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ANALOGY AND DIAGONAL ARGUMENT

Abstract. In this paper, I try to accomplish two goals. The first is to
provide a general characterization of a method of proofs called — in mathe-
matics — the diagonal argument. The second is to establish that analogical
thinking plays an important role also in mathematical creativity. Namely,
mathematical research make use of analogies regarding general strategies of
proof. Some of mathematicians, for example George Polya, argued that de-
ductions is impotent without analogy. What I want to show is that there
exists a direct line leading from Cantor’s diagonal argument to constructions
that underlies of the proofs of several important theorems of the mathemat-
ical logic (in particular, Church’s theorem concerning the undecidability of
formal arithmetic, Gödel’s theorem concerning the incopleteness of formal
arithmetic, Tarski’s theorem concerning truth, and Turing’s theorem con-
cerning the Halting Problem), and that the line could be described as an
analogical mapping. In other words, Cantor’s diagonal argument and the
proofs of the limitative theorems are structurally the same. Hence they can
be represented as instances (or special cases) of the same general scheme.

Keywords: analogy, diagonal argument, antinomy, limitative theorems, prov-
ability, refutability, undecidability, truth.

1. Cantor’s diagonal argument

Although the diagonal procedure was invented by Paul Du Bois-Reymond
(1831–1889), it found its mature expression in works of George Cantor (1845–
1918) devoted to the mathematical theory of infinity. One of the starting
points in Cantor’s development of the theory was his discovery that there
are different degrees (or kinds) of infinity. Namely, Cantor demonstrated
two theorems: first, that the real-number continuum is a larger infinity than

Received November 21, 2005

http://dx.doi.org/10.12775/LLP.2006.003


40 Zbigniew Tworak

the natural numbers (i.e. is not countably infinite), and second, that every
set has more subsets than elements. The proofs of the results are based on
the diagonal argument.

The diagonal argument is the name given to class of arguments, in which
so called the diagonal method or the diagonalization is applied. The essence
of the diagonal method is as follows. Given an infinite list of objects of
certain kind (numbers, sets, functions etc.) we have a construction which
defines a new object of this kind, by systematically destroying the possibility
of its identity with each object of the list. We do this by making sure that it
is different in at least one place, “along the diagonal”. The new object may
be said to “diagonalise out” of the list.

It should be noted that the diagonal method may and has been applied
both in direct and indirect aguments. An indirect diagonal argument is used
to prove a certain proposition by showing that assumption of its negation
leads to contradiction. Hence it consists of two steps. The first step is a con-

tradictory assumption. The second step is to employ the diagonal method to
generate a contradiction. This contradiction shows that our (contradictory)
assumption must be false. However, a direct diagonal argument is used to
prove the existence of certain objects.

Diagonalization not only plays a crucial role both in the proofs of some
important theorems, but also give rise to set-theoretical and semantical anti-
nomies. In consequence, the diagonal arguments are sometimes divided onto
two classes: (1) leading to proofs of theorems — so called the good diago-
nal arguments, and (2) leading to antinomies — so called the bad diagonal
arguments (for example, Gumański 1990, pp. 265–270).

1.1. The first diagonal argument

A set is a collection of objects. We say that two sets, A and B, are the same

cardinal size (A =c B) iff their members can be paired off one for one. In
other words, A =c B iff there is a bijection between A and B. Next, a set
A is at least as big as B (A ≥c B) iff there is a subset of A which has the
same size as B; a set A has a greater cardinality than B (A >c B) iff there is
a proper subset of A which has the same size as B. Cleary, there are finite
sets of increasing size. Also, cleary, the set N of natural numbers is larger
than any finite set. A set is called denumerable (or countably infinite) if it is
the same size as N. In 1891, Cantor showed that there are non-denumerable
sets, for example the set of all real numbers of the interval [0, 1] (the first
diagonal argument). It follows that the set is bigger than N.
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Let m and w be two different elements, for example m = 0 and w = 1.
Let M be a set whose elements E are infinite sequences 〈a1, a2, . . . , ak, . . . 〉,
where each of a1, a2, . . . , ak, . . . is either m or w. Cantor showed that the
set M is non-denumerable, i.e.

Theorem 1. No denumerable sequence of elements of the set M contain all

elements of this set.

Proof. Let S = 〈E1, E2, . . . , Ej , . . . 〉 be any denumerable infinite sequence
of members of the set M . That is S is sequence of sequences. The table
below is an illustration of this:

1 2 3 . . .

E1 a11 a12 a13 . . .
E2 a21 a22 a23 . . .
E3 a31 a32 a33 . . .
...

...
...

...

Each ajk is either m or w.
The proof proceeded in two steps. Step 1 is to suppose (for reductio ad

absurdum) that the sequence S is a complete enumeration of all the members
of M . Step 2 is to employ the diagonal method to generate a sequence that
belongs to M but does not appear on the list S.

To this end we take into consideration the diagonal sequence 〈a11, a22,
. . . , akk, . . . 〉 and generate a new sequence E0 = 〈b1, b2, . . . , bk, . . . 〉, the anti-
diagonal sequence, as follows: if akk = m then bk = w, and if akk = w then
bk = m. The two tables below picturing this procedure:

The table 1 2 3 . . .

E1 m a12 a13 . . .
E2 a21 w a23 . . .
E3 a31 a32 m . . .
...

...
...

...

convers 1 2 3 . . .

E1 w a12 a13 . . .
E2 a21 m a23 . . .
E3 a31 a32 w . . .
...

...
...

...

(The table above show why this method is called the diagonal method: we have
constructed a new sequence by chainging each element on the diagonal.)

The sequence E0 has follows properties: (a) it belongs to M (because its each
element is either m or w), (b) for a natural number k, E0 6= Ek (E0 differs from E1

in the first digit, from E2 in the second digit, and so on), i.e. E0 does not appear on
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the list S. Thus the suposition that S is complete enumeration of all the members
of M is false. In consequence, the set M is non-denumerable1.

1.2. The second diagonal argument

The next problem is whether there exist a set of largest size. In a general-
ization of his earlier proof, Cantor showed that there is not. For any set,
there is bigger set. This is now called Cantor’s Theorem. Exactly,

Cantor’s Theorem. The set P(A) of all subsets of A has a greater cardi-
nality than A.

Equivalently, this theorem asserts that the set of all functions from A to
{0, 1} has a greater cardinality than A itself. However, Cantor only proved
a special case of this theorem (the second diagonal argument) — where A
is the set of real numbers of interval [0, 1] — but he noted than the proof
is quite general. This argument is given in the following famous passage
(L = [0, 1] and M = {0, 1}[0,1]) :

M does not however have the same power [cardinal size] as L. For
otherwise M could be put into unique one-one correspondence
to the variables z [of L], and thus M could be thought of in the
form of a single-valued function

ϕ(x, z)

of the dwo variables x and z, in such a way that through ev-
ery specification of z one obtains an element f(x) = ϕ(x, z) of
M and conversely every element f(x) of M could be obtained
from ϕ(x, z) by specifying a certain z. This however leads to a
contradiction. For if we understand by g(x) that single-valued
function of x which takes only values 0 or 1 and which for every
value of x is different from ϕ(x, x), then on the one hand g(x) is
an element of M , and on the other it cannot be obtained from
ϕ(x, z) by any specification z = z0, because ϕ(z0, z0) is different
from g(z0). (Hallett 1984, p. 77)

1Notice that this proof may be easily converted into proof of nondenumerability of the
set of real numbers. If we let m = 0 and w = 1, then each Ek is the binary expansion of
a real number.
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Since there is not any one-to-one corespondence between M and L, and
since M cannot be smaller than L, the only possible conclusion is that M
must be larger than L.

Remark. Observe that the characterization of g is impredicative: g(x) is
characterized in term of ϕ(x, z), whose definition refers to M of which g is
en element. Use of the impredicative method shows some non-constructive
aspect Cantor’s paradise and his mathematical theory. ⊣

Proof of Cantor’s Theorem. Observe that P(A) ≥c A, for any set A,
because we can pair off every member x of A one for one with the set {x}
in P(A). More complicated thing is to show that it is not the case that
A =c P(A).

Step 1 is to suppose (for reductio ad absurdum) that A =c P(A), i.e.
there exist a bijection b between A and P(A).

We can think of the members of A as being (well-) ordered, thus we can
arrange a list S2:

S = 〈x0, x1, x2, . . . , xi, . . . 〉.

Since b exists, so the corresponding sequence

Sb = 〈b(x0), b(x1), b(x2), . . . , b(xi), . . . 〉

runs through all members of P(A). The 0’s and 1’s in the body of the table
below tell us whether the sets in the top row are members of the sets in the
side column (we write “1” for “xi ∈ b(xi)”, and “0” for “xi 6∈ b(xi)”):

x0 x1 x2 . . .

b(x0) 1 0 1 . . .
b(x1) 0 0 1 . . .
b(x2) 1 1 0 . . .

...
...

...
...

According to the first row, x0 and x2 are members of the set b(x0), however
x1 is not. As a result, we can read any sequence of 0’s and 1’s as a code
for a particular set b(i)(= zi). The diagonal is composed of cells, given by
coordinates 〈x0, b(x0)〉, 〈x1, b(x1)〉, 〈x2, b(x2)〉, . . . — from top left to bottom
right (other configurations of cells are possible). It determine the set zd =
{x ∈ A : x ∈ b(x)}.

2S may be transfinite list and have no last member, but this is no importance.
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In the next step we show that b cannot be onto (so P(A) must have more
elements than A).

Step 2 is to employ the diagonal method to generate a new set zp, the
anti-diagonal set, as follows:

zp = {x ∈ A : x 6∈ b(x)}.

Cleary, zp is a subset of A, and so zp is a member of P(A). Since b is onto,
so there is an element y ∈ A such that zp = b(y). Consider the question
whether y ∈ zp:

y ∈ zp iff y ∈ {x ∈ A : x 6∈ b(x)}
iff y 6∈ b(y) (since y ∈ A)
iff y 6∈ zp.

This is a contradiction. Thus, by reductio, b cannot be onto, and ultimately
P(A) >c A.

Observe that the set zp is formed in following way: 0’s occupying cells
of the diagonal we change into 1’s and vice versa — 1’s we change into 0’s.
It is easy to check that for every xi ∈ A, zp 6= b(xi). For the illustration:
x0 ∈ b(x0), so x0 6∈ zp, and x1 6∈ b(x1), so x1 ∈ zp. This ensures that zp

is different from b(x0), and from b(x1). And so on. Therefore zp does not
appear on the list S.

Remark. Every set A ⊆ U can be represented by characteristic function

ChA : U −→ {0, 1} such that for any x ∈ U :

ChA(x) =

{

1, if x ∈ A,
0, if x 6∈ A.

Sets and their characteristic functions are inter-definable, i.e. if we have a
set, then we have a characteristic function and if we have a characteristic
function, then we can single out the set of elements where its value is 1.
Thus we can transform the proof above as follows. Let cx = Chb(x) be a
function such that

cx(x) =

{

1, if y ∈ b(x),
0, if y 6∈ b(x).

Now we define a new characteristic function cp, the anti-diagonal function,
as follows:

cp(x) = 1 − cx(x).
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cp is the characteristic function of some subset w of A. Since cp is different
from each cx (because cp(x) = 1 − cx(x) 6= cx(x)), so w is different from
each b(x). Of course, w ∈ P(A). Thus b cannot be onto and P(A) >c A.
Moreover

w = {x ∈ A : cp(x) = 1} = {x ∈ A : cx(x) = 0} = {x ∈ A : x 6∈ b(x)} = zp.⊣

2. General characterization of the diagonal method

There is analogy between Cantor’s diagonal proof that a set has a smaller
cardinality than its power set and proofs some classical metamathematical
theorems. In other words, they share the same general scheme by which a
contradiction results from an enlargement of a set by constructed-from-the-

outside entities.

2.1. The structure of diagonal arguments

As we saw in the previous, all Cantor’s diagonal arguments have a common
underlying structure, that produces a contradiction. The structure we can
describe as follows3. Let X, Y, Z be non-empty sets and let τ, β, δ, α be
relations having the following properties:

• τ ⊆ X × Y × Z and

(i) ∀x ∈ X∀y ∈ Y ∃z ∈ Zτ(x, y, z).

(ii) ∀x ∈ X∀y ∈ Y ∀z1, z2 ∈ Z[τ(x, y, z1) ∧ τ(x, y, z2) → z1 = z2],

(iii) ∀z ∈ Z∃x ∈ X∃y ∈ Y τ(x, y, z).

This is, τ is surjective (or: is a function from X × Y onto Z)4.

• β ⊆ X × Y and

(iv) ∀x ∈ X∃y ∈ Y β(x, y),

(v) ∀x ∈ X∀y1, y2 ∈ Y [β(x, y1) ∧ β(x, y2) → y1 = y2],

(vi) ∀x1, x2 ∈ X∀y ∈ Y [β(x1, y) ∧ β(x2, y) → x1 = x2],

(vii) ∀y ∈ Y ∃x ∈ Xβ(x, y).

This is, β is a bijection (or: is one-to-one and onto) between X and Y .

3 Simmons (1990) gives a construction very similar to this approach.
4If f is an n-place function we usually write f(x1, . . . , xn) = y for f(x1, . . . , xn, y).
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• δ ⊆ X × Y × Z and

(viii) ∀x ∈ X∀y ∈ Y ∀z ∈ Z[δ(x, y, z) ≡ β(x, y) ∧ τ(x, y, z)].

This is, δ ⊂ τ .

• α ⊆ X × Y × Z and

(ix) ∀x ∈ X∀y ∈ Y ∃z ∈ Zα(x, y, z),

(x) ∀x ∈ X∀y ∈ Y ∀z1, z2 ∈ Z[α(x, y, z1) ∧ α(x, y, z2) → z1 = z2],

(xi) ∀x ∈ X∀y ∈ Y [∃z ∈ Zα(x, y, z) ≡ β(x, y)],

(xii) ∀x ∈ X∀y ∈ Y ∀z ∈ Z[α(x, y, z) → ¬τ(x, y, z)].

This is, α is a function such that for even x ∈ X, α(x, β(x)) 6= τ(x, β(x)).
Any function δ that satisfies postulate (viii) will be called a diagonaliser

(with respect to τ). Then α to “diagonalise out” of τ .

Remark. The mapping α is unambiguously given by the set
{zxiyk

}〈xiyk〉∈X×Y . We say that α is an array on X and Y (two-dimensional
array) because it can be illustrated by











zx1y1
zx1y2

. . . zx1yi
. . .

. . . . . . . . . . . . . . .
zxiy1

zxiy2
. . . zxiyi

. . .
. . . . . . . . . . . . . . .











The pairs 〈xi, yk〉 ∈ X × Y are called coordinates. The sequence of members
of the set Z that

• are given by coordinates 〈xi, y1〉, 〈xi, y2〉, . . . , 〈xi, yk〉, . . . is called i-th row;

• are given by coordinates 〈x1, yi〉, 〈x2, yi〉,. . . , 〈xk, yi〉, . . . is called i-th
column;

• are given by coordinates 〈x1, y1〉, 〈x2, y2〉, . . . , 〈xi, yi〉, . . . is called the

diagonal. ⊣

Led τ be an array on X and Y , where X and Y are fixed sets, and ϕ = δ
or α. We say that ϕ occurs as a row of τ iff

∃w ∈ X∀x ∈ X∀y ∈ Y ∀z ∈ Z[ϕ(x, y, z) → τ(w, y, z)].

The next theorem states that τ is open (or τ is not closed).
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The Diagonalization Lemma. Let τ, β, δ and α be relations defined by
postulates (i)–(xii) (see above). Then α does not occur as a row of τ , i.e.

¬∃w ∈ X∀x ∈ X∀y ∈ Y ∀z ∈ Z[α(x, y, z) → τ(w, y, z)].

Proof (Simmons 1990). We suppose for reductio ad absurdum that α oc-
curs as a row of τ , i.e.

(1) ∃w ∈ X∀x ∈ X∀y ∈ Y ∀z ∈ Z[α(x, y, z) → τ(w, y, z)].

Taking a as an instantiation value for the initial existential quantifier in (1)
we have:

(2) ∀x ∈ X∀y ∈ Y ∀z ∈ Z[α(x, y, z) → τ(a, y, z)],

and taking a, b and c as instatiation values for the universal quantifiers, i.e.,
taking a for x, b for y and c for z, we have

(3) α(a, b, c) → τ(a, b, c).

From postulate (xii), instantiating the universal quantifiers with a, b and
c, i.e., by taking a for x, b for y and c for z, we have:

(4) α(a, b, c) → ¬τ(a, b, c),

which together with (3), by standard laws, yields

(5) α(a, b, c) → [τ(a, b, c) ∧ ¬τ(a, b, c)].

From postulate (xi), instantiating the universal quantifiers with a and b, i.e.,
by taking a for x and b for y, we have:

(6) ∃z ∈ Zα(a, b, z) ≡ β(a, b).

Next, from postulate (vii), instantiating the universal quantifiers with b, i.e.,
by taking b for y, we have:

(7) ∃x ∈ Xβ(x, b),

and instantiating the existential quantifier with a, i.e., by taking a for x, we
have

(8) β(a, b).
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From (6) and (8) by equivalence elimination we get

(9) ∃z ∈ Zα(a, b, z).

Taking c as an istantiation value for the existential quantifier in (9), we have:

(10) α(a, b, c).

Finally, from (5) and (10) by modus ponens we get

(11) τ(a, b, c) ∧ ¬τ(a, b, c).

which is a contradiction. Thus, the hypothesis that α occurs as a row of τ
must be false.

Recall, the diagonal method can be applied both in direct and indi-

rect arguments. In both cases we specify (in set-theoretical terms) an two-
dimensional array τ and a diagonal sequences δ and α. An indirect diagonal
argument proves a proposition that τ is not closed or limited (or more specif-
ically, α does not occur as a row of τ) by showing that the assumption of
its negation leads to a contradiction. This contradiction is achieved by a
proof of Diagonalization Lemma, for the appropriate interpretation. Next,
the direct diagonal argument proves that τ is not closed by showing that
there exists a certain object which does not belong to X, although it has
the property that puts it in X. Here, the final result is some interpretation
of Diagonalization Lemma.

2.2. . . . and its three simple interpretations

2.2.1. Russell’s interpretation

Consider the Russell’s Antinomy5. Call a set x ordinary if it is not member
of itself, i.e. x 6∈ x. We suppose that there is a set, say R, such that for any
set y, y ∈ R iff y is ordinary. Assume that X and Y are each the proper
class of all sets, and Z = {0, 1}. Then the array α is given by

τ(x, y) =

{

1, if y ∈ x,
0, if y 6∈ x.

5Russell’s Antinomy is a stripped-down version of Cantor’s Antinomy.



Analogy and Diagonal Argument 49

The function β is simply the identity function. The function δ is given by

δ(x, x) =

{

1, if τ(x, x) = 1, i.e. x ∈ x,
0, if τ(x, x) = 0, i.e. x 6∈ x,

and the function α is given by

α(x, x) =

{

1, if τ(x, x) = 0, i.e. x 6∈ x,
0, if τ(x, x) = 1, i.e. x ∈ x.

The supposition that the set R (of all ordinary sets) exists, i.e. R ∈ X
and α occurs as a row of τ , generates — via the proof of Diagonalization
Lemma — a contradiction6. In more detail, from the initial supposition, we
have:

τ(R, x) =

{

1, if τ(x, x) = 0,
0, if τ(x, x) = 1.

A contradiction is cleary manifests once we put x = R in the equation above:

τ(R, R) = 1 iff τ(R, R) = 0.

From this equvalence, we have

R ∈ R iff R 6∈ R.

Assuming that A ≡ ¬A/A ∧ ¬A is a valid scheme of the underlying logic, a
contradiction results. This is just the Russell’s Antinomy.

Since the supposition that the set R exists is arbitrary (i.e. its acceptance
is only a result of our decision), we can make this assumption for reductio

ad absurdum. By Diagonalization Lemma, α does not occur as a row of τ .
Then the diagonal argument is indirect and leads to the conclusion that the
set R of all ordinary sets does not exist.

2.2.2. Grelling’s interpretation

Russell’s Antinomy is about sets (or at least, about our ideas about sets). An
analogous argument gives us theorem stating that the set ordinary formulas
is not definable. Let M = 〈U, D〉 be a interpretation for the language L.
Assume that every formula of L is a member of U and every member of U is

6 In general, the supposition that α occurs as a row of τ is assumed before a paradox
argument.
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named by some closed term of L. With respect to M, the formula A(x) of L
(with just x free) defines the set {tM : t is closed term of L and A(t) is true
in M}. We call a formula ordinary if it does not belong to the set that it
defines (just as in the Russell’s Antinomy we called a set ordinary if it does
not belong to itself). For example, if A(x) is Formula(x), then it defines
the set AS of formulas of L; and since A(x) ∈ AS , so A(x) is not ordinary.
Then: (1) if A(x) is defining formula, AS is the set that it defines; (2) a
defining formula A(x) is ordinary if A(x) 6∈ AS . We suppose (for reductio ad

absurdum) that the set of ordinary formulas is definable in L, i.e. there is a
formula that defines the set of all ordinary formulas. Assume that X and Y
are each the set of defining formulas. Then the array is given by

τ(x, y) =

{

1, if y ∈ xS ,
0, if y 6∈ xS .

The function β is the identity function; and the function α is given by

α(x, x) =

{

1, if τ(x, x) = 0, i.e. x 6∈ xS ,
0, if τ(x, x) = 1, i.e. x ∈ xS .

The supposition that the set of ordinary formulas is definable in L, i.e. α
occurs as a row of τ , generates — via the proof of Diagonalization Lemma —
a contradiction: the formula that defines the set of all ordinary formulas is
ordinary itself iff it is not ordinary. But we can make this assumption for
reductio ad absurdum. By Diagonalization Lemma, α does not occur as a
row of τ . Then the diagonal argument is indirect and leads to the conclusion
that there is no formula of L that defines the set of all ordinary formulas.

2.2.3. The catalogue

We suppose that there is a catalogue, say C, such that, for any catalogue y,
y is catalogued in C iff y is not catalogued in y. Let X and Y be each the
set of catalogues, and Z = {0, 1}. Then the array τ is given by

τ(x, y) =

{

1, if y is catalogued in x,
0, if y is not catalogued in x.

The function β is simply the identity function; and the function α is given by

α(x, x) =

{

1, if τ(x, x) = 0, i.e. x is not catalogued in x,
0, if τ(x, x) = 1, i.e. y is catalogued in x.
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The supposition that the catalogue C exists, i.e. α occurs as a row of τ ,
generates — via the proof of Diagonalization Lemma — the contradiction:
C is catalogued in C and C is not catalogued in C. But we can make this
assumption for reductio ad absurdum. Then by Diagonalization Lemma, we
obtain the conclusion that the catalogue C does not exist.

3. The limitative theorems and the diagonal argument

David Hilbert, who in 1900 at the 2nd International Congress of Mathemati-
cians (held in Paris) set the agenda for much of 20th century mathematics,
asserted that mathematicians should seek to express mathematics in the
form of a consistent, complete and decidable formal systems. The system is
called consistent if no sentence is both provable and refutable in the system;
and inconsistent otherwise. The system is called complete if every sentence
is either provable or refutable in the system; and incomplete otherwise. The
system is decidable if there is an effective method or algorithm for telling,
of each mathematical sentence, whether or not the sentence is provable in
the system; and udecidable otherwise. Hilbert’s point was that if we came
to possess such a formal system, then our ignorance would be banished from
mathematics forever. Given any mathematical assertion, we would be able
to tell whether the assertion is true or false by detrmining whether or not
it is provable in the system. That the formal system be decidable was an
important property: an undecidable system could not serve fully to banish
ignorance, since we could not always be sure of being able to determine
whether or not the assertion in question is provable in the system. Simi-
lary, an incomplete system would be unsatsfactory, because the assertion in
question might be true and yet unprovable in the system.

In 1931, Kurt Gödel proved that Hilbert’s ideal is impossible to sat-
isfy, even in the case of simple arithmetic. There can be no consistent and
complete formal system of arithmetic. This result is known as “Gödel’s
first incompletness theorem”. The theorem says nothing about decidability,
however. That aspect was considered by Alonzo Church and Alan Tur-
ing. In 1936, they showed independently, that no consistent formal system
of arithmetic is decidable — there are well-defined mathematical problems
that cannot be solved by effective methods7. Church’s result is known as

7Turing (in the paper On computable numbers, with an application to the Entschei-

dungsproblem) took on the task of determining the exact nature of the computation. He
described the architecture of a general computing device, now known as a Turing machine.
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“undecidability theorem”, however Turing’s result — as “theorem about the
unsolvability of the Halting Problem”8. In conequence, the Hilbertian dream
lay in ruin.

At the same time, Alfred Tarski showed that arithmetical truth is not
even arithmetically definable (this result can be generalized beyond the lan-
guage of arithmetic, to any interpreted language).

In proofs of these theorems the diagonal method plays a central role. A
few definitions are needed at this stage.

3.1. Some basic notions

3.1.1. Representability

Let Σ be a consistent extension of Peano Arithmetic (PA) and let M be
a intended interpretation of the language LΣ. Each natural number k is
associated with a certain term k̄, called the numeral for k.

Let T be a subset of the set of sentences of LΣ that are true in M (i.e.
the set of truths of Σ) and let P be a subset of the set of sentences of LΣ

that are provable in Σ (i.e. the set of theorems of Σ). By R we shall denote
a set of sentences of LΣ called refutable (or disprovable) sentences.

A set S of natural numbers is T -representable (or definable) in LΣ iff
there exists a formula A(x) of the language LΣ with x just free such that for
any number k the following equivalence holds

k ∈ S iff A(k̄) ∈ T.

A Turing machine is a very simple device. It consist of an infinitely long tape with symbols
(choosen from some finite set). A pointer marks the current position and the machine is
in one of a finite set of internal states. At each step the machine reads the symbol at the
current position on the tape. For each combination of current state and symbol read, a
program specifies the new state and either a symbol to write to the tape or a direction to
move the pointer (left or right) or halt. A function is computable if a Turing machine can
compute it. If a Turing machine cannot be programmed to solve a particular problem,
then we can conclude that the problem in question does not have a computable solution.

8Hilbert listed 23 unsolved problems of mathematics, among which the tenth problem
concerned diophantine equations and was a decision problem: Specify a procedure which,
in a finite number steps, enables one to determine whether or not a given polynominal
diophantine equation with an arbitrary number of indeterminates and with integer coeffi-
cients has a solution in integers. A positive solution of the problem consists of furnishing
the required procedure or algorithm. A negative solution consists of proving that no such
procedure or algorithm can exist and in this case we declare the problem “unsolvable”.
The undecidability result is here singulary important because the Hilbert’s tenth problem
could be solved iff the Turing’s halting problem could be.



Analogy and Diagonal Argument 53

We say that S is T -represented in LΣ by A(x) and A(x) T -represents S in
LΣ. For example, a formula ∃x(x + s(0̄) = y) T -represents (defines) the set
of positive integers {1, 2, 3, . . . }. Observe that if A(x) T -represents S, then
its negation ¬A(x) T -represents the complement S′ of S.

T -representability is a semantic notion, however P -representability and
R-representability are syntactic ones. A set S is P -representable (or weakly

representable) in Σ iff there exists a formula A(x) of the language LΣ with
just x free such that for any number k the following equivalence holds

k ∈ S iff A(k̄) ∈ P.

We say that S is P -represented in Σ by A(x) and A(x) P -represents S in Σ.
A set S is R-representable (or contrarepresentable) in Σ iff there exists a

formula A(x) of the language LΣ with just x free such that for any number
k the following equivalence holds

k ∈ S iff A(k̄) ∈ R iff ¬A(k̄) ∈ P.

We say that S is R-represented in Σ by A(x) and A(x) R-represents S
in Σ. Observe that every contrarepresentable set is weakly representable.

We say that a set S is strongly representable in Σ iff there exists a formula
A(x) of the language LΣ that weakly represents S (i.e. for any number k, k ∈
S iff A(k̄) ∈ P ) and cotrarepresents the complement S′ of S (i.e. for any
number k, k 6∈ S iff ¬A(k̄) ∈ P ). Similarly for relations among the natural
numbers.9

3.1.2. Computability, recursiveness, and representability

Certain functions are calculable or computable in the following sense. Sup-
pose that we have a function f from numbers to numbers. We do not require
that f be total, i.e. f may be partial10. So, informally, f would be consid-
ered computable if we had an algorithm or decision procedure such that,
for each number k, gives us the value of f(k) if k is in the domain of f ,
and runs forever if k is not in the domain of f . Sets (of natural numbers)

9I omit here the definitions of these notions regarding number functions. We have
connection: a set (a relation) is strongly representable (definable) in Σ iff its charcteristic
function is representable (definable) in Σ.

10A function f : A → B is called partial if f assigns one member of B to some (but not
all) members of A; the members to which f assigns a value constitute its domain. The
function is left undefined for some members of A.
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and relations (among them), may — in the same sense — be computable; in
particular, a set or a relation is said to be computable if its characteristic
function is computable.

By semi-decision procedure for membership in a set (or relation) we
mean an algorithm that will never give incorrect answer (though it may
not answer some questions at all), and will report correctly that something
is a member of the set when in fact it is. Let graph(f) = {〈n, k〉 : n ∈
domain(f) and k = f(n)}. Suppose that f is intuitively computable. Then
we have semi-decision procedure for the set graph(f), along the following
lines. Suppose that we want to test whether the pair 〈n, k〉 ∈ graph(f).
Start the algorithm for f working, to compute f(n). If it ever halts, and has
k as answer, then 〈n, k〉 ∈ graph(f). So we have a method of discovering the
answer is “yes” if it really is. On the other hand, if n is not in domain(f),
the algorithm will never halts, so we only have a semi-decision procedure.
This works conversely as well.

Let S be a set or relation. Observe that if x ∈ S, and S is semi-decidable
(i.e. there is a semi-decision procedure for S), we can discover that x is a
member, but if x 6∈ S, a semi-decision procedure will tell us nothing. A
decision procedure should be able to answer “yes” or “no”, depending, and
not just “yes”. But the notion of a decision procedure can be reduced to
that of a semi-decision procedure in the following way: S has a decision
procedure (i.e. S is decidable) iff it and its complement both have semi-
decision procedures.

There is a developed mathematical theory of computability, founded by
Alonzo Church, Alan Turing and Kurt Gödel, called recursion theory. This
theory provides a rigorous definition of the notion of a recursive function

that makes rigorous the intuitive notion of a computable function. Famous
Church’s Thesis says that the computable functions are the recursive ones.

We say that a set S is recursively enumerable (or semi-computable) if
there is a recursive relation R(x, y) such that for any natural number k,

k ∈ S iff ∃yR(k, y).

For example, the set of theorems of PA is recursively enumerable (A is
theorem of PA iff there exists a proof of A). Similarly for relations.

The main theorems on recursively sets (or relations) states:

(1) A set S is recursively enumerable iff S is the domain of some partial
recursive function f , and iff S is the range of some partial recursive
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function f , and iff either S = ∅ or S is the range of some total recursive
function f .

(2) Subsets of an enumerable set are enumerable.

(3) A set S is recursive (or computable) iff both S and its complement S′

are recursively enumerable.

(4) Representability theorems: (a) Every recursive (computable) functions
is representable in any theory Σ that extends PA. (b) Every recursive set
is (strongly) representable in any theory Σ than extends PA; (c) Every
recursively enumerable set is weakly representable in any theory Σ than
extends PA.

3.1.3. Gödel numbering

If we have a formal theory Σ extends PA, then in this theory we can also talk
about the language and theorems of Σ itself. Terms, formulas, proofs and
other syntactical objects are finite sequences of symbols. Since the nature
of symbols is irrelevant, these objects can be identified with finite sequences
of natural numbers. Any finite sequence of natural numers can be coded by
single natural number. Thus formulas, proofs and other syntactical object
can be identified with natural numbers, and properties of formulas can ce
identified with properties of natural numbers. For example, a proof predicate

is an arithmetical formula Proof (x, y) which says that x is the code a proof

in Σ of the formula with code y. Using the proof predicate, we can define a
new predicat, called a provability predicate: Theorem(y) := ∃xProof (x, y),
which says that y is the code of a formula provable in Σ or y is the code of a

theorem of Σ. Finally, we can interpret certain formulas in Σ as assertions
about formulas and proofs.

Without going into details, by Gödel numbering we call any function g
from the set of expressions of LΣ into the natural numbers if ond only if
it meet these three conditions: (a) different Gödel numbers are assigned to
different expressions; (b) it is effectively calculable what the Gödel number
of any expession is; (c) it is effectively decidable whether a number is the
Gödel number of some expression in the set and, if so, effectively calculable
which expression it is the Gödel number of. If A is any formula, we will
let g(A) be the Gödel number of A, and given any number k, k̄ will be its
numeral. Thus g(A) is the numeral of the Gödel number of A. We write
pAq for g(A).
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We say that the formula A(x) of LΣ X-represents a set of formulas if
A(x) X-represents a set of Gödel numbers of those formulas.

3.1.4. Diagonalization

For any formula Ak(x) containing just the variable x free (k being the Gödel
number of Ak) by its diagonalization we mean the sentence Ak(x/k̄). Intu-
itively, the sentence is supposed to express the proposition that the Gödel
number of Ak(x) lies in the set represented (defined) by Ak(x). We write
d(k) for the Gödel number of Ak(x/k̄).

Since A(a) ≡ ∃x(x = a ∧ A(x)) is a theorem of first-order logic, we
can also introduce the notion of the diagonalization of a formula Ak(x), as
follows: the diagonalization of Ak(x) is the sentence ∃x(x = k̄ ∧ Ak(x)).
Intuitively, if Ak is a formula with just x free, the diagonalization of Ak says
that Ak is true of its own Gödel number.

We say that a formula Ak(x) of the language LΣ is T -ordinary iff either:
(a) Ak(x/k̄) 6∈ T , (b) ¬Ak(x/k̄) ∈ T . Equivalently: iff k is not in the set
T -represented (defined) by Ak. We can replace truth (in given interpreta-
tion) by provability (in given theory). But then (a) and (b) give us two
alternatives, that need not be equivalent. Namely, (c) a formula Ak(x) is P -
ordinary iff Ak(x/k̄) 6∈ P (equivalently: iff k is not in the set P -represented
in Σ by Ak), (d) a formula Ak(x) is R-ordinary iff ¬Ak(x/k̄) ∈ P (equiva-
lently: iff k is in the set R-represented in Σ by Ak). It is easy to see that if Σ
is consistent, then any formula that is R-ordinary must also be P -ordinary.

3.2. The limitative theorems

Assume now that

(i) Σ is a consistent extension of the Peano Arithmetic (or more generally,
Σ is a consistent theory which can represent all recursive functions),
and

(ii) the set of (Gödel numbers of) theorems of Σ is recursively enumerable
(so, there is a formula of LΣ that weakly represents it in Σ).

3.2.1. Church’s undecidability theorem

Church’s Undecidability Theorem. Σ is undecidable, i.e. there is no
effective procedure for deciding whether or not a given sentence is theorem
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in Σ.11

In more general form, the theorem says that if Σ is any sufficiently strong
formal theory in which every recursively enumerable set is weakly repre-
sentable, then the set P of (Gödel numbers of) theorems of Σ is recursively
enumerable but not recursive12.

Proof. Suppose othervise. Let Σ be a consistent formal theory in which
every recursively enumerable set is weakly representable, and suppose that
the set g(P ) of Gödel numbers of theorems (provable sentences) of Σ is
recursive. By Sk we denote the set weakly represented by Ak(x). Under
assumption that the set g(P ) is recursive, the (sub)set D = {k : Ak(k̄) ∈
P} ⊆ g(P ) also is recursive. Hence D and its complement D′ = {k : Ak(k̄) 6∈
P} are recursively enumerable, and — from representability theorem — they
are weakly representable in Σ. The proof that D′ is not weakly representable
in Σ, and thus is not recursively enunumerable, is a diagonal argument.

Let X be the set of all 1-place weakly representing (P -representing)
formulas of LΣ, and let Y be the set of nalural numbers. Define the array
τ by

τ(Ak, n) =

{

1, if Ak(x/n̄) ∈ P, i.e. n ∈ Sk,
0, if Ak(x/n̄) 6∈ P, i.e. n 6∈ Sk.

Let β be a Gödel numbering (a coding function) with the domain X.13 Then
δ is given by

δ(Ak, k) =

{

1, if τ(Ak, k) = 1, i.e. Ak(x/k̄) ∈ P, i.e. k ∈ Sk,

0, if τ(Ak, k) = 0, i.e. Ak(x/k̄) 6∈ P, i.e. k 6∈ Sk,

and α is given by

α(Ak, k) =

{

1, if τ(Ak, k) = 0, i.e. Ak(x/k̄) 6∈ P, i.e. k 6∈ Sk,

0, if τ(Ak, k) = 1, i.e. Ak(x/k̄) ∈ P, i.e. k ∈ Sk.

By Diagonalization Lemma, α does not occur as a row of τ , i.e. there is no
a formula of LΣ, that weakly represents D′ in Σ. Therefore, D′ cannot be
recursively enumerable, so that D and hence g(P ) cannot be recursive.

11The God of mathematics must love mathematicians, in fact all who can think logically
and with imagination, because he made no mechanical substitute for them.

12The theory is called decidable if its set of theorems is recursive; and undecidable oth-
erwise.

13Alternatively, both X and Y are a set of Gödel numbers of 1-place weakly representing
formulas, and β is the identity function.
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Since D′ is the set of Gödel numbers of all P -ordinary formulas of LΣ,
the following theorem holds:

The Grelling’s (heterological) paradox. The first version. Let
Σ be conservative extension of PA. If there exists a formula of LΣ that weakly
represents the set of (Gödel numbers of) P -ordinary formulas of LΣ in Σ,
then Σ is inconsistent14.

Proof. The proof of this theorem is the appropriate interpretation the
proof of Diagonalization Lemma. We claim that there is a formula of LΣ

with one variable, say Ordinary(x), that weakly represents D′ in Σ. Thus
Ordinary(x) ∈ X (= the set of all 1-place representing formulas of LΣ), and
α occurs as a row of τ . But then

τ(Ordinary(x), k) =

{

1, if τ(Ak, k) = 0, i.e. Ak(x/k̄) 6∈ P,

0, if τ(Ak, k) = 1, i.e. Ak(x/k̄) ∈ P.

From the equation above, by taking g(Ordinary(x)) for k, we have:

τ(Ordinary(x), g(Ordinary(x))) = 1 iff τ(Ordinary(x), g(Ordinary(x))) = 0,

which is a contradiction. This contradiction can be expressed by the follow-
ing equivalence:

Ordinary(pOrdinaryq) ∈ P iff Ordinary(pOrdinaryq) 6∈ P.

The last equivalence is a certain version of the heterological paradox.

3.2.2. The unsolvability of the Halting Problem (for Turing machines)

The Halting Problem is a decision problem which can be informally stated
as follows.

Recall, one of Hilbert’s requirements for formal mathematical systems
was that there be an objective criterion for deciding whether a proof written
in the language of the system is valid or not. In other words, there must
be an algorithm or a program for a Turing machine, for checking proofs.
Using both Cantor’s diagonal argument and coding techniques similar to
Gödel’s, Alan Turing showed that there is no algorithm for deciding whether
or not a program ever halts. In more details, the Halting Problem concerns a

14In more general form, the theorem says that if the set P of all theorems of Σ (or the
set g(P )) is recursive, then Σ is inconsistent.
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Turing machine program h which takes one argument and which satisfies the
following specification: h(n) halts iff it has constructed a correct proof that
the one-argument program defined by n does not halt when presented with
data n. The argument (input) n is the source code for another program, and
h concerns itself with proving properties of this second program. Turing’s
halting theorem is obtained when h is asked to prove a theorem about itself,
i.e., when n = g(h). There is a contradiction unless h(g(h)) does not halt;
this result is just the Turing’s halting theorem. In consequence, the Halting
Problem is unsolvable.

Armed with the general definition of a formal axiomatic system Σ as an
recursively enumerable set of provably sentences of LΣ, one can immediately
obtain (a version of) Gödel’s first incompleteness theorem from Turing’s
theorem (which, historically, came second).

The Halting Problem for Turing machines is a manifestation of unde-
cidability because a Turing computation is equivalent to the computation
of a partial recursive function, which is only defined for a subset of the set
of natural numbers. If the set is undecidable, one cannot always tell in ad-
vance whether the Turing machine program will halt (i.e., whether the input
is in the domain of the partial recursive function) or not (when the input is
not in the domain). Hence, we can express the unsolvability of the Halting
Problem as follows.

1. Let fk be a (possible) partial recursive function with a Gödel number k (or
a Turing machine program with a single natural input and a single natural
output). For any natural number n, if fk(n) is defined (the program
halts), we write fk(n) ↓, however if fk(n) is undefined (the program does
not halt), we write fk(n) ↑.

2. Then the set Sk = {n : n ∈ domain(fk)} = {n : fk(n) ↓}, where fk is a
partial recursive function, is a recursively enumerable set.

3. The Turing’s halting theorem concerns the set H = {k : fk(k) ↓} = {k :
k ∈ Sk} (referred to as the “Halting Problem”). The Halting Problem
asks: Is the set H recursive? If the set H is recursive, then H and its com-
plement H ′ = {k : fk(k) ↑} = {k : k 6∈ Sk} are recursively enumerable.
Hence, the Halting Problem can be expressed by a question, whether
there exist a partial recursive function (a Turing machine program), say
h, such that H ′ = domain(h).

Turing’s halting theorem. The set H is recursively enumerable but not
recursive.
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Proof. Suppose that the set H is recursive. Let X and Y be the set of
Gödel numbers of all recursively enumerable sets (alternatively: of all partial
recursive function). Define the array τ by

τ(k, n) =

{

1, if n ∈ Sk i.e. fk(n) ↓,
0, if k 6∈ Sk i.e. fk(n) ↑,

Let β be the identity function. Then δ is given by

δ(k, k) =

{

1, if τ(k, k) = 1, i.e. k ∈ Sk i.e. fk(k) ↓,
0, if τ(k, k) = 0, i.e. k 6∈ Sk i.e. fk(k) ↑,

and α is given by

α(k, k) =

{

1, if τ(k, k) = 0, i.e. k 6∈ Sk i.e. fk(k) ↑,
0, if τ(k, k) = 1, i.e. k ∈ Sk i.e. fk(k) ↓ .

Observe that if H is recursive, then H and its complement H ′ are recursively
enumerable. Hence both δ and α occur as a row of τ . By Diagonalization
Lemma, α does not occur as a row of τ . Contradiction. Therefore, H ′ cannot
be recursively enumerable, so H cannot be recursive.

Suppose that H ′ is recursively enumerable. Then h = g(H ′) is a member
X, and

τ(h, k) =

{

1, if τ(k, k) = 0, i.e. k 6∈ Sk,
0, if τ(k, k) = 1, i.e. k ∈ Sk.

When we put k = h in the equation above, we obtain

τ(h, h) = 1 iff τ(h, h) = 0.

Since the equivalence can be expressed by

h 6∈ H ′ iff h ∈ H ′,

it is a certain version of the Russell’s Antinomy (because h = g(H ′)).

3.2.3. Tarski’s undefinability theorem for truth

Tarski’s Theorem. The set T of sentences of LΣ that are true in the
intended interpretation M of LΣ (or the set g(T )) is not definable in LΣ.
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Proof. Suppose othervise. Let Σ be a consistent extension of the Peano
Arithmetic, and suppose that the set of (Gödel numbers of) sentences of LΣ

that are true in the intended interpretation of LΣ is definable in LΣ. That
is: there is a formula of LΣ, say True(x), that defines the set g(T ) of Gödel
numbers of all true sentences (we note that if True(x) defines g(T ), then
k ∈ g(T ) iff True(k̄) ∈ T ). Now, by Sk we denote the set defined by Ak(x).

Let X be the set of 1-place defining (T -representing) formulas of LΣ, and
let Y be the set of natural numbers. Define the array τ by

τ(Ak, n) =

{

1, if Ak(x/n̄) ∈ T, i.e. n ∈ Sk,
0, if Ak(x/n̄) 6∈ T, i.e. n 6∈ Sk.

Let β be a Gödel numbering with the domain X15. Then δ is given by

δ(Ak, k) =

{

1, if τ(Ak, k) = 1, i.e. Ak(x/k̄) ∈ T, i.e. k ∈ Sk,

0, if τ(Ak, k) = 0, i.e. Ak(x/k̄) 6∈ T, i.e. k 6∈ Sk,

and α is given by

α(Ak, k) =

{

1, if τ(Ak, k) = 0, i.e. Ak(x/k̄) 6∈ T, i.e. k 6∈ Sk,

0, if τ(Ak, k) = 1, i.e. Ak(x/k̄) ∈ T, i.e. k ∈ Sk.

Under the assumption then the set T (or g(T )) is definable in LΣ, the
set {k : α(Ak, k) = 1} = {k : Ak(x/k̄) 6∈ T } of Gödel numbers of all orinary
formulas of LΣ is also definable in LΣ, and then α occurs as a row of τ , i.e.
there exists a formula of LΣ, that is true (in standard interpretation of LΣ) of
exactly the Gödel numbers of those formulas that are not true (in standard
interpretation of LΣ) of the own Gödel numbers. By Diagonalization Lemma,
α does not occur as a row of τ , i.e. there is no a formula of LΣ, that defines
the set of Gödel numbers of all ordinary formulas of LΣ. Contradiction.
Therefore, the set cannot be definable, and hence g(T ) cannot be definable.

Observe that following theorem holds:

The Grelling’s (heterological) paradox. The second version.
Let Σ be extension of PA. If there exists a formula of LΣ that defines in LΣ the
set of Gödel numbers of all ordinary formulas of LΣ, then Σ is inconsistent16.

15Alternatively, both X and Y are a set of Gödel numbers of 1-place defining formulas,
and β is the identity function.

16In more general form, the theorem says that if there exists a formula True(x) of
language LΣ that defines in LΣ the set of (Gödel numbers of) all true sentences of LΣ,
then Σ is inconsistent.
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Proof. The proof of this theorem is the appropriate interpretation of Diag-
onalization Lemma and is quite similar to that of first version of the theorem.
We claim that there is a formula of LΣ, say Ordinary(x), defines the set of
Gödel numbers of ordinary formulas of LΣ. Thus Ordinary(x) ∈ X (= the
set of all 1-place defining formulas of LΣ), and α occurs as a row of τ . But
then

τ(Ordinary(x), k) =

{

1, if τ(Ak, k) = 0, i.e. Ak(x/k̄) 6∈ T,

0, if τ(Ak, k) = 1, i.e. Ak(x/k̄) ∈ T.

From the equation above, by taking g(Ordinary(x)) for k, we have:

τ(Ordinary(x), g(Ordinary(x))) = 1 iff τ(Ordinary(x), g(Ordinary(x))) = 0,

which is a contradiction. In other words,

Ordinary(pOrdinaryq) 6∈ T iff Ordinary(pOrdinaryq) ∈ T.

The last equivalence is somewhat other version of the heterological paradox.

3.2.4. Gödel’s first incompleteness theorem

Gödel’s First Incompleteness Theorem. Σ is incomplete. More specif-
ically: there is a sentence A of the language LΣ such that A is not provable
in Σ and A is not refutable in Σ.

Here we give four proofs of the theorem which employ results above.

a) The proof using Chuch’s result. The proof is based on Chuch’s unde-
cidability theorem and the followig lemma:

Lemma A. Let Σ be a formal theory that meets conditions (i) and (ii).
Then, if Σ is undecidable (which means that the set of theorems of Σ is not
recursive), then Σ is incomplete.

b) The proof using Turing’s result. The proof is based on Turing’s halting
theorem and the following lemma:

Lemma B. If the set H is weakly representable in Σ (H is recursive enumer-
able but is not recursive), then Σ is undecidable, well also Σ is incomplete.

Remark. Emil Post gave the modern and abstract versions of Gödel’s theo-
rem, which looks like Japanese haiku: there exists a recursively enumerable
set of natural numbers, that is not recursive (for example, the set of all
theorems of Σ or the set H). ⊣
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c) The proof using provability and refutability. Gödel’s original method
of proving incopleteness use provability and refutability. To do this, however,
Gödel had to make a certain assumption known as ω-consistency, which we
will not discuss here17. We say only that under the assumption that Σ is
ω-consistency, the sets {k : Ak(k̄) ∈ R} ⊆ g(R) and {k : Ak(k̄) ∈ P} ⊆ g(P )
are weakly representable in Σ.

Lemma C. The first version. Let Σ be conservative extension of PA.
If the set {k : Ak(k̄) ∈ R} (of Gödel numbers of all R-ordinary formulas)
is weakly representable in Σ, then Σ is either inconsistent or incomplete.
Differently: if Σ is consistent and the set {k : Ak(k̄) ∈ R} is weakly repre-
sentable in Σ, then Σ is incomplete.

Proof. (Smullyan 1994, p. 57). Suppose that the set {k : Ak(k̄) ∈ R} (of
all R-ordinary formulas) is weakly representable in Σ, say by Ordinary(x).
This means that, if Ak(x) is any weakly representing formula of LΣ (with
Gödel numbers k), then

Ordinary(k̄) ∈ P iff Ak(k̄) ∈ R,

that is,
Ordinary(k̄) ∈ P iff ¬Ak(k̄) ∈ P,

Now to show that Σ is either inconsistent or incomplete, we need only
the formula Ordinary(x) for Ak(x). Then we get the following equivalence

Ordinary(pOrdinaryq) ∈ P iff ¬Ordinary(pOrdinaryq) ∈ P.

There are two possible ways of understanding the equivalence. First, the
sentence Ordinary(pOrdinaryq) is both provable and refutable:

Ordinary(pOrdinaryq) ∈ P and ¬Ordinary(pOrdinaryq) ∈ P.

Second, the sentence Ordinary(pOrdinaryq) is neither provable nor
refutable:

Ordinary(pOrdinaryq) 6∈ P and ¬Ordinary(pOrdinaryq) 6∈ P.

17Let Σ be a theory in the language of Peano Arithmetic. It is called ω-inconsistent if
there is a formula A(x) (with just x free) such that the sentence ∃xA(x) is provable in Σ,
yet all the infinitely many sentences A(0̄), . . . , A(n̄), . . . are refutable in Σ. The theory Σ
is ω-consistent if it is not ω-inconsistent. Notice that the notion of ω-consistency refers
only to proofs. It allows us to replace semantical arguments by ones that only involve the
notion of provability, which has constructive content. Any ω-consistent theory is consistent
in the ordinary sense, since everything is provable in an inconsistent theory.
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If Σ is consistent, then the first alternative cannot hold, hence Σ is incom-
plete.

Lemma C. The second version. Let Σ be conservative extension of PA.
If the set {k : Ak(k̄) ∈ P} (of all formulas that are not P -ordinary) is
contrarepresentable in Σ, then Σ is either inconsistent or incomplete. Dif-
ferently: if Σ is consistent and the set is contrarepresentable in Σ, then Σ is
incomplete.

Proof. (Smullyan 1994, p. 57) The proof of this lemma is quite similar
to that of first version. Suppose that the set (of all formulas that are not
P -ordinary) is contrarepresentable in Σ by Ordinary(x). This means that,
if Ak(x) is any weakly representing formula of LΣ (with Gödel numbers k),
then

Ordinary(k̄) ∈ R iff Ak(k̄) ∈ P,

that is,
¬Ordinary(k̄) ∈ P iff Ak(k̄) ∈ P,

Take Ak(x) to be Ordinary(x) itself. Then we have

¬Ordinary(pOrdinaryq) ∈ P iff Ordinary(pOrdinaryq) ∈ P.

d) The proof using Tarski’s result. Now we give a version of the incom-
pleteness argument using Tarski’s result — replacing the assumption that Σ
is ω-consistent by the (strongly) assumption then Σ is correct. The system
is called correct if every provable sentence is true and no refutable (or dis-
provable) sentence is true. Then g(P ) ⊆ g(T ). If Σ is correct, then the set
g(P ) of Gödel numbers of provable sentences is definable in LΣ. Thus g(P )
is definable in LΣ but g(T ) is not (Tarski’s theorem). Hence these two sets
are different, i.e. g(P ) 6= g(T ). Thus, for some Gödel number k, k ∈ g(T )
and k 6∈ g(P ). This means that there is a sentence that is true in standard
interpretation of LΣ but not provable in Σ. Hence Σ is incomplete. More
specifically:

Lemma D. If Σ is correct and the set of Gödel numbers of P -ordinary
formulas is T -representable (definable) in LΣ, then Σ is incomplete.

Proof. (Smullyan 1994, p. 53). Let Σ be correct, and suppose that the set
of P -ordinary formulas is definable in LΣ by Ordinary(x). This means that,
if Ak(x) is any weakly representing formula of LΣ, then

Ordinary(k̄) ∈ T iff Ak(k̄) 6∈ P.
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Now to show that Σ is incomplete, we need only the formula Ordinary(x)
for Ak(x). Then we get the following equivalence

Ordinary(pOrdinaryq) ∈ T iff Ordinary(pOrdinaryq) 6∈ P.

There are two possible ways of understanding the equivalence. First, the
sentence Ordinary(pOrdinaryq) is true but is not provable:

Ordinary(pOrdinaryq) ∈ T and Ordinary(pOrdinaryq) 6∈ P.

Second, the sentence Ordinary(pOrdinaryq) is provable but is not true:

Ordinary(pOrdinaryq) 6∈ T and Ordinary(pOrdinaryq) ∈ P.

If Σ is correct, then the second alternative cannot hold. Since T is disjont
from the set R of refutable sentences, we have also:

Ordinary(pOrdinaryq) ∈ T and Ordinary(pOrdinaryq) 6∈ R.

That is, the sentence Ordinary(pOrdinaryq) is true but is not refutable.
Thus

Ordinary(pOrdinaryq) 6∈ P and Ordinary(pOrdinaryq) 6∈ R.

Hence Ordinary(pOrdinaryq) is undecidable sentence in Σ, and Σ is incom-
plete.

I think that the results presented here are sufficient to show that ana-
logical thinking plays an important role also in mathematical creativity.
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