e · e, e ≈ e−1})).

In [6] was prove the following theorem:

Theorem 3.4. The lattice of subvarieties of the variety Gn
Ex

, where n is

prime, looks like the diagram in Figure 1.

From this follows:

Corollary 3.1. The lattice L(1) looks like the diagram in Figure 2.

Corollary 3.2. If n is prime number then the lattice L(n) looks like the

diagram in Figure 3.

Let us put:

(3.22) P
{k1,...,ks}
p·q = Mod(Cn(Ex(Gp·q) ∪

⋃s
i=1{x0 · xki ≈ ((xki)−1)−1})),
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Figure 1. The lattice L(Gn

Ex), where n is a prime number
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Figure 2. The lattice L(1)
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Figure 3. The lattice L(n), where n is prime

(3.23) P
{k1,...,ks}
p·q,N = Mod(Cn(Ex(Gp·q) ∪ {e ≈ e · e, e ≈ e−1} ∪

⋃s
i=1{x0 ·

xki ≈ ((xki)−1)−1})),

where k1, . . . , ks ∈ {0, 1, . . . , p · q}.
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We have the following lemma:

Lemma 3.3. For any no-empty set {k1, . . . , ks} ⊆ {0, 1, . . . , p · q} there is

a set {l1, . . . , ls} ⊆ Kp·q, such that P
{k1,...,ks}
p·q = P

{l1,...,ls}
p·q and P

{k1,...,ks}
p·q,N =

P
{l1,...,ls}
p·q,N .

Proof. It is enough to take (p · q, ki) as li ∈ {l1, . . . , ls}.

From now on the classes (3.22) and (3.22) we will be indexed with subsets
of the set Kp·q.

Lemma 3.4. If 1 ∈ {k1, . . . , ks}, then P
{k1,...,ks}
p·q = Gp·q

P1
.

Proof. In [7] it was proved that the identities: (3.1), (3.2), (3.3), (3.5) and

(3.24) x−1 · e ≈ x−1

form an equational base of the variety defined by all P1-compatible identities

of Abelian groups. To show that P
{k1,...,ks}
p·q ⊆ Gp·q

P1
, it is enough to observe

that the identity (3.24) belongs to the set Cn(Ex(Gp·q) ∪
⋃s

i=1{x0 · xki ≈
((xki)−1)−1}). By substitution of the term (x−1)−1 in (3.24) for variable x
and by the fact that identities x−1 ≈ (x−1)−1)−1 and e·x−1 ≈ x0 ·x−1 belong

to the set Ex(Gp·q) we get that P
{k1,...,ks}
p·q ⊆ Gp·q

P1
. The reverse inclusion is

obvious.

One can see that the following lemma is easy to prove:

Lemma 3.5. If k1 = · · · = ks = p · q, then P
{k1,...,ks}
p·q = Cp·q.

Theorem 3.5. The lattice L(p · q) has the following diagram:
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P
{p}
p·q,N

P
{q}
p·q,N

P
{p,q}
p·q,N

Gp·q
N

C
p·q
N

P
{p}
p·q

P
{q}
p·q

P
{p,q}
p·q

Cp·q

Gp·q

Gp·q
P2

Gp·q
Ex

Gp·q
P3

Gp·q
P1

Figure 4. The Lattice L(p · q).

Proof. By the definition of varieties from the above theorem it follows
that every such variety belongs to L(p · q). Similarly as in the theorem
(3.4), we prove the correctness of mutual placement of varieties: Gp·q, Gp·q

N ,

Gp·q
P1

, Gp·q
P2

, Gp·q
P3

, Gp·q
Ex

, Cp·q, Cp·q
N . From the definition of each of classes P

{p}
p·q ,

P
{q}
p·q , P

{p,q}
p·q , P

{p}
p·q,N , P

{q}
p·q,N , P

{p,q}
p·q,N it follows that P

{p,q}
p·q ⊆ P

{p}
p·q ⊆ Cp·q and

P
{p,q}
p·q,N ⊆ P

{p}
p·q,N ⊆ C

p·q
N . We will prove that indicated classes are the only

elements of L(p · q). By theorems (3.2) and (3.3) it follows that to describe
the lattice L(p · q) one have to consider all classes of models defined by
theories Cn(Ex(Gp·q) ∪E), where E is a subset of the set of identities of the
form:

(3.25) e ≈ x0 · x0,

(3.26) e ≈ ((x0)−1)−1,

(3.27) x0 · xk ≈ ((xk)−1)−1,

(3.28) x ≈ x0 · x,
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(3.29) x ≈ (x−1)−1),

where k ∈ {0, 1, . . . , p · q− 1}. If to E belongs an identity of the form: (3.28)
or (3.29), then Cn(Ex(Gp·q) ∪ E) = Id(Gp·q).

From lemmas (3.3), (3.4) and (3.5) it follows that essential ones are only
those subsets of the set of identities (3.25)–(3.29), to which belong only iden-
tities of the form: (3.25), (3.26), x0 ·xp ≈ ((xp)−1)−1 or x0 ·xq ≈ ((xq)−1)−1.
However, it appears that while considering all non-empty subsets of the
set whose elements are identities (3.25), (3.26), x0 · xp ≈ ((xp)−1)−1 or
x0 ·xq ≈ ((xq)−1)−1 we obtain the class of models being one of the following

varieties: Cp·q, Cp·q
N , P

{p}
p·q , P

{q}
p·q , P

{p,q}
p·q , P

{p}
p·q,N , P

{q}
p·q,N , P

{p,q}
p·q,N .

By constructing the appropriate one-element free algebras in each of
classes of the lattice L(p · q) one can show that these classes are mutually
different.

References

[1] G. Birkhoff, On the structure of abstract algebras, Proceedings of the Cam-
bridge Philosophical Society 31 (1935), 433–454.

[2] W. Chromik, “On externally compatible identities of algebras”, Demonstratio

Mathematica 23(2) (1990), 345–355.

[3] K. Gajewska-Kurdziel and K. Mruczek, “On some sets of identities satisfied in
Abelian groups”, Demonstratio Mathematica 35(3) (2002), 447–453.

[4] K. Gajewska-Kurdziel and K. Mruczek-Nasieniewska, “The lattice of subva-
rieties of the variety defined by externally compatible identities of Abelian
groups of exponent n”, Studia Logica. To appear.

[5] I. J. Mel’nik, “Nilpotent shifts of varieties, (in Russian)”, Mat. Zametki, 14(5)
(1973). English translation: Math. Notes 14 (1973), 962–966.

[6] K. Mruczek, “On some lattice of varieties related to changes of the type”,
in: K. Denecke K. and H.-J. Vogel (eds.), General Algebra and Applications,
Proceedings of the 59th Workshop on General Algebra, Shaker Verlag, Aachen
2000, pp. 147–153.

[7] K. Mruczek-Nasieniewska, “P -compatible Abelian Groups”, Logic and Logical

Philosophy 14(2) (2005), 253–263.

[8] J. Płonka, “On the subdirect product of some equational classes of algebras”,
Math. Nachr. 63 (1974), 303–305.

[9] J. Płonka, “P -compatible identities and their applications to classical alge-
bras”, Math. Slovaca 40(1) (1990), 21–30.



250 Krystyna Mruczek-Nasieniewska

[10] A. Tarski, “Equational logic and equational theories of algebras”, in:
H. A. Schmidt, K. Schütte, and H. J. Thiele (eds.), Contributions to Mathe-

matical Logic, North Holland Publ. Co., Amsterdam 1968, pp. 275–288.

Krystyna Mruczek-Nasieniewska

Department of Logic,
Nicolaus Copernicus University,
ul. Asnyka 2,
87–100 Toruń, Poland
mruczek@uni.torun.pl


	
	
	

