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A LATTICE FOR THE LANGUAGE

OF ARISTOTLE’S SYLLOGISTIC

AND A LATTICE FOR THE LANGUAGE

OF VASIĽÉV’S SYLLOGISTIC

Abstract. In this paper an algebraic system of the new type is proposed
(namely, a vectorial lattice). This algebraic system is a lattice for the lan-
guage of Aristotle’s syllogistic and as well as a lattice for the language of
Vasiľév’s syllogistic. A lattice for the language of Aristotle’s syllogistic is
called a vectorial lattice on ∩-semilattice and a lattice for the language
of Vasiľév’s syllogistic is called a vectorial lattice on closure ∩-semilattice.
These constructions are introduced for the first time.
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Set up the problem of construction a lattice for the language of Aristotle’s
syllogistic and as well as a lattice for the language of Vasiľév’s syllogistic.

The Aristotle syllogistic (see [15], [1], [7], [8], [14]) is based on proposi-
tional logic.

Definition 1. The alphabet of propositional logic is the ordered system
A = 〈V, L1, L2, K〉, where

1. V is the set of propositional variables p, q, r, . . . ;

2. L1 is the set of unary propositional connectives consisting of one element
¬ called the symbol of negation;
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3. L2 is the set of binary propositional connectives consisting of three el-
ements: ∧, ∨, ⇒ called the symbols of conjunction, disjunction, and
implication respectively;

4. K is the set of auxiliary symbols containing two parenthesis: (, ).

V , L1, L2, K are disjoint sets. The set V is denumerable, and the union
of sets L1 and L2 isn’t empty.

Definition 2. The language of propositional logic is the ordered system
L = 〈A, F〉, where

1. A is the alphabet of propositional logic;

2. F is the set of all formulas that are formed by means of symbols in A.

Notice that elements of F are defined by induction:

(a) every propositional variable p, q, r, . . . is a formula of propositional
logic;

(b) if α, β are formulas, then expressions ¬α, α ∧ β, α ∨ β, α ⇒ β are
formulas of propositional logic;

(c) a finite sequence of symbols is called a formula of propositional logic
if that sequence satisfies two above mentioned conditions.

Definition 3. The propositional logic (or propositional calculus) is the
ordered system S = 〈A, F , C〉, where

1. A is the alphabet of propositional logic;

2. F is the set of all formulas formed by means of symbols in A;

3. C is the inference operation that is the map of formulas in F0 ⊆ F to
formulas in C(F0), i.e., to the set of all corollaries from F0.

The inference rules of propositional logic are as follows:

1. the substitution rule, according to that we replace a propositional variable
pj of formula α(p1, . . . , pn), containing propositional variables p1, . . . , pn,
by a formula β(q1, . . . , qk), containing propositional variables q1, . . . , qk,
and we obtain a new formula α′(p1, . . . , pj−1, β(q1, . . . , qk), pj+1, . . . , pn):

α(p1, . . . , pj, . . . , pn)

α′(p1, . . . , pj−1, β(q1, . . . , qk), pj+1, . . . , pn)
;
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2. modus ponens, according to that if two formulas α and α ⇒ β hold, then
we deduce a formula β:

α, α ⇒ β

β
.

The inference operation is inductively defined as follows:

(i) for any set of formulas F0 ⊆ F we get a set C(0) such that C(0) ⊂ C(F0)
and C(0) is called a set of tautologies for propositional logic;

(ii) if the set C(F0) contains a set C(α), then C(F0) contains also a set
C(β), where α, β ⊂ F0 and α ⊆ β as C(β) 6⊂ C(α)1;

(iii) C(F0) is the minimal set that satisfies two above mentioned conditions.

The propositional logic has a lot of axiomatization depending on choice
of the input set C(0). We shall use the set of axioms of Łukasiewicz’s propo-
sitional calculus SP L as the input set C(0) (see [7]):

(1) (p ⇒ q) ⇒ ((q ⇒ r) ⇒ (p ⇒ r)),

(2) (¬p ⇒ p) ⇒ p,

(3) p ⇒ (¬p ⇒ q).

The implication and complement are given here as basic operations.
Other operations are derivable, e.g., the conjunction and disjunction are
defined as follows:

(4) p ∧ q ⇋ ¬(p ⇒ ¬q),

(5) p ∨ q ⇋ ¬p ⇒ q.

Combining axioms (1) – (3) and using inference rules, we obtain all other
tautologies of the set C(0) for the system SP L.

Aristotle’s syllogistic is an extension of propositional logic.

Definition 4. The alphabet of Aristotle’s syllogistic is the ordered system
ASA = 〈V, Q, L1, L2, L3, K〉, where

1. V is the set of propositional variables p, q, r, . . . ;

1By definition, there exists a minimal element α with property C(α) for any tuple
〈α, β〉 ∈ F0 × F0.
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2. Q is the set of syllogistic variables S, P , M , . . . ;

3. L1 is the set of unary propositional connectives consisting of one element
¬ called the symbol of negation;

4. L2 is the set of binary propositional connectives containing three elements:
∧, ∨, ⇒ called the symbols of conjunction, disjunction, and implication
respectively;

5. L3 is the set of binary syllogistic connectives containing four elements a,
e, i, o called the functors “every. . . is. . . ”, “no . . . is. . . ”, “some . . . is. . . ”,
and “some. . . is not . . . ” respectively.

6. K is the set of auxiliary symbols containing two parenthesis: (, ).

Here V , Q, L1, L2, L3 are disjoint sets. The sets V and Q are denumer-
able. The union of sets L1, L2, and L3 isn’t empty.

Definition 5. The language of Aristotle’s syllogistic is the ordered system
LSA = 〈ASA, FSA〉, where

1. ASA is the alphabet of Aristotle’s syllogistic;

2. FSA is the set of all formulas formed by means of symbols in ASA; this
set FSA contains all formulas defined by the rules (a), (b), and (c) of
definition 2 and by the following rules:

(d) if S and P are syllogistic variables, then expressions SaP 2, SeP 3,
SiP 4, SoP 5 are formulas of Aristotle’s syllogistic6.

(d′) if α and β are formulas of Aristotle’s syllogistic, then expressions
¬α, α ∧ β, α ∨ β, α ⇒ β are also formulas of Aristotle’s syllogistic;

2The proposition “every S is P ” has the following notation in predicate logic: ∀x(x ∈
S ⇒ x ∈ P ) or ¬∃x(x ∈ S ∧ x /∈ P ).

3The proposition “no S is P ” has the following notation in predicate logic: ∀x(x ∈ S ⇒
x /∈ P ) or ¬∃x(x ∈ S ∧ x ∈ P ).

4The proposition “some S is P ” has the following notation in predicate logic: ∃x(x ∈
S ∧ x ∈ P ).

5The proposition “some S is not P ” has the following notation in predicate logic:
∃x(x ∈ S ∧ x /∈ P ).

6Nominal constants that we substitute for the variable S are called a subject. Nominal
constants that we substitute for the variable P are called a predicate.
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Thus, an expression that is derivable by rules of definition 5 is called a
formula of Aristotle’s syllogistic. Formulas that are defined by rules (d) and
(d’) of definition 5 is called formulas of Aristotle’s syllogistic in the restricted
sense.

Definition 6. Aristotle’s syllogistic is the ordered system SSA = 〈ASA,

FSA, C〉, where

1. ASA is the alphabet of Aristotle’s syllogistic;

2. FSA is the set of all formulas formed by means of symbols in ASA;

3. C is the inference operation in FSA.

The inference rules of Aristotle’s syllogistic are as follows:

1. the substitution rule, we replace a propositional variable pj of formula
α(p1, . . . , pn), containing propositional variables p1, . . . , pn, by a formula
β(q1, . . . , qk), containing propositional variables q1, . . . , qk (according as
by a formula β(Sl, Pm), containing syllogistic variables Sl, Pm), and we
obtain a new propositional formula α′(p1, . . . , pj−1, β(q1, . . . , qk), pj+1,

. . . , pn) (according as a new syllogistic formula α′(p1, . . . , pj−1, β(Sl, Pm),
pj+1, . . . , pn)):

α(p1, . . . , pj , . . . , pn)

α′(p1, . . . , pj−1, β(q1, . . . , qk), pj+1, . . . , pn)

or
α(p1, . . . , pj, . . . , pn)

α′(p1, . . . , pj−1, β(Sl, Pm), pj+1, . . . , pn)
,

In the same way, from any syllogistic formula α(Sj , Pi) follows a new
formula α′(Sk, Pi) or α′(Sj , Pl) if we replace a syllogistic variable Sj by a
syllogistic variable Sk or Pi by Pl:

α(Sj , Pi)

α′(Sk, Pi)

or
α(Sj , Pi)

α′(Sj , Pl)
;
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2. modus ponens, according to that if two formulas of Aristotle’s syllogistic
α and α ⇒ β hold, then we deduce a formula β:

α, α ⇒ β

β
.

The axioms of Aristotle’s syllogistic consist of axioms of propositional
logic (e.g., axioms (1), (2), (3) of the propositional system SP L), and of the
following expressions:

(6) SaS,

(7) SiS,

(8) (MaP ∧ SaM) ⇒ SaP , i.e., Barbara,

(9) (MaP ∧ M iS) ⇒ SiP , i.e., Datisi.

The given axiomatic system was created by Łukasiewicz (see [7]). Here
the functors a and i are basic and two other are defined as follows:

(10) SeP ⇋ ¬(SiP ),

(11) SoP ⇋ ¬(SaP ).

Using axioms (1), (2), (3), (6), (7), (8), (9), and definitions (4), (5), (10),
(11), we obtain all tautologies of Aristotle’s syllogistic.

Definition 7. The function I regarded as the map of formulas of proposi-
tional logic F0 ⊆ F to the set {⊤, ⊥} of truth values, where ⊤ is “true” and
⊥ is “false”, is defined as follows:

pI =

{

⊤,

⊥,

where p is a propositional variable;

(¬α)I =

{

⊤ if (α)I = ⊥,

⊥ if (α)I = ⊤,
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where α is a formula of propositional logic;

(α ∧ β)I =

{

⊤ if (α)I = (β)I = ⊤,

⊥ otherwise,

(α ∨ β)I =

{

⊤ if (α)I = ⊤ or (β)I = ⊤,

⊥ otherwise,

(α ⇒ β)I =

{

⊥ if (α)I = ⊤ and (β)I = ⊥,

⊤ otherwise,

Note that metavariables α and β range over all formulas of propositional
logic.

Let {ϑ0, ϑ1, ϑ2, . . . , ϑn, . . . } be any infinite set with a minimal member
ϑ0 and with one operation ‘inf’ (infimum) defined on all members of this set.

Definition 8. Suppose the set F0 contains all superpositions of conjunction,
disjunction, implication, negation of formulas of the form SaP , SeP , SiP ,
SoP and the set F1 contains all formulas of the form SaP , SeP , SiP , SoP .
Then the function I regarded as the map of syllogistic formulas F0 ⊆ FSA

to the set {⊤, ⊥} of truth values is defined by rules of definition 7. This
function I regarded as the map of syllogistic formulas F1 ⊆ FSA to the set
{ϑ0, ϑ1, ϑ2, . . . , ϑn, . . . } of syllogistic truth values and to the set {⊤, ⊥} of
propositional truth values is defined by the following rules:

SI =

{

ϑ0,

ϑn > ϑ0,

where by (S)I we denote a nominal constant that we substitute for the
variable S7.

(SaP )I =

{

⊤ if (S)I = ϑm, (P )I = ϑn, and inf(ϑm, ϑn) = ϑm,

⊥ otherwise,

(SeP )I =

{

⊤ if (S)I = ϑm, (P )I = ϑn, and inf(ϑm, ϑn) = ϑ0,

⊥ otherwise,

(SiP )I =

{

⊤ if (S)I = ϑm, (P )I = ϑn, and inf(ϑm, ϑn) > ϑ0,

⊥ otherwise,

7Thus, the truth interpretation (S)I and (P )I ranges over not the set {⊤, ⊥}, but the
set {ϑ0, ϑ1, ϑ2, . . . , ϑn, . . . } of nominal constants.
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(SoP )I =

{

⊤ if (S)I = ϑm, (P )I = ϑn, and inf(ϑm, ϑn) < ϑm,

⊥ otherwise,

Since we can define truth values of arbitrary formulas, we have semantics
for this language. Usually a lattice is considered as semantics for a formalized
language.

Definition 9. A lattice for a formalized language L is an ordered system
A = 〈A, Ω〉, where

1. A is the set of arbitrary elements;

2. Ω is the set of n-ary relationes ωA over elements of A, and every n-ary
relation ωA in Ω corresponds to an n-ary formula ω in L.

Definition 10. The lattice for the language of propositional logic is a
Boolean algebra, i.e., the ordered system B = 〈B; ∩, ∪, ¬, 1, 0〉.

It is known that to each logical relation (to each formula) of proposi-
tional logic we can assign a relation of Boolean algebra. It is easily shown
by induction on length of formula that an intersection is assigned to a con-
junction, a union is assigned to a disjunction, a pseudo-complement relative
to an element is assigned to an implication, and a complement is assigned
to a negation.

The following definition is needed for the sequel.

Definition 11. The lattice for the language of Aristotle’s syllogistic is a vec-
torial lattice on the ∩-semilattice. Let B = 〈B; ∩, ∪, ¬, 1, 0〉 be a Boolean
algebra and let B∩ = 〈B∩; ∩, 0〉 be a ∩-semilattice, i.e., the ordered system
B∩ such that there exist only one binary operation ∩ and only one con-
stant 0. Further, let λk and µk

8 be unary operations defined on the set
B for any element k of the ∩-semilattice B∩. Then the vectorial lattice
on the ∩-semilattice is the ordered system VB = 〈B; ∩, ∪, ¬, 1, 0; {λk : k ∈
B∩}, {µk : k ∈ B∩}〉, where {λk : k ∈ B∩} (according as {µk : k ∈ B∩}) is
the set of all λk (according as the set of all µk) such that k belongs to B∩.
Every element of the set B is called a vector, every element of the set B∩ is
called a scalar.

8The operations λ and µ take each element k in the set B∩ to a unique element λk and
µk in the set B.
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The operations λk and µk are defined by induction:

(12) ∀a ∈ B∀b ∈ B∀k ∈ B∩(λk(a ∩ b) = λk(a) ∩ b = λk(b) ∩ a);

(13) ∀a ∈ B∀b ∈ B∀k ∈ B∩(λk(a ∪ b) = λk(a) ∪ λk(b));

(14) ∀k ∈ B∩(λk(0) = 0);

(15) ∀k ∈ B∩∀l ∈ B∩(λk(l) = 0 if k = m0 ∩ n = 0 and l = m1 ∩ n = n);

(16) ∀k ∈ B∩∀l ∈ B∩(λk(l) = 0 if k = m0 ∩ n = n and l = m1 ∩ n < n);

(17) ∀k ∈ B∩∀l ∈ B∩(λk(l) = 0 if k = m0 ∩ n = 0 and l = m1 ∩ n > 0);

(18) ∀a ∈ B∀b ∈ B∀k ∈ B∩(µk(a ∩ b) = µk(a) ∩ µk(b));

(19) ∀a ∈ B∀b ∈ B∀k ∈ B∩(µk(a ∪ b) = µk(a) ∪ b = µk(b) ∪ a);

(20) ∀k ∈ B∩(µk(1) = 1);

(21) ∀k ∈ B∩∀l ∈ B∩(µk(l) = 1 if k = m0 ∩ n > 0 and l = m1 ∩ n < n);

(22) ∀k ∈ B∩∀l ∈ B∩(µk(l) = 1 if k = m0 ∩ n = n and l = m1 ∩ n < n);

(23) ∀k ∈ B∩∀l ∈ B∩(µk(l) = 1 if k = m0 ∩ n = 0 and l = m1 ∩ n > 0).

In all expressions m0 ∩ m1 = 0.
We say that an element λk(a) of vectorial lattice VB (according as an

element µk(a) of vectorial lattice VB) is an intersection of elements k and
a (according as a union of elements k and a) and write k ∩ a (according as
k ∪ a); notice that (k ∩ a) ∈ B and (k ∪ a) ∈ B. Taking into account this
interpretation of operations λk(a), µk(a), we have:

∀a ∈ B∀b ∈ B∀k ∈ B∩(k ∩ (a ∩ b) = (k ∩ a) ∩ b = (k ∩ b) ∩ a),

i.e., the associativity and commutativity of λk for an intersection of vectors
a and b;

∀a ∈ B∀b ∈ B∀k ∈ B∩(k ∩ (a ∪ b) = (k ∩ a) ∪ (k ∩ b)),
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i.e., the distributivity of λk for a union of vectors a and b;

∀k ∈ B∩(k ∩ 0 = 0);

∀k ∈ B∩∀l ∈ B∩(k ∩ l = 0 if k = m0 ∩ n = 0 and l = m1 ∩ n = n);

∀k ∈ B∩∀l ∈ B∩(k ∩ l = 0 if k = m0 ∩ n = n and l = m1 ∩ n < n);

∀k ∈ B∩∀l ∈ B∩(k ∩ l = 0 if k = m0 ∩ n = 0 and l = m1 ∩ n > 0);

∀a ∈ B∀b ∈ B∀k ∈ B∩(k ∪ (a ∩ b) = (k ∪ a) ∩ (k ∪ b)),

i.e., the distributivity of µk for an intersection of vectors a and b;

∀a ∈ B∀b ∈ B∀k ∈ B∩(k ∪ (a ∪ b) = (k ∪ a) ∪ b = (k ∪ b) ∪ a),

i.e., the associativity and commutativity of µk for a union of vectors a and b;

∀k ∈ B∩(k ∪ 1 = 1);

∀k ∈ B∩∀l ∈ B∩(k ∪ l = 1 if k = m0 ∩ n > 0 and l = m1 ∩ n < n);

∀k ∈ B∩∀l ∈ B∩(k ∪ l = 1 if k = m0 ∩ n = n and l = m1 ∩ n < n);

∀k ∈ B∩∀l ∈ B∩(k ∪ l = 1 if k = m0 ∩ n = 0 and l = m1 ∩ n > 0).

In all expressions m0 ∩ m1 = 0.
The ∩-semilattice B∩ is partially ordered. In other words, elements of

the set B∩ satisfy the following axioms:

(24) ∀a ∈ B∩ a 6 a, i.e., the antireflexiveness condition,

∀a ∈ B∩∀b ∈ B∩∀c ∈ B∩ (a 6 b ∧ b 6 c ⇒ a 6 c),
(25)

i.e., the transitivity condition,

∀a ∈ B∩∀b ∈ B∩(a 6 b ∧ b 6 a ⇒ a = b),
(26)

i.e., the antisymmetry condition.

The unique binary operation a ∩ b is defined in the ∩-semilattice so:

∀a ∈ B∩∀b ∈ B∩(a 6 b ⇔ a ∩ b = a).

The axioms of the ∩-semilattice are as follows:

(27) ∀a ∈ B∩(a ∩ a = a), i.e., the reflexivity condition,
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(28) ∀a ∈ B∩∀b ∈ B∩(a ∩ b = b ∩ a), i.e., the commutativity condition,

∀a ∈ B∩∀b ∈ B∩∀c ∈ B∩(a ∩ (b ∩ c) = (a ∩ b) ∩ c),
(29)

i.e., the associativity condition,

(30) ∀a ∈ B∩(a ∩ 0 = 0), i.e., the 0-boundedness condition.

There is also the strict order in the ∩-semilattice :

∀a ∈ B∩∀b ∈ B∩(a < b ⇔ a 6 b ∧ a 6= b)

It is easy shown that we can assign a relation of the vectorial lattice on
the ∩-semilattice to each relation (formula) of Aristotle’s syllogistic. It can
be checked by induction on a length of formula:

1. a complement of a vector α is assigned to a negation ¬α;

2. an intersection of vectors α and β is assigned to a conjunction α ∧ β, a
union of vectors α and β is assigned to a disjunction α ∨ β, a pseudo-
complement of a vector α relative to a vector β is assigned to an impli-
cation α ⇒ β;

3. an intersection of scalars S ∩ P = S is assigned to a universal affirmative
proposition SaP , an intersection of scalars S ∩ P = 0 is assigned to a
universal negative proposition SeP , an intersection of scalars S ∩ P > 0

is assigned to a particular affirmative proposition SiP , an intersection of
scalars S ∩P < S is assigned to a particular negative proposition SoP . If
S, P0 are fixed for syllogistic propositions SaP0, SeP0, SiP0, SoP0, then

(a) in the case SaP0 is true, we have

S ∩ P0 = S for SaP0,

S ∩ P1 = 0 for SeP0,

S ∩ P0 > 0 for SiP0,

S ∩ P1 < S for SoP0,

where P0 and P1 are mutually disjoint, e.g., the proposition “every
man (S) is mortal (P0)” is true and the proposition “no man (S) is
mortal (P1)” is false, therefore S ∩ P0 = S and S ∩ P1 = 0,



28 Andrew Schumann

(b) in the case SeP0 is true, we have

S ∩ P1 = S for SeP0,

S ∩ P0 = 0 for SaP0,

S ∩ P1 > 0 for SoP0,

S ∩ P0 < S for SiP0,

where P0 and P1 are mutually disjoint, e.g., the proposition “every
man (S) is dolphin (P0)” is false and the proposition “no man (S) is
dolphin (P1)” is true, therefore S ∩ P0 = 0 and S ∩ P1 = S,

(c) in the case SiP0 is true, we have

S ∩ P0 > 0 for SiP0,

S ∩ P1 < S for SoP0,

where P0 and P1 are mutually disjoint,

(d) in the case SoP0 is true, we have

S ∩ P1 > 0 for SoP0,

S ∩ P0 < S for SiP0,

where P0 and P1 are mutually disjoint.

As an example we prove general validity of the mood (modus) Barbara
in the ∩-semilattice.

Example 1. This mood has the following notation in the language of the
∩-semilattice:

if M ∩ P = M and S ∩ M = S, then S ∩ P = S.

Substitute an expression S ∩ M for S in S ∩ P . We have (S ∩ M) ∩ P . By
associativity, we obtain S ∩ (M ∩ P ). But it is known that M ∩ P = M .
Hence, we deduce S.

Example 2. This mood has the following notation in the language of the
vectorial lattice on the ∩-semilattice:

((M ∩ P = M) ∩ (S ∩ M = S)) ⇒ (S ∩ P = S).

By substitution, we obtain

(M ∩ S) ⇒ S = ¬(M ∩ S) ∪ S = ¬M ∪ ¬S ∪ S = ¬M ∪ 1 = 1.
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Note that we have the binary contradictory (contrary) relation in Aris-
totle’s syllogistic. Therefore we can deduce here the law ‘tertium non datur’
(the law of excluded middle). Now consider a new system of syllogistic in
that there is the ternary contradictory relation. Here we can deduce the law
“quartum non datur”. This system is called Vasiľév’s syllogistic (see [20],
[21], [2], [6]). It is more simple deductive system, than Aristotle’s syllogistic.
Recall that N. A. Vasiľév is well-know Russian logician. 1880–1940 were
years of his life. He wrote scientific works in 1910–1914. Then he stopped
logical investigations because of serious alienation.

Definition 12. The alphabet of Vasiľév’s syllogistic is the ordered system
ASV = 〈V, Q, L1, L2, L∼

3 , K〉, where

1. V is the set of proposition variables p, q, r, . . . ;

2. Q is the set of syllogistic variables S, P , M ...;

3. L1 is the set of unary propositional connectives consisting of one element
¬ called the symbol of negation;

4. L2 is the set of binary propositional connectives containing three elements:
∧, ∨, ⇒ called the symbols of conjunction, disjunction, and implication
respectively;

5. L∼

3 is the set of binary syllogistic connectives containing three elements
a, e, m called the functors “every. . . is. . . ”, “no . . . is. . . ”, and “some, but
not every. . . is . . . ”9 respectively.

6. K is the set of auxiliary symbols containing two parenthesis: (, ).

Here V , Q, L1, L2, L∼

3 are disjoint sets. The sets V and Q are denumer-
able. The union of sets L1, L2, and L∼

3 isn’t empty.

Definition 13. The language of Vasiľév’s syllogistic is the ordered system
LSV = 〈ASV , FSV 〉, where

1. ASV is the alphabet of Vasiľév’s syllogistic;

9By Vasiľév’s opinion, there exists a unique particular proposition, namely, particular
affirmative negative proposition and its functor is m. This proposition can be formulated
as an indifferent statement (“S is and is not P ”), as a disjunctive statement (“S is P or
is not P ”), and as an accidental statement (“S can be P ”).
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2. FSV is the set of all formulas formed by means of symbols in ASV ; this
set FSV contains all formulas defined by the rules (a), (b), and (c) of
definition 2 and by the following rules:

(d) if S and P are syllogistic variables, then expressions SaP 10,
SeP 11, SmP 12 are formulas of Vasiľév’s syllogistic.

(d′) if α and β are formulas of Vasiľév’s syllogistic, then expressions ¬α,
α ∧ β, α ∨ β, α ⇒ β are also formulas of Vasiľév’s syllogistic;

Also, an expression that is derivable by rules of definition 13 is called a
formula of Vasiľév’s syllogistic. Formulas that are defined by rules (d) and
(d′) of definition 13 is called formulas of Vasiľév’s syllogistic in the restricted
sense.

Definition 14. Vasiľév’s syllogistic is the ordered system SSV = 〈ASV ,

FSV , C〉, where

1. ASV is the alphabet of Vasiľév’s syllogistic;

2. FSV is the set of all formulas formed by means of symbols in ASV ;

3. C is the inference operation in FSV .

The inference rules of Vasiľév’s syllogistic are as follows:

1. the substitution rule, we replace a propositional variable pj of formula
α(p1, . . . , pn), containing propositional variables p1, . . . , pn, by a for-
mula β(q1, . . . , qk), containing propositional variables q1, . . . , qk (accord-
ing as by a formula β(Sl, Pm), containing syllogistic variables Sl, Pm), and
we obtain a new propositional formula α′(p1, . . . , pj−1, β(q1, . . . , qk), pj+1,

. . . , pn) (according as a new syllogistic formula α′(p1, . . . , pj−1, β(Sl, Pm),
pj+1, . . . , pn)):

α(p1, . . . , pj , . . . , pn)

α′(p1, . . . , pj−1, β(q1, . . . , qk), pj+1, . . . , pn)

10The proposition of Vasiľév’s syllogistic “every S is P ” has the following notation in
predicate logic: ∀x(x ∈ S+ ⇒ x ∈ P +) or ¬∃x(x ∈ S+ ∧ x /∈ P +), where S+ and P + are
closed sets, i.e., S+ = CS and P + = CP .

11The proposition of Vasiľév’s syllogistic “no S is P ” has the following notation in
predicate logic: ∀x(x ∈ S+ ⇒ x /∈ P +) or ¬∃x(x ∈ S+ ∧ x ∈ P +).

12The proposition of Vasiľév’s syllogistic “some, but not every S is P ” has the following
notation in predicate logic: ∃x(x ∈ S+ ∧ x ∈ (P + ∩ ¬P +)).
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or
α(p1, . . . , pj, . . . , pn)

α′(p1, . . . , pj−1, β(Sl, Pm), pj+1, . . . , pn)
,

For the same reason, from any syllogistic formula α(Sj , Pi) follows a new
formula α′(Sk, Pi) or α′(Sj , Pl) if we replace a syllogistic variable Sj by a
syllogistic variable Sk or Pi by Pl:

α(Sj , Pi)

α′(Sk, Pi)

or
α(Sj , Pi)

α′(Sj , Pl)
;

2. modus ponens, according to that if two formulas of Vasiľév’s syllogistic α

and α ⇒ β hold, then we deduce a formula β:

α, α ⇒ β

β
.

The axioms of Vasiľév’s syllogistic consist of the axioms of propositional
logic (e.g., of (1), (2), (3), (4), (5)), and of the following expressions that
I proposed:

(31) SaS,

(32) (MaP ∧ SaM) ⇒ SaP , i.e., Barbara,

(33) (MeP ∧ SaM) ⇒ SeP , i.e., Celarent,

(34) (MmP ∧ MaS) ⇒ SmP , i.e., Disamis-Bocardo,

(35) SeP ⇒ PeS,

(36) SaP ⇒ ¬(SeP ),

(37) SaP ⇒ ¬(SmP ),

(38) SmP ⇒ ¬(SeP ).

(39) (¬(SaP ) ∧ ¬(SeP )) ⇒ SmP.
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Using these axioms, we obtain the following tautologies:

(40) SaP ∨ SeP ∨ SmP,

i.e., the law ‘quartum non datur’,

(41) ¬(SaP ∧ SeP ),

(42) ¬(SaP ∧ SmP ),

(43) ¬(SeP ∧ SmP ),

i.e., the laws of contradiction.
Let {ϑ0, ϑ1, ϑ2, . . . , ϑn, . . . } be any infinite set with a minimal member

ϑ0 and with one operation ‘inf’ (infimum) defined on all members of this set.

Definition 15. Suppose the set F0 contains all superpositions of conjunc-
tion, disjunction, implication, negation of formulas of the form SaP , SeP ,
SmP and the set F1 contains all formulas of the form SaP , SeP , SmP .
Then the function I regarded as the map of syllogistic formulas F0 ⊆ FSA

to the set {⊤, ⊥} of truth values is defined by rules of definition 7. This
function I regarded as the map of syllogistic formulas F1 ⊆ FSA to the set
{ϑ0, ϑ1, ϑ2, . . . , ϑn, . . . } of syllogistic truth values and to the set {⊤, ⊥} of
propositional truth values is defined by the following rules:

SI =

{

ϑ0,

ϑn > ϑ0,

where by (S)I ∈ {ϑ0, ϑ1, ϑ2, . . . , ϑn, . . . } we denote a nominal constant that
we replace by the variable S.

(SaP )I =

{

⊤ if (S)I = ϑm, (P )I = ϑn, and inf(ϑm, ϑn) = ϑm,

⊥ otherwise,

(SeP )I =

{

⊤ if (S)I = ϑm, (P )I = ϑn, and inf(ϑm, ϑn) = ϑ0,

⊥ otherwise,

(SmP )I =















⊤ if (S)I = ϑm, (P )I = ϑn, inf(ϑm, ϑn) > ϑ0,

and inf(ϑm, ϑn) < ϑm,

⊥ otherwise,
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Definition 16. The ∩-semilattice B∩ = 〈B∩; ∩, 0〉 is linear if we have the
new axiom:

∀a ∈ B∩∀b ∈ B∩(a > b ∨ b > a).

Only universal affirmative propositions SaP hold in the linear ∩-semi-
lattice.

Definition 17. The ∩-semilattice B∩ = 〈B∩; ∩, 0〉 is semilinear if the fol-
lowing proposition holds:

∀a ∈ B∩∀b ∈ B∩((a > b) ∨ (b > a) ∨ (a ∩ b = 0)).

Only universal affirmative propositions SaP and universal negative
propositions SeP hold in the semilinear ∩-semilattice.

Let us remember that a set S is called closed if S = CS, where C is a
closure operator:

(44) C(S ∪ P ) = CS ∪ CP ;

(45) S ⊂ CS;

(46) CCS = CS;

(47) C0 = 0.

By S+ denote a closed set S. Notice that S+ ∩ ¬S+ 6= ∅.

Definition 18. The ∩-semilattice B = 〈B; ∩, 0〉 is called the closure ∩-
semilattice B

+ = 〈B+; ∩, 0
+〉 if all members of B are closed, i.e., we have

the following axioms:

(48) ∀a+ ∈ B+(a+ ∩ a+ = a+),

(49) ∀a+ ∈ B+∀b+ ∈ B+(a+ ∩ b+ = b+ ∩ a+),

(50) ∀a+ ∈ B+∀b+ ∈ B+∀c+ ∈ B+(a+ ∩ (b+ ∩ c+) = (a+ ∩ b+) ∩ c+),

(51) ∀a+ ∈ B+(a+ ∩ 0
+ = 0

+),

(52) ∀a+ ∈ B+∀b+ ∈ B+((a+ > b+) ∨ (b+ > a+) ∨ (a+ ∩ b+
> 0

+)),

∀a ∈ B∀b ∈ B((a ∩ b = 0 ∧ ¬(a = 0 ∨ b = 0)) ⇒
(53)

∀a+ ∈ B+∀b+ ∈ B+(a+ ∩ b+
> 0

+)),

where a+ = Ca and b+ = Cb.
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Definition 19. The lattice for the language of Vasiľév’s syllogistic is a vec-
torial lattice on the closure ∩-semilattice. Let B = 〈B; ∩, ∪, ¬, 1, 0〉 be a
Boolean algebra and let B+ = 〈B+; ∩, 0+〉 be a closure ∩-semilattice. Sup-
pose λ+

k and µ+

k are unary operations defined on the set B for any element k+

of the closure ∩-semilattice B
+. The ordered system VB = 〈B; ∩, ∪, ¬, 1, 0;

{λ+

k : k+ ∈ B+}, {µ+

k : k+ ∈ B+}〉 is called the vectorial lattice on the clo-
sure ∩-semilattice, where {λ+

k : k+ ∈ B+} (according as {µ+

k : k+ ∈ B+}) is
the set of all λ+

k (according as the set of all µ+

k ) such that k+ belongs to B+.
Every element of the set B is called a vector, every element of the set B+ is
called a scalar.

The operations λ+

k and µ+

k are defined by induction:

(54) ∀a ∈ B∀b ∈ B∀k+ ∈ B+(λ+

k (a ∩ b) = λ+

k (a) ∩ b = λ+

k (b) ∩ a);

(55) ∀a ∈ B∀b ∈ B∀k+ ∈ B+(λ+

k (a ∪ b) = λ+

k (a) ∪ λ+

k (b));

(56) ∀k+ ∈ B+(λ+

k (0) = 0);

∀k+ ∈ B+∀l+ ∈ B+(λ+

k (l+) = 0 if k+ = i+
0 ∩ j+ = j+,

(57)
l+ = ((i+

0 ∩ i+
1 ) ∩ j+) > 0

+, and l+ = ((i+
0 ∩ i+

1 ) ∩ j+) < j+;

∀k+ ∈ B+∀l+ ∈ B+(λ+

k (l+) = 0 if k+ = i+
0 ∩ j+ = j+ and

(58)
l+ = i+

1 ∩ j+ = 0
+);

∀k+ ∈ B+∀l+ ∈ B+(λ+

k (l+) = 0 if k+ = ((i+
0 ∩ i+

1 ) ∩ j+) < j+,
(59)

k+ = ((i+
0 ∩ i+

1 ) ∩ j+) > 0
+, and l+ = i+

1 ∩ j+ = 0
+);

(60) ∀a ∈ B∀b ∈ B∀k+ ∈ B+(µ+

k (a ∩ b) = µ+

k (a) ∩ µ+

k (b));

(61) ∀a ∈ B∀b ∈ B∀k+ ∈ B+(µ+

k (a ∪ b) = µ+

k (a) ∪ b = µ+

k (b) ∪ a);

(62) ∀k+ ∈ B+(µ+

k (1) = 1);

∀k+ ∈ B+∀l+ ∈ B+∀n+ ∈ B+(µ+

k (l+ ∪ n+) =

µ+

l (k+ ∪ n+) = µ+
n (k+ ∪ l+) = 1

if k+ = i+
0 ∩ j+ = j+, 0

+ < l+ = ((i+
0 ∩ i+

1 ) ∩ j+) < j+
(63)

and n+ = i+
1 ∩ j+ = 0

+).
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In all expressions i0, i1 are mutually disjoint for the given i+
0 , i+

1 such
that i+

0 ∩ i+
1 6= 0

+.
It is easy shown that we can assign a relation of the vectorial lattice on

the closure ∩-semilattice to each relation (formula) of Vasiľév’s syllogistic.
It can be checked by induction on a length of formula:

1. a complement of a vector α is assigned to a negation ¬α;

2. an intersection of vectors α and β is assigned to a conjunction α ∧ β, a
union of vectors α and β is assigned to a disjunction α ∨ β, a pseudo-
complement of a vector α relative to a vector β is assigned to an impli-
cation α ⇒ β;

3. an intersection of scalars S+ ∩ P + = S+ is assigned to a universal affir-
mative proposition SaP , an intersection of scalars S+ ∩ P + = 0

+ is as-
signed to a universal negative proposition SeP , an intersection of scalars
0

+ < S+ ∩ P + < S+ is assigned to a particular affirmative negative
proposition SmP . If S, P0 are fixed for syllogistic propositions SaP0,
SeP0, SmP0, then

(a) in the case SaP0 is true, we have

S+ ∩ P +
0 = S+ for SaP0,

S+ ∩ P +
1 = 0

+ for SeP0,

where P0, P1 are mutually disjoint and P +
0 ∩ P +

1 6= 0
+,

(b) in the case SeP0 is true, we have

S+ ∩ P +
1 = S+ for SeP0,

S+ ∩ P +
0 = 0

+ for SaP0,

where P0, P1 are mutually disjoint and P +
0 ∩ P +

1 6= 0
+,

(c) in the case SmP0 is true, we have

S+ > S+ ∩ (P +
0 ∩ P +

1 ) > 0
+ for SmP0,

where P0, P1 are mutually disjoint and P +
0 ∩ P +

1 6= 0
+,

Also, the lattice of the language of Aristotle’s syllogistic is the vecto-
rial lattice on the ∩-semilattice. The lattice of the language of Vasiľév’s
syllogistic is the vectorial lattice on the closure ∩-semilattice.
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