Janusz Ciuciura

ON THE DA COSTA, DUBIKAJTIS AND KOTAS' SYSTEM OF THE DISCURSIVE LOGIC, D_{2}^{*}

Abstract

In the late forties, Stanisław Jaśkowski published two papers on the discursive (or discussive) sentential calculus, D_{2}. He provided a definition of it by an interpretation in the language of $S 5$ of Lewis. The known axiomatization of D_{2} with discursive connectives as primitives was introduced by da Costa, Dubikajtis and Kotas in 1977. It turns out, however, that one of the axioms they used is not a thesis of the real Jaśkowski's calculus. In fact, they built a new system, D_{2}^{*} for short, that differs from D_{2} in many respects. The aim of this paper is to introduce a direct Kripke-type semantics for the system, axiomatize it in a new way and prove soundness and completeness theorems. Additionally, we present labelled tableaux for $D_{2}^{*} .{ }^{1}$

Keywords: discursive (discussive) logic, D_{2}, paraconsistent logic, labelled tableaux.

1. Introduction

The language of D_{2} is not simply formed by extending, for example, the classical propositional calculus with an extra operator (or operators) as it is in a modal case, but by replacing some of the classical connectives with their discursive counterparts, more explicitly:

[^0]Definition 1. Let var be a non-empty set of all propositional variables. The symbols: $\sim, \vee, \wedge_{d}, \rightarrow_{d}$ denote negation, disjunction, discursive conjunction and discursive implication, respectively. For $_{D_{2}}$ is defined to be the least set such that:
(i) $\alpha \in \operatorname{var} \Rightarrow \alpha \in \operatorname{For}_{D_{2}}$
(ii) $\alpha \in$ For $_{D_{2}} \Rightarrow \sim \alpha \in$ For $_{D_{2}}$
(iii) $\alpha \in$ For $_{D_{2}}$ and $\beta \in$ For $_{D_{2}} \Rightarrow \alpha \bullet \beta \in$ For $_{D_{2}}$, where $\bullet \in\left\{\mathrm{V}, \wedge_{\mathrm{d}}, \rightarrow_{\mathrm{d}}\right\} .{ }^{2}$

It seems very exotic at first sight that Jaśkowski applied a translation procedure instead of just giving a direct semantics or a set of the syntactical rules for D_{2}. His choice, however, was not accidental. ${ }^{3}$

To give an insight into the procedure, we determine a translation function of the language of D_{2} into the language of $S 5$ of Lewis, $f:$ For $_{D_{2}} \Rightarrow F o r_{S 5}$, as follows:
(i) $f\left(p_{i}\right)=p_{i}$ if $p_{i} \in$ var and $i=\{1,2,3, \ldots\}$
(ii) $f(\sim \alpha)=\sim f(\alpha)$
(iii) $f(\alpha \vee \beta)=f(\alpha) \vee f(\beta)$
(iv) $f\left(\alpha \wedge_{d} \beta\right)=f(\alpha) \wedge \diamond f(\beta)$
(v) $f\left(\alpha \rightarrow_{\mathrm{d}} \beta\right)=\diamond f(\alpha) \rightarrow f(\beta)$
and additionally:
(vi) $\forall \alpha \in$ For $_{D_{2}}: \alpha \in D_{2} \Leftrightarrow \diamond f(\alpha) \in S 5$.

By way of illustration, we demonstrate how the mechanism works in practice. Suppose then that we check whether the formula $\sim\left(\sim\left(\alpha \wedge_{\mathrm{d}} \beta\right) \vee \gamma\right) \rightarrow_{\mathrm{d}}$ $\left(\alpha \wedge_{\mathrm{d}} \sim(\sim \beta \vee \gamma)\right)$ is valid in D_{2}. As a result, we are made to apply the translation procedure and check if the formula $\diamond(\diamond \sim(\sim(\alpha \wedge \diamond \beta) \vee \gamma) \rightarrow$ $(\alpha \wedge \diamond \sim(\sim \beta \vee \gamma)))$ is valid in $S 5$. Unfortunately, it is a bit inconvenient to use the translation rules whenever we want to check out if a formula is valid in D_{2} or it is not. ${ }^{4}$

The question arises: Is D_{2} a finitely axiomatizable system? The year 1977 was a turning point. The well-known axiomatization presented by da

[^1]Costa, Dubikajtis and Kotas consists of the following axiom schemata and rules:

```
\(\left(A_{1}\right) \quad \alpha \rightarrow_{\mathrm{d}}\left(\beta \rightarrow_{\mathrm{d}} \alpha\right)\)
\(\left(A_{2}\right) \quad\left(\alpha \rightarrow_{\mathrm{d}}\left(\beta \rightarrow_{\mathrm{d}} \gamma\right)\right) \rightarrow_{\mathrm{d}}\left(\left(\alpha \rightarrow_{\mathrm{d}} \beta\right) \rightarrow_{\mathrm{d}}\left(\alpha \rightarrow_{\mathrm{d}} \gamma\right)\right)\)
\(\left(A_{3}\right) \quad\left(\left(\alpha \rightarrow_{\mathrm{d}} \beta\right) \rightarrow_{\mathrm{d}} \alpha\right) \rightarrow_{\mathrm{d}} \alpha\)
\(\left(A_{4}\right) \quad \alpha \wedge_{\mathrm{d}} \beta \rightarrow_{\mathrm{d}} \alpha\)
\(\left(A_{5}\right) \quad \alpha \wedge_{\mathrm{d}} \beta \rightarrow_{\mathrm{d}} \beta\)
\(\left(A_{6}\right) \quad \alpha \rightarrow_{\mathrm{d}}\left(\beta \rightarrow_{\mathrm{d}}\left(\alpha \wedge_{\mathrm{d}} \beta\right)\right)\)
\(\left(A_{7}\right) \quad \alpha \rightarrow_{\mathrm{d}} \alpha \vee \beta\)
\(\left(A_{8}\right) \quad \beta \rightarrow_{\mathrm{d}} \alpha \vee \beta\)
\(\left(A_{9}\right) \quad\left(\alpha \rightarrow_{\mathrm{d}} \gamma\right) \rightarrow_{\mathrm{d}}\left(\left(\beta \rightarrow_{\mathrm{d}} \gamma\right) \rightarrow_{\mathrm{d}}\left(\alpha \vee \beta \rightarrow_{\mathrm{d}} \gamma\right)\right)\)
\(\left(A_{10}\right) \quad \alpha \rightarrow_{\mathrm{d}} \sim \sim \alpha\)
\(\left(A_{11}\right) \sim \sim \alpha \rightarrow_{d} \alpha\)
\(\left(A_{12}\right) \sim(\alpha \vee \sim \alpha) \rightarrow_{\mathrm{d}} \beta\)
\(\left(A_{13}\right) \sim(\alpha \vee \beta) \rightarrow_{\mathrm{d}} \sim(\beta \vee \alpha)\)
\(\left(A_{14}\right) \sim(\alpha \vee \beta) \rightarrow_{\mathrm{d}}\left(\sim \alpha \wedge_{\mathrm{d}} \sim \beta\right)\)
\(\left(A_{15}\right) \sim(\sim \sim \alpha \vee \beta) \rightarrow_{\mathrm{d}} \sim(\alpha \vee \beta)\)
\(\left.\left(A_{16}\right) \quad\left(\sim(\alpha \vee \beta) \rightarrow_{\mathrm{d}} \gamma\right) \rightarrow_{\mathrm{d}}\left(\left(\sim \alpha \rightarrow_{\mathrm{d}} \beta\right) \vee \gamma\right)\right)\)
\(\left(A_{17}\right) \sim((\alpha \vee \beta) \vee \gamma) \rightarrow_{\mathrm{d}} \sim(\alpha \vee(\beta \vee \gamma))\)
\(\left(A_{18}\right) \sim\left(\left(\alpha \rightarrow_{\mathrm{d}} \beta\right) \vee \gamma\right) \rightarrow_{\mathrm{d}}\left(\alpha \wedge_{\mathrm{d}} \sim(\beta \vee \gamma)\right)\)
\(\left(A_{19}\right) \sim\left(\left(\alpha \wedge_{\mathrm{d}} \beta\right) \vee \gamma\right) \rightarrow_{\mathrm{d}}\left(\alpha \rightarrow_{\mathrm{d}} \sim(\beta \vee \gamma)\right)\)
\(\left(A_{20}\right) \sim(\sim(\alpha \vee \beta) \vee \gamma) \rightarrow_{\mathrm{d}}(\sim(\sim \alpha \vee \gamma) \vee \sim(\sim \beta \vee \gamma))\)
\(\left(A_{21}\right) \sim\left(\sim\left(\alpha \rightarrow_{\mathrm{d}} \beta\right) \vee \gamma\right) \rightarrow_{\mathrm{d}}\left(\alpha \rightarrow_{\mathrm{d}} \sim(\sim \beta \vee \gamma)\right)\)
\(\left(A_{22}\right) \sim\left(\sim\left(\alpha \wedge_{\mathrm{d}} \beta\right) \vee \gamma\right) \rightarrow_{\mathrm{d}}\left(\alpha \wedge_{\mathrm{d}} \sim(\sim \beta \vee \gamma)\right)\)
\((\mathrm{MP})^{*} \alpha, \alpha \rightarrow_{\mathrm{d}} \beta / \beta\)
\(\left(R_{\mathrm{d}} 1\right) \alpha \leftrightarrow_{\mathrm{d}} \beta=\left(\alpha \rightarrow_{\mathrm{d}} \beta\right) \wedge_{\mathrm{d}}\left(\beta \rightarrow_{\mathrm{d}} \alpha\right)\)
\(\left(R_{\mathrm{d}} 2\right) \alpha \rightarrow \beta=\sim \alpha \vee \beta\)
\(\left(R_{\mathrm{d}} 3\right) \circ \alpha=\sim(\alpha \vee \sim \alpha)\)
\(\left(R_{\mathrm{d}} 4\right) \square \alpha=\sim \alpha \rightarrow_{\mathrm{d}} \circ \alpha\)
\(\left(R_{\mathrm{d}} 5\right) \diamond \alpha=\sim \square \sim \alpha\)
\(\left(R_{\mathrm{d}} 6\right) \alpha \wedge \beta=\sim(\sim \alpha \vee \sim \beta)\)
\(\left(R_{\mathrm{d}} 7\right) \alpha \leftrightarrow \beta=(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha) .{ }^{5}\)
```

It is amazing that their construction has been widely recognized as a real axiomatization of D_{2}. To shed some light on the point, take the axiom schema:
$\left(A_{19}\right) \sim\left(\left(\alpha \wedge_{\mathrm{d}} \beta\right) \vee \gamma\right) \rightarrow_{\mathrm{d}}\left(\alpha \rightarrow_{\mathrm{d}} \sim(\beta \vee \gamma)\right)$

[^2]apply the translation procedure to obtain:
$$
\diamond(\diamond \sim((\alpha \wedge \diamond \beta) \vee \gamma) \rightarrow(\diamond \alpha \rightarrow \sim(\beta \vee \gamma)))
$$
and check if the translated formula is valid in $S 5$ of Lewis.
Corollary 1. The formula is not valid in $S 5$ of Lewis (for every $\alpha, \beta, \gamma \in$ For ${ }_{55}$).

We solve the problem defining a new function $f^{*}:$ For $_{D_{2}} \Rightarrow$ For $_{S 5}$ in the following way:

$$
\begin{aligned}
& \text { (i)' } f^{*}\left(p_{i}\right)=p_{i} \text { if } p_{i} \in \text { var and } i=\{1,2,3, \ldots\} \\
& \text { (ii) } f^{*}(\sim \alpha)=\sim f^{*}(\alpha) \\
& \text { (iii), } f^{*}(\alpha \vee \beta)=f^{*}(\alpha) \vee f^{*}(\beta) \\
& \text { (iv)' } f^{*}\left(\alpha \wedge_{\mathrm{d}} \beta\right)=\diamond f^{*}(\alpha) \wedge f^{*}(\beta) \\
& \text { (v) } f^{*}\left(\alpha \rightarrow_{\mathrm{d}} \beta\right)=\diamond f^{*}(\alpha) \rightarrow f^{*}(\beta)
\end{aligned}
$$

and introducing the key definition:

$$
(\mathrm{vi})^{\prime} \forall_{\alpha \in F_{o r D_{2}}}: \alpha \in D_{2} \Leftrightarrow \diamond f^{*}(\alpha) \in S 5 .
$$

Let D_{2}^{*} denote the system defined by the new translation.
Corollary 2. All of the axiom schemata are valid in D_{2}^{*} and (MP)* preserves validity.

Note that despite their superficial similarities, the two systems (D_{2} and D_{2}^{*}) are slightly different. ${ }^{6}$

2. Kripke-type Semantics for D_{2}^{*}

Although we depicted how to translate any discursive formula into its modal counterpart, the procedures introduced in Section 1 were a little unhandy and time-consuming to handle in practice. The inconvenience results in the search for a new semantic tool we could use trying to avoid passing through the translation rules. In aid of it we present here a Kripke-type semantics for D_{2}^{*}.

A frame (D_{2}^{*}-frame) is a pair $\langle W, R\rangle$ where W is a non-empty set (of possible worlds) and R is a binary relation on W. Moreover, R is subject to the conditions:

[^3](i) $\forall_{x \in W}(x R x)$
(ii) $\forall_{x, y \in W}(x R y \Rightarrow y R x)$
(iii) $\forall_{x, y, z \in W}(x R y$ and $y R z \Rightarrow x R z)$.

The conditions define R as being the equivalence relation on W.
A model $\left(D_{2}^{*}\right.$-model $)$ is a triple $\langle W, R, v\rangle$ where v is a mapping from propositional variables to sets of worlds, $v: \operatorname{var} \Rightarrow 2^{W}$. The satisfaction relation \models_{m} is inductively defined:

$$
\begin{array}{cll}
(\text { var }) & x \models_{m} p_{i} & \Leftrightarrow x \in v\left(p_{i}\right) \text { and } i=\{1,2,3, \ldots\} \\
(\sim) & x \models_{m} \sim \alpha & \Leftrightarrow x \not \models_{m} \alpha \\
(\vee) & x \models_{m} \alpha \vee \beta & \Leftrightarrow x \models_{m} \alpha \text { or } x \models_{m} \beta \\
\left(\wedge_{\mathrm{d}}\right) & x \models_{m} \alpha \wedge_{\mathrm{d}} \beta & \Leftrightarrow \exists_{y \in W}\left(x R y \text { and } y \models_{m} \alpha\right) \text { and } x \models_{m} \beta \\
\left(\rightarrow_{\mathrm{d}}\right) & x \models_{m} \alpha \rightarrow_{\mathrm{d}} \beta & \Leftrightarrow \text { if } \exists_{y \in W}\left(x R y \text { and } y \models_{m} \alpha\right) \text { then } x \models_{m} \beta .
\end{array}
$$

We define the notion of a valid sentence as follows:

$$
\models \alpha \Leftrightarrow \quad \text { for any model }\langle W, R, v\rangle, \forall_{x \in W}, \exists_{y \in W}\left(x R y \text { and } y \models_{m} \alpha\right)
$$

Notice that the non-standard definition is a direct result of (vi)'. Furthermore, not only is the discursive equivalence definable in our semantics:

$$
\alpha \leftrightarrow_{\mathrm{d}} \beta=\left(\alpha \rightarrow_{\mathrm{d}} \beta\right) \wedge_{\mathrm{d}}\left(\beta \rightarrow_{\mathrm{d}} \alpha\right)
$$

but also the discursive implication can be eliminated:

$$
\alpha \rightarrow_{\mathrm{d}} \beta=\sim\left(\alpha \wedge_{\mathrm{d}}\left(p_{1} \vee \sim p_{1}\right)\right) \vee \beta
$$

Now we can establish a link between the translation rules and the semantics in question.

Corollary 3. $\forall_{\alpha \in \text { For }_{D_{2}^{*}}}: \models \alpha \Leftrightarrow \alpha \in D_{2}^{*}\left(\Leftrightarrow \diamond f^{*}(\alpha) \in S 5\right)$.
Proof. By induction. First, we have to prove that for every model $\langle W, R, v\rangle$ and every $x \in W$ it is true that $x \models_{m} \alpha \Leftrightarrow x \models \# f^{*}(\alpha)$, where $\models^{\#} \subseteq$ $W \times$ For $_{S 5}$ is the satisfaction relation defined in any $S 5$-model $\langle W, R, v\rangle$.
Case (1): $\alpha=p_{i}, i=\{1,2,3, \ldots\}$.

$$
x \models_{m} p_{i} \Leftrightarrow x \in v\left(p_{i}\right) \Leftrightarrow x \models^{\#} p_{i} \Leftrightarrow x \models \models^{\#}\left(p_{i}\right) .
$$

Case (2): $\alpha=\sim \gamma$ 。

$$
x \models_{m} \sim \gamma \Leftrightarrow x \not \models_{m} \gamma \Leftrightarrow x \nexists^{\#} f^{*}(\gamma) \Leftrightarrow x \models \# \sim f^{*}(\gamma) \Leftrightarrow x \models \# f^{*}(\sim \gamma)
$$

Case (3): $\alpha=\gamma \vee \delta$.
$x \models_{m} \gamma \vee \delta \Leftrightarrow\left[x \models_{m} \gamma\right.$ or $\left.x \models_{m} \delta\right] \Leftrightarrow\left[x \models \# f^{*}(\gamma)\right.$ or $\left.x \models \# f^{*}(\delta)\right] \Leftrightarrow$ $\Leftrightarrow x \models \# f^{*}(\gamma) \vee f^{*}(\delta) \Leftrightarrow x \models \# f^{*}(\gamma \vee \delta)$.
Case (4): $\alpha=\gamma \wedge_{d} \delta$,
$x \models_{m} \gamma \wedge_{\mathrm{d}} \delta \Leftrightarrow\left[\left(\exists_{y \in W}\left(x R y\right.\right.\right.$ and $\left.y \models_{m} \gamma\right)$ and $\left.\left.x \models_{m} \delta\right)\right] \Leftrightarrow$
$\Leftrightarrow\left[\exists \exists_{y \in W}\left(x R y\right.\right.$ and $\left.y \models \# f^{*}(\gamma)\right)$ and $\left.\left.x \models \# f^{*}(\delta)\right)\right] \Leftrightarrow$
$\Leftrightarrow\left[x \models \# \diamond f^{*}(\gamma)\right.$ and $\left.x \models^{\#} f^{*}(\delta)\right] \Leftrightarrow x \models \# \diamond f^{*}(\gamma) \wedge f^{*}(\delta) \Leftrightarrow$
$\Leftrightarrow x \models \# f^{*}\left(\gamma \wedge_{\mathrm{d}} \delta\right)$.
Next we show that
$\models \alpha \Leftrightarrow \quad$ in any model $\langle W, R, v\rangle, \forall_{x \in W} \exists_{y \in W}\left(x R y\right.$ and $\left.y \models_{m} \alpha\right)$
$\Leftrightarrow \quad$ in any model $\langle W, R, v\rangle, \forall_{x \in W} \exists_{y \in W}\left(x R y\right.$ and $\left.y \models \# f^{*}(\alpha)\right)$
$\Leftrightarrow \quad$ in any model $\langle W, R, v\rangle, \forall_{x \in W}\left(x \models \# \diamond f^{*}(\alpha)\right)$
$\Leftrightarrow \diamond f^{*}(\alpha) \in S 5$ $\Leftrightarrow \quad \alpha \in D_{2}$.

The translation procedure became redundant and we succeeded in constructing a new (direct) semantics for D_{2}^{*}. All the axiom schemata $\left(A_{1}\right)-$ $\left(A_{22}\right)$ are valid in the modified semantics (and (MP)* preserves validity).

Since the accessibility relation defined on D_{2}^{*}-frames is reflexive, symmetric and transitive, it implies that any world is accessible from any other and we might well considere the relation to be complete. Consequently, the notion of D_{2}^{*}-model can be simplified to the form:

A model $\left(D_{2}^{*}\right.$-model) is a pair $\langle W, v\rangle$ where W is a non-empty set (of possible worlds, points, etc.) and v is a function that each pair consisting of a formula and a point assigns an element of $\{1,0\}, v:$ For $_{D_{2}^{*}} \times W \Rightarrow\{1,0\}$, defined as follows:

$$
\begin{array}{lll}
(\sim) & v(\sim \alpha, x)=1 & \Leftrightarrow v(\alpha, x)=0 \\
(\vee) & v(\alpha \vee \beta, x)=1 & \Leftrightarrow v(\alpha, x)=1 \text { or } v(\beta, x)=1 \\
\left(\wedge_{\mathrm{d}}\right) & v\left(\alpha \wedge_{\mathrm{d}} \beta, x\right)=1 & \Leftrightarrow \exists_{y \in W}(v(\alpha, y)=1) \text { and } v(\beta, x)=1 \\
\left(\rightarrow_{\mathrm{d}}\right) & v\left(\alpha \rightarrow_{\mathrm{d}} \beta, x\right)=1 & \Leftrightarrow \forall_{y \in W}(v(\alpha, y)=0) \text { or } v(\beta, x)=1 .
\end{array}
$$

The notion of a valid sentence also needs to be modified:

$$
\models \alpha \Leftrightarrow \quad \text { in any model }\langle W, v\rangle, \exists_{y \in W}(v(\alpha, y)=1)
$$

It is worth mentioning that the most of the notorious, in a very real paraconsistent sense, formulas are not valid in D_{2}^{*}, for instance:
(1) $p \rightarrow_{\mathrm{d}}\left(\sim p \rightarrow_{\mathrm{d}} q\right)$
(2) $p \rightarrow_{\mathrm{d}}\left(\sim p \rightarrow_{\mathrm{d}} \sim q\right)$
(3) $\left(p \rightarrow_{\mathrm{d}} q\right) \rightarrow_{\mathrm{d}}\left(\sim q \rightarrow_{\mathrm{d}} \sim p\right)$
(4) $\left(\sim p \rightarrow_{\mathrm{d}} \sim q\right) \rightarrow_{\mathrm{d}}\left(q \rightarrow_{\mathrm{d}} p\right)$
(5) $\left(p \rightarrow_{\mathrm{d}} q\right) \rightarrow_{\mathrm{d}}\left(\sim\left(p \rightarrow_{\mathrm{d}} q\right) \rightarrow_{\mathrm{d}} r\right)$
(6) $p \rightarrow_{\mathrm{d}}\left(\sim p \rightarrow_{\mathrm{d}}\left(\sim \sim p \rightarrow_{\mathrm{d}} q\right)\right)$
(7) $\left(p \wedge_{\mathrm{d}} \sim p\right) \rightarrow_{\mathrm{d}} q$.

3. New Axiomatization of D_{2}^{*}

In this section, we present a new axiomatization of D_{2}^{*} making use of the discursive connectives occurring directly in a set of axiom schemata. The role of axiom schemata of D_{2}^{*} can be taken on by the following:

$$
\begin{aligned}
& \left(A_{1}\right) \alpha \rightarrow_{\mathrm{d}}\left(\beta \rightarrow_{\mathrm{d}} \alpha\right) \\
& \left(A_{2}\right)\left(\alpha \rightarrow_{\mathrm{d}}\left(\beta \rightarrow_{\mathrm{d}} \gamma\right)\right) \rightarrow_{\mathrm{d}}\left(\left(\alpha \rightarrow_{\mathrm{d}} \beta\right) \rightarrow_{\mathrm{d}}\left(\alpha \rightarrow_{\mathrm{d}} \gamma\right)\right) \\
& \left(A_{3}\right)\left(\left(\alpha \rightarrow_{\mathrm{d}} \beta\right) \rightarrow_{\mathrm{d}} \alpha\right) \rightarrow_{\mathrm{d}} \alpha \\
& \left(A_{4}\right) \alpha \wedge_{\mathrm{d}} \beta \rightarrow_{\mathrm{d}} \alpha \\
& \left(A_{5}\right) \alpha \wedge_{\mathrm{d}} \beta \rightarrow_{\mathrm{d}} \beta \\
& \left(A_{6}\right) \alpha \rightarrow_{\mathrm{d}}\left(\beta \rightarrow_{\mathrm{d}}\left(\alpha \wedge_{\mathrm{d}} \beta\right)\right) \\
& \left(A_{7}\right) \alpha \rightarrow_{\mathrm{d}} \alpha \vee \beta \\
& \left(A_{8}\right) \beta \rightarrow_{\mathrm{d}} \alpha \vee \beta \\
& \left(A_{9}\right)\left(\alpha \rightarrow_{\mathrm{d}} \gamma\right) \rightarrow_{\mathrm{d}}\left(\left(\beta \rightarrow_{\mathrm{d}} \gamma\right) \rightarrow_{\mathrm{d}}\left(\alpha \vee \beta \rightarrow_{\mathrm{d}} \gamma\right)\right) . \\
& \left(A_{9}\right) \alpha \vee \sim_{d} \\
& \left(A_{10}\right) \alpha \rightarrow_{\mathrm{d}} \sim\left(\sim(\alpha \vee \beta) \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \alpha\right) \\
& \left(A_{11}\right) \sim\left(\sim(\alpha \vee \beta) \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \alpha\right) \rightarrow_{\mathrm{d}} \sim\left(\sim(\alpha \vee \beta \vee \gamma) \wedge_{\mathrm{d}} \sim \gamma \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \alpha\right) \\
& \left(A_{12}\right) \sim\left(\sim(\alpha \vee \gamma \vee \beta) \wedge_{\mathrm{d}} \sim \gamma \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \alpha\right) \rightarrow_{\mathrm{d}} \\
& \left(A_{13}\right) \sim\left(\sim(\alpha \vee \beta) \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \alpha\right) \rightarrow_{\mathrm{d}} \sim\left(\sim(\alpha \vee \beta \vee \beta \vee \gamma) \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \gamma \wedge_{\mathrm{d}} \sim \alpha\right) \\
& \left(A_{14}\right) \sim\left(\sim(\alpha \vee \beta \vee \gamma) \wedge_{\mathrm{d}} \sim \gamma \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \alpha\right) \rightarrow_{\mathrm{d}}\left((\alpha \vee \beta \vee \beta \vee \sim \gamma) \rightarrow_{\mathrm{d}}(\alpha \vee \beta)\right) \\
& \left(A_{15}\right) \sim\left(\sim(\alpha \vee \beta \vee \gamma) \wedge_{\mathrm{d}} \sim \gamma \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \alpha\right) \rightarrow_{\mathrm{d}} \\
& \quad \quad \rightarrow_{\mathrm{d}}\left(\sim\left(\sim(\alpha \vee \beta \vee \sim \gamma) \wedge_{\mathrm{d}} \sim \sim \gamma \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \alpha\right) \rightarrow_{\mathrm{d}} \sim\left(\sim \beta \wedge_{\mathrm{d}} \sim \alpha\right)\right) \\
& \left(A_{16}\right) \sim\left(\sim \alpha \wedge_{\mathrm{d}} \sim \beta\right) \rightarrow_{\mathrm{d}}(\alpha \vee \beta) \\
& \left(A_{17}\right)(\alpha \vee \sim \sim \beta) \rightarrow_{\mathrm{d}}(\alpha \vee \beta) \\
& \left(A_{18}\right)(\alpha \vee \beta) \rightarrow_{\mathrm{d}}(\alpha \vee \sim \sim \beta)
\end{aligned}
$$

The sole rule of inference is Detachment Rule
$(\mathrm{MP})^{*} \quad \alpha, \alpha \rightarrow_{\mathrm{d}} \beta / \beta$

The consequence relation $\vdash_{D_{2}^{*}}$ is determined by the set of axioms and (MP)*.

Observe that $\left(A_{1}\right),\left(A_{2}\right)$ are axiom schemata of D_{2}^{*} and our system is closed under the detachment rule. It immediately follows that the proof of the deduction theorem is standard.
Theorem 1. $\Phi \vdash_{D_{2}^{*}} \alpha \rightarrow_{\mathrm{d}} \beta \Leftrightarrow \Phi \cup\{\alpha\} \vdash_{D_{2}^{*}} \beta$, where $\alpha, \beta \in$ For $_{D_{2}^{*}}^{*}, \Phi \subseteq$ For $_{D_{2}^{*}}$.
Corollary 4. The formulas listed below are provable in D_{2}^{*} :
$\left(T_{1}\right)(\alpha \vee \alpha) \rightarrow_{\mathrm{d}} \alpha$
$\left(T_{2}\right) \quad(\alpha \vee \beta) \leftrightarrow_{\mathrm{d}}(\beta \vee \alpha)$
$\left(T_{3}\right) \quad((\alpha \vee \beta) \vee \gamma) \leftrightarrow_{\mathrm{d}}(\alpha \vee(\beta \vee \gamma))$
$\left(T_{4}\right) \quad\left(\alpha \vee\left(\beta \rightarrow_{\mathrm{d}} \gamma\right)\right) \leftrightarrow_{\mathrm{d}}\left((\alpha \vee \beta) \rightarrow_{\mathrm{d}}(\alpha \vee \gamma)\right)$
$\left(T_{5}\right) \quad \alpha \vee\left(\alpha \rightarrow_{\mathrm{d}} \beta\right)$
$\left(T_{6}\right) \quad\left(\alpha \rightarrow_{\mathrm{d}} \beta\right) \rightarrow_{\mathrm{d}}\left((\gamma \vee \alpha) \rightarrow_{\mathrm{d}}(\gamma \vee \beta)\right)$
$\left(T_{7}\right)\left(\alpha \rightarrow_{\mathrm{d}}\left(\alpha \rightarrow_{\mathrm{d}} \beta\right)\right) \rightarrow_{\mathrm{d}} \beta$
(T_{8}) $(\beta \vee \alpha \vee \beta) \rightarrow_{\mathrm{d}}(\alpha \vee \beta)$
$\left(T_{9}\right) \sim\left(\sim(\alpha \vee \beta) \wedge_{d} \sim \beta \wedge_{d} \sim \alpha\right) \rightarrow_{d}$
$\rightarrow_{\mathrm{d}}\left(\sim\left(\sim(\alpha \vee \sim \beta) \wedge_{\mathrm{d}} \sim \sim \beta \wedge_{\mathrm{d}} \sim \alpha\right) \rightarrow_{\mathrm{d}} \alpha\right)$
and the set of $\left\{\alpha: \vdash_{D_{2}^{*}} \alpha\right\}$ is closed under the rules:
$\left(R_{1}\right) \alpha, \beta / \alpha \wedge_{d} \beta$
$\left(R_{2}\right) \alpha \wedge_{\mathrm{d}} \beta / \alpha(\beta)$
$\left(R_{3}\right) \alpha(\beta) / \alpha \vee \beta$.
Proof. We prove $\left(T_{1}\right)-\left(T_{8}\right)$ in much the same way as it is in the (positive) classical case. $\left(T_{9}\right)$:

1. $\sim\left(\sim(\alpha \vee \beta) \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \alpha\right)$ by deduction theorem
2. $\sim\left(\sim(\alpha \vee \sim \beta) \wedge_{\mathrm{d}} \sim \sim \beta \wedge_{\mathrm{d}} \sim \alpha\right)$ by deduction theorem
3. $(\alpha \vee \sim \beta) \vee \sim \beta \vee \alpha \quad\left(A_{16}\right), 2$ and $(\mathrm{MP})^{*}$
4. $\alpha \vee \sim \beta \quad\left(T_{8}\right),\left(T_{3}\right), 3$ and (MP)*
5. α
$\left(A_{13}\right), 1,4$ and (MP)*
$\left(R_{1}\right)-\left(R_{3}\right)$ are obvious due to $\left(A_{6}\right),\left(A_{5}\right),\left(A_{4}\right),\left(A_{7}\right),\left(A_{8}\right)$ and (MP)*.
Corollary 5. Each of the axiom schemata of $D_{2}^{*},\left(A_{1}\right)-\left(A_{18}\right)$, becomes a schema of the thesis of the classical propositional calculus after replacing in A_{i}, where $i \in\{1, \ldots, 18\}$, all the discursive connectives with their classical counterparts (i.e. $\rightarrow_{\mathrm{d}} / \rightarrow$ and $\wedge_{\mathrm{d}} / \wedge$). ${ }^{7}$ The rule (MP)* becomes an

[^4]admissible rule of $C P C$ after replacing \rightarrow_{d} with \rightarrow.
Let $\left(D_{2}^{*}\right)=\left\{\alpha: \vdash_{\left(D_{2}^{*}\right)} \alpha\right\}$ be the system described in Corollary 5 and $C P C=\left\{\alpha: \vdash_{C P C} \alpha\right\}$.

Corollary 6. $\left(D_{2}^{*}\right) \subset C P C$.

4. Soundness and Completeness

Theorem 2 (Soundness). $\vdash_{D_{2}^{*}} \alpha \Rightarrow \models \alpha$.
Proof. By induction. All that needs to be checked is that $\left(A_{1}\right)-\left(A_{18}\right)$ are valid and (MP)* preserves validity.

Theorem 3 (Completeness). $\models \alpha \Rightarrow \vdash_{D_{2}^{*}} \alpha$
Proof. (Outline). Assume that $\vdash_{D_{2}^{*}} \alpha$ (by contraposition) and $\models \alpha$. Define a sequence of all the formulas of D_{2}^{*} as follows:

$$
\Gamma=\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots \quad \text { where } \gamma_{1}=\alpha
$$

Define the family of (finite) subsequences of Γ :
$\Delta_{1}=\delta_{1}$
$\Delta_{2}=\delta_{1}, \delta_{2}$
$\Delta_{3}=\delta_{1}, \delta_{2}, \delta_{3}$
where $\delta_{1}=\gamma_{1}=\alpha$
where $\delta_{1}=\gamma_{1}=\alpha$ and $\delta_{2}=\gamma_{i}$ iff $\not D_{2}^{*} \delta_{1} \vee \gamma_{i}$, otherwise take the very next formula(s) occurring in Γ, γ_{j} for short, and check if $\vdash_{D_{2}^{*}} \delta_{1} \vee \gamma_{j}$ where $\delta_{1}=\gamma_{1}=\alpha, \delta_{2}=\gamma_{i}$ and $\delta_{3}=\gamma_{i+n}$ iff $\vdash_{D_{2}^{*}}$ $\delta_{1} \vee \delta_{2} \vee \gamma_{i+n}$, otherwise go on testing the very next formulas of the sequence Γ

\vdots

$\Delta_{n}=\delta_{1}, \delta_{2}, \delta_{3}, \ldots, \delta_{n}$
\vdots
Next define:
$\nabla_{1}=\underbrace{\delta_{1}}_{\Delta_{1}}, \underbrace{\delta_{1}, \delta_{2}}_{\Delta_{2}}, \underbrace{\delta_{1}, \delta_{2}, \delta_{3}}_{\Delta_{3}}, \ldots, \underbrace{\delta_{1}, \delta_{2}, \delta_{3}, \ldots, \delta_{n}}_{\Delta_{n}}, \ldots$
$\nabla_{2}=\underbrace{\delta_{1}, \delta_{2}}_{\Delta_{2}}, \underbrace{\delta_{1}, \delta_{2}, \delta_{3}}_{\Delta_{3}}, \ldots, \underbrace{\delta_{1}, \delta_{2}, \delta_{3}, \ldots, \delta_{n}}_{\Delta_{n}}, \ldots$
$\begin{aligned} \nabla_{3} & =\underbrace{\delta_{1}^{\Delta_{2}} \delta_{2}, \delta_{3}}_{\Delta_{3}}, \cdots, \underbrace{\Delta_{3}}_{\Delta_{n}}, \ldots, \delta_{1}, \delta_{2}, \delta_{3}, \ldots, \delta_{n} \\ & \vdots\end{aligned}$

$$
\begin{aligned}
\nabla_{n} & =\underbrace{\delta_{1}, \ldots, \delta_{n}}_{\Delta_{n}}, \ldots, \underbrace{\delta_{1}, \delta_{2}, \delta_{3}, \ldots, \delta_{n+k}}_{\Delta_{n+k}}, \ldots \\
& \vdots
\end{aligned}
$$

Observe that all the sequences are infinite.
From now on we use ∇_{i}, where $i=\{1,2,3, \ldots\}$, to denote both the i-sequence and the set of formulas which contains all the elements of the i-sequence. Additionally, let $\nabla=\left\{\nabla_{1}, \nabla_{2}, \ldots \nabla_{i}, \ldots, \nabla_{n}, \ldots\right\}$.

Lemma 1. (i) $\forall_{D_{2}^{*}} \delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{n}$, for any $n \in N$
(ii) if $\beta \notin \nabla_{i}$, then $\vdash_{D_{2}^{*}} \delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k} \vee \beta$, for some $k \in N$.

Proof. Apply the definition of ∇_{i}, where $i=\{1,2,3, \ldots\}$.
Definition 2. $\nabla_{i} \mathbf{R} \nabla_{k} \Leftrightarrow\left(\nabla_{i}=\nabla_{k}\right)$, for every $\nabla_{i}, \nabla_{k} \in \nabla$.
Lemma 2. \mathbf{R} is the equivalence relation on ∇.
Proof. Immediately from Definition 2.
In Section 2, we mentioned that the connectives of $\leftrightarrow_{\mathrm{d}}$ and \rightarrow_{d} were redundant. This fact simplifies a proof of the next lemma.

LEMMA 3. $\forall_{\beta, \gamma \in \text { For }_{D_{2}^{*}}}, \forall_{\nabla_{i}, \nabla_{k} \in \nabla}$:
(i) $\beta \vee \gamma \in \nabla_{i} \Leftrightarrow \beta \in \nabla_{i}$ and $\gamma \in \nabla_{i}$
(ii) $\beta \wedge_{\mathrm{d}} \gamma \in \nabla_{i} \Leftrightarrow \forall_{\nabla_{k} \in \nabla}\left(\nabla_{i} \mathbf{R} \nabla_{k} \Rightarrow \beta \in \nabla_{k}\right)$ or $\gamma \in \nabla_{i}$
(iii) $\sim \beta \in \nabla_{i} \Leftrightarrow \beta \notin \nabla_{i}$.

Proof. We only show (ii) and (iii).
(ii) \Rightarrow. Let (1) $\beta \wedge_{d} \gamma \in \nabla_{i},(2) \exists \nabla_{k} \in \nabla\left(\nabla_{i} \mathbf{R} \nabla_{k}\right.$ and $\left.\beta \notin \nabla_{k}\right)$ and $\gamma \notin \nabla_{i}$. Then, due to (2), we obtain (3) $\nabla_{i} \mathbf{R} \nabla_{k}$, (4) $\beta \notin \nabla_{k}$ and (5) $\gamma \notin \nabla_{i}$. By Definition 2 and (4), we have (6) $\beta \notin \nabla_{i}$ and consequently (7) $\vdash_{D_{2}^{*}}$ $\delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k} \vee \beta$, for some $k \in N$ (Lemma 1(ii) and (6)), (8) $\vdash_{D_{2}^{*}} \delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{r} \vee \gamma$, for some $r \in N$ (Lemma 1 (ii) and (5)). Suppose that $k \geq r$ (we prove the second case, i.e. $r>k$, on much the same way as $k \geq r)$. Apply $\left(R_{3}\right),\left(T_{2}\right),\left(T_{3}\right),(\mathrm{MP})^{*}$ to (8), to get (9) $\vdash_{D_{2}^{*}} \delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k} \vee \gamma$. Now use $\left(R_{1}\right)$ to obtain $(10) \vdash_{D_{2}^{*}}\left(\delta_{1} \vee \cdots \vee\right.$ $\left.\delta_{1} \vee \cdots \vee \delta_{k} \vee \beta\right) \wedge_{\mathrm{d}}\left(\delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k} \vee \gamma\right)$ and finally, $\left(T_{4}\right)$ to get (11) $\vdash_{D_{2}^{*}}\left(\delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k}\right) \vee\left(\beta \wedge_{\mathrm{d}} \gamma\right)$. Obviously, $\delta_{1}, \delta_{2}, \ldots, \delta_{k}, \beta \wedge_{\mathrm{d}} \gamma$ $\in \nabla_{i}$. A contradiction due to Lemma 1(i).
(ii) \Leftarrow. Assume that (1) $\forall_{\nabla_{k} \in \nabla}\left(\nabla_{i} \mathbf{R} \nabla_{k} \Rightarrow \beta \in \nabla_{k}\right)$ or $\gamma \in \nabla_{i}$ and (2) $\beta \wedge_{\mathrm{d}} \gamma \notin \nabla_{i}$. Subcase (a): if (1) $\forall_{\nabla_{k} \in \nabla}\left(\nabla_{i} \mathbf{R} \nabla_{k} \Rightarrow \beta \in \nabla_{k}\right),(2) \beta \wedge_{\mathrm{d}} \gamma \notin \nabla_{i}$, then (3) $\beta \in \nabla_{i}($ by $\mathbf{R})$ and (4) $\vdash_{D_{2}^{*}}\left(\delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k}\right) \vee\left(\beta \wedge_{\mathrm{d}} \gamma\right)$, for some $k \in N$ (Lemma 1(ii) and (2)). Now apply (T_{4}) to get (5) $\vdash_{D_{2}^{*}}$ $\left(\delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k} \vee \beta\right) \wedge_{\mathrm{d}}\left(\delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k} \vee \gamma\right)$ and $\left(R_{2}\right)$ to obtain (6) $\vdash_{D_{2}^{*}} \delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k} \vee \beta$, but $\delta_{1}, \ldots, \delta_{k}, \beta \in \nabla_{i}$. A contradition due to Lemma 1(i). Subcase (b): (1) $\gamma \in \nabla_{i}$ and (2) $\beta \wedge_{d} \gamma \notin \nabla_{i}$. Now proceed analogously to the subcase (a).
(iii) \Rightarrow. Assume that $\sim \beta \in \nabla_{i}$ and $\beta \in \nabla_{i}$. It means the formula $\beta \vee \sim \beta$ is not a thesis of D_{2}^{*} (Lemma 1 (i)). A contradiction due to $\left(A_{9}\right)$.
(iii) \Leftarrow. Let ∇_{i} be a sequence $i=\{1,2,3, \ldots\}$. For every ∇_{i} define:

$$
\nabla_{i}^{*}=\delta_{1}^{*}, \delta_{2}^{*}, \delta_{3}^{*}, \delta_{4}^{*}, \ldots
$$

where
(a) $\delta_{1}^{*}=\delta_{1}=\gamma_{1}=\alpha$
(b) for every $\delta_{n} \in \nabla_{i}:\left(\delta_{n}=\delta_{k}^{*}\right) \Leftrightarrow \nvdash D_{2}^{*} \sim\left(\sim\left(\delta_{1}^{*} \vee \ldots \vee \delta_{k}^{*}\right) \wedge_{\mathrm{d}} \sim \delta_{k}^{*} \wedge_{\mathrm{d}} \ldots \wedge_{\mathrm{d}} \sim \delta_{1}^{*}\right)$.

Definition 3. We call a formula β classical if it does not include constant symbols other than \sim and \vee. We call a formula β discursive if it contains at least one discursive connective. A formula β is a discursive thesis if it is a thesis and discursive.

Corollary 7. (i) $\nabla_{i}^{*} \subseteq \nabla_{i}$, for every $i \in\{1,2,3, \ldots\}$
(ii) $\forall D_{2}^{*} \sim\left(\sim\left(\delta_{1}^{*} \vee \cdots \vee \delta_{n}^{*}\right) \wedge_{d} \sim \delta_{n}^{*} \wedge_{\mathrm{d}} \ldots \wedge_{\mathrm{d}} \sim \delta_{1}^{*}\right)$, for every $n \in N$
(iii) If β is not a discursive thesis, $\beta \notin \nabla_{i}$, then $\vdash_{D_{2}^{*}} \sim\left(\sim\left(\delta_{1}^{*} \vee \cdots \vee \delta_{k}^{*} \vee \beta\right)\right.$ $\left.\wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \delta_{k}^{*} \wedge_{\mathrm{d}} \ldots \wedge_{\mathrm{d}} \sim \delta_{1}^{*}\right)$, for some $k \in N$.

Now assume that (1) $\sim \beta \notin \nabla_{i}$ and (2) $\beta \notin \nabla_{i}$. Apply Lemma 1(ii), to get (3) $\vdash_{D_{2}^{*}} \delta_{1} \vee \cdots \vee \delta_{m} \vee \sim \beta$ and (4) $\vdash_{D_{2}^{*}} \delta_{1} \vee \cdots \vee \delta_{n} \vee \beta$, for some $m, n \in N$. Suppose that $m \geq n$ (the case $n>m$ is similar to $m \geq n$). Use $\left(R_{3}\right),\left(T_{2}\right)$, $\left(T_{3}\right),(\mathrm{MP})^{*}$ to (4), to obtain (5) $\vdash_{D_{2}^{*}} \delta_{1} \vee \cdots \vee \delta_{m} \vee \beta$. If $\sim \beta \notin \nabla_{i}, \beta \notin \nabla_{i}$ and $\nabla_{i}^{*} \subseteq \nabla_{i}$, then (6) $\sim \beta \notin \nabla_{i}^{*}$, (7) $\beta \notin \nabla_{i}^{*}$. We have to consider three subcases:
(A) neither β nor $\sim \beta$ is a discursive thesis
(B) β is a discursive thesis, but $\sim \beta$ is not a discursive thesis
(C) $\sim \beta$ is a discursive thesis, but β is not a discursive thesis.

Note that the fourth subcase (both β and $\sim \beta$ is a discursive thesis) is impossible due to Soundness.

Subcase (A).
Let $m=1$. (8) $\vdash_{D_{2}^{*}} \sim\left(\sim\left(\delta_{1}^{*} \vee \beta\right) \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \delta_{1}^{*}\right)$, Corollary 7 (iii) and (2), (9) $\vdash_{D_{2}^{*}} \sim\left(\sim\left(\delta_{1}^{*} \vee \sim \beta\right) \wedge_{\mathrm{d}} \sim \sim \beta \wedge_{\mathrm{d}} \sim \delta_{1}^{*}\right)$, Corollary 7 (iii) and (1). Apply (T_{9}) to (8) and (9), to get $(10) \vdash_{D_{2}^{*}} \delta_{1}^{*}$, but $\delta_{1}^{*}=\delta_{1}=\gamma_{1}=\alpha$. A contradiction.
Let $m>1$. (8)' $\vdash_{D_{2}^{*}} \sim\left(\sim\left(\delta_{1}^{*} \vee \cdots \vee \delta_{p}^{*} \vee \beta\right) \wedge_{\mathrm{d}} \sim \beta \wedge_{\mathrm{d}} \sim \delta_{p}^{*} \wedge_{\mathrm{d}} \ldots \wedge_{\mathrm{d}} \sim \delta_{1}^{*}\right)$, for some $p \in N,(9)^{\prime} \vdash_{D_{2}^{*}} \sim\left(\sim\left(\delta_{1}^{*} \vee \cdots \vee \delta_{r}^{*} \vee \sim \beta\right) \wedge_{\mathrm{d}} \sim \sim \beta \wedge_{\mathrm{d}} \sim \delta_{r}^{*} \wedge_{\mathrm{d}} \ldots \wedge_{\mathrm{d}} \sim \delta_{1}^{*}\right)$, for some $r \in N$. Note that $p \geq r$ or $r>p$. If $p \geq r$, then apply $\left(A_{11}\right),\left(A_{12}\right)$ and (MP)* to (9)', to get (10)' $\vdash_{D_{2}^{*}} \sim\left(\sim\left(\delta_{1}^{*} \vee \cdots \vee \delta_{p}^{*} \vee \sim \beta\right) \wedge_{\mathrm{d}} \sim \sim \beta \wedge_{\mathrm{d}} \sim \delta_{p}^{*} \wedge_{\mathrm{d}} \ldots \wedge_{\mathrm{d}} \sim \delta_{1}^{*}\right)$, for some $r \in N$. Now consider (8)', (10)' and use $\left(A_{15}\right)$ and (MP)*, to obtain (11)' $\vdash_{D_{2}^{*}} \sim\left(\sim \delta_{p}^{*} \wedge_{\mathrm{d}} \ldots \wedge_{\mathrm{d}} \sim \delta_{1}^{*}\right)$. Apply $\left(A_{16}\right)$ to (11)', to get (12)' $\vdash_{D_{2}} \delta_{1}^{*} \vee \cdots \vee \delta_{p}^{*}$. Since $\nabla_{i}^{*} \subseteq \nabla_{i},\left(R_{3}\right)$ is an admissible rule in D_{2}^{*} and we have $\left(T_{2}\right),\left(T_{3}\right)$, then $(13)^{\prime} \vdash_{D_{2}} \delta_{1} \vee \cdots \vee \delta_{p}$ (where $\delta_{1}^{*}=\delta_{1}, \delta_{2}^{*}=\delta_{2}, \ldots, \delta_{p}^{*}$ $=\delta_{p}$). Clearly, $\delta_{1}, \ldots, \delta_{p} \in \nabla_{i}$. A contradition due to Lemma 1(i).

We prove the subcases (B) and (C) in a very similar way. Make use of $\left(A_{11}\right),\left(A_{12}\right)\left(A_{13}\right),\left(A_{14}\right),\left(A_{17}\right)$ and $\left(A_{18}\right)$.

Now we construct a canonical model for D_{2}^{*} that will falsify any non-theorem (and invalidate a non-derivable rule). Let $M_{C}=\left\langle\nabla, \mathbf{R}, v_{c}\right\rangle$ be such a model. The canonical valuation $v_{c}:$ For $_{D_{2}^{*}} \times \nabla \Rightarrow\{1,0\}$ is defined:

$$
v_{c}\left(\beta, \nabla_{i}\right)= \begin{cases}1, & \text { if } \beta \notin \nabla_{i} \\ 0, & \text { if } \beta \in \nabla_{i}\end{cases}
$$

We have to show:
Case (1): $\beta=\sigma \vee \tau$
(i) $v_{c}\left(\sigma \vee \tau, \nabla_{i}\right)=1 \Leftrightarrow \sigma \vee \tau \notin \nabla_{i} \Leftrightarrow \sigma \notin \nabla_{i}$ or $\tau \notin \nabla_{i} \Leftrightarrow v_{c}\left(\sigma, \nabla_{i}\right)=1$
or $v_{c}\left(\tau, \nabla_{i}\right)=1$
(ii) $v_{c}\left(\sigma \vee \tau, \nabla_{i}\right)=0 \Leftrightarrow \sigma \vee \tau \in \nabla_{i} \Leftrightarrow \sigma \in \nabla_{i}$ and $\tau \in \nabla_{i} \Leftrightarrow v_{c}\left(\sigma, \nabla_{i}\right)=0$ and $v_{c}\left(\tau, \nabla_{i}\right)=0$.
Case (2): $\beta=\sigma \wedge_{\mathrm{d}} \tau$
(i) $v_{c}\left(\sigma \wedge_{\mathrm{d}} \tau, \nabla_{i}\right)=1 \Leftrightarrow \sigma \wedge_{\mathrm{d}} \tau \notin \nabla_{i} \Leftrightarrow \exists \nabla_{k} \in \nabla\left(\nabla_{i} \mathbf{R} \nabla_{k}\right.$ and $\left.\sigma \notin \nabla_{k}\right)$
and $\tau \notin \nabla_{i} \Leftrightarrow \exists \nabla_{k} \in \nabla\left(\nabla_{i} \mathbf{R} \nabla_{k}\right.$ and $\left.v_{c}\left(\sigma, \nabla_{k}\right)=1\right)$ and $v_{c}\left(\tau, \nabla_{i}\right)=1$
(ii) $v_{c}\left(\sigma \wedge_{\mathrm{d}} \tau, \nabla_{i}\right)=0 \Leftrightarrow \sigma \wedge_{\mathrm{d}} \tau \in \nabla_{i} \Leftrightarrow \forall_{\nabla_{k} \in \nabla}$ (if $\nabla_{i} \mathbf{R} \nabla_{k}$ then $\sigma \in \nabla_{k}$) or $\tau \in \nabla_{i} \Leftrightarrow \forall_{k} \in \nabla\left(\right.$ if $\nabla_{i} \mathbf{R} \nabla_{k}$ then $\left.v_{c}\left(\sigma, \nabla_{k}\right)=0\right)$ or $v_{c}\left(\tau, \nabla_{i}\right)=1$.

Case (3): $\beta=\sim \sigma$
(i) $v_{c}\left(\sim \sigma, \nabla_{i}\right)=1 \Leftrightarrow \sim \sigma \notin \nabla_{i} \Leftrightarrow \sigma \in \nabla_{i} \Leftrightarrow v_{c}\left(\sigma, \nabla_{i}\right)=0$
(ii) $v_{c}\left(\sim \sigma, \nabla_{i}\right)=0 \Leftrightarrow \sim \sigma \in \nabla_{i} \Leftrightarrow \sigma \notin \nabla_{i} \Leftrightarrow v_{c}\left(\sigma, \nabla_{i}\right)=1$.

To finish the proof, recall $\forall D_{2}^{*} \alpha$, but $\models \alpha$. Notice, however, that the formula α is the very first element of all the sequences ∇_{i}, where $i \in$ $\{1,2,3, \ldots\}$. Since $\alpha \in \nabla_{i}$, then the formula is not valid in $\left\langle\nabla, \mathbf{R}, v_{c}\right\rangle$, and consequently $\not \vDash \alpha$. A contradiction.

5. Labelled Tableaux for D_{2}^{*}

In what follows, we will use signed labelled formulas such as $\sigma:: T \mathrm{P}$ (or $\sigma:: F \mathrm{P}$), where σ is a label and $T \mathrm{P}($ or $F \mathrm{P}$) is a signed formula (i.e. a formula prefixed with a " T " or " F "). The phrase $\sigma:: T \mathrm{P}$ is read as " P is true at the world σ " and $\sigma:: F \mathrm{P}$ as " P is false at the world σ ". By label, we understand a natural number. We call ρ root label and always assume that $\rho=1$. A tableau for a labelled formula P is a downward rooted tree, where each of the nodes contains a signed labelled formula, constructed using the branch extension rules defined below.

Non-discursive rules:

The rules for disjunction and negation are identical to the ones used in classical case.

$$
\begin{aligned}
& (\boldsymbol{T} \sim) \quad \frac{\sigma:: T \sim \mathrm{P}}{\sigma:: F \mathrm{P}} \quad(\boldsymbol{F} \sim) \quad \frac{\sigma:: F \sim \mathrm{P}}{\sigma:: T \mathrm{P}}
\end{aligned}
$$

The rules $(\boldsymbol{F} \vee),(\boldsymbol{F} \sim)$ and $(\boldsymbol{T} \sim)$ are linear, but ($\boldsymbol{T} \vee$) is branching.

Discursive rules:

$$
\left(\begin{array}{c}
\left.\boldsymbol{T} \wedge_{\mathrm{d}}\right) \quad \frac{\sigma:: T \mathrm{P} \wedge_{\mathrm{d}} \mathrm{Q}}{\tau:: T \mathrm{P}} \quad\left(\boldsymbol{F} \wedge_{\mathrm{d}}\right) \\
\sigma:: T \mathrm{Q}
\end{array}\right.
$$

Notice that τ, for $\left(T \wedge_{\mathrm{d}}\right)$, is a label that is new to the branch, but σ^{\prime}, for $\left(F \wedge_{\mathrm{d}}\right)$, is a label that has been already used in the branch.

$$
\begin{aligned}
& \left(\boldsymbol{T} \rightarrow_{\mathrm{d}}\right) \quad \frac{\sigma:: T \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{Q}}{} \quad \begin{array}{c}
\\
\sigma^{\prime}:: F \mathrm{P} \mid \sigma:: T \mathrm{Q}
\end{array} \quad \begin{array}{c}
\sigma:: F \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{Q} \\
\tau:: T \mathrm{P}
\end{array} \\
& \sigma:: F \mathrm{Q}
\end{aligned}
$$

where σ^{\prime}, for $\left(T \rightarrow_{\mathrm{d}}\right)$, has been already used in the branch and τ, for $\left(F \rightarrow_{\mathrm{d}}\right)$, is a label that is new to the branch.

Closure rule:

A branch of a tableau is closed if we can apply the rule:
(C) $\quad \sigma:: T \mathrm{P}$

$$
\frac{\sigma:: F \mathrm{P}}{\text { closed }}
$$

Otherwise the branch is open. A tableau is closed if all of its branches are closed, otherwise the tableau is open.

Special rule:

$$
\text { (S) } \frac{\rho:: F \mathrm{P}}{\sigma^{\prime}:: F \mathrm{P}}
$$

ρ is a root label and σ^{\prime} is a label that has been already used in the branch. The application of the rule is always limited to root labels.

Let P be a formula. By a D_{2}^{*}-tableau proof of P we mean a closed tableau with 1 :: FP.

Now, we give a few examples to illustrate how the rules we defined work.
Example 1. Closed tableau for the second Clavius' law.
(a) $1:: F\left(\sim \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{P}\right) \rightarrow_{\mathrm{d}} \mathrm{P} \quad$ (start)
(b) $2:: T \sim \mathrm{P} \rightarrow{ }_{\mathrm{d}} \mathrm{P}$
$\left(F \rightarrow_{\mathrm{d}}\right),(\mathrm{a})$
(c) $1:: F$ P
$\left(F \rightarrow \rightarrow_{\mathrm{d}}\right),(\mathrm{a})$
$1^{\text {st }}$ branch
(d) $1:: F \sim \mathrm{P}$
$\left(T \rightarrow_{\mathrm{d}}\right),(\mathrm{b})$
(e) $1:: T \mathrm{P}$
($F \sim$), (d)
Closed
(C), (c), (e)
$2^{\text {nd }}$ branch
(d)' $2:: T \mathrm{P} \quad\left(T \rightarrow_{\mathrm{d}}\right),(\mathrm{b})$
(e)' $2:: F\left(\sim \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{P}\right) \rightarrow_{\mathrm{d}} \mathrm{P}$
(S), (a)
(f)' $3:: T \sim \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{P}$
$\left(F \rightarrow{ }_{\mathrm{d}}\right),(\mathrm{e})^{\prime}$
(g), $2:: F$ P
$\left(F \rightarrow{ }_{\mathrm{d}}\right),(\mathrm{e})^{\prime}$
Closed
(C), (d)', (g)'

In our example, we applied one of the branching rules, i.e. $\left(T \rightarrow_{\mathrm{d}}\right)$, to the line (b) and used the notions $1^{\text {st }}$ branch and $2^{\text {nd }}$ branch to indicate that the (new) branches were opened.

In the next example, we will generate an infinite tableau for a notorious law of $C P C$.

Example 2. Infinite tableau for the Duns Scotus thesis
(a) $1:: F \mathrm{P} \rightarrow_{\mathrm{d}}\left(\sim \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{Q}\right) \quad$ (start)
(b) $2:: T \mathrm{P}$
$\left(F \rightarrow_{\mathrm{d}}\right),(\mathrm{a})$
(c) $1:: F \sim \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{Q}$
$\left(F \rightarrow{ }_{\mathrm{d}}\right),(\mathrm{a})$
(d) $3:: T \sim \mathrm{P}$
$\left(F \rightarrow_{\mathrm{d}}\right),(\mathrm{c})$
(e) $1:: F \mathrm{Q}$
$\left(F \rightarrow{ }_{\mathrm{d}}\right),(\mathrm{c})$
(f) $3:: F \mathrm{P}$
($T \sim$), (d)
(g) $2:: F \mathrm{P} \rightarrow_{\mathrm{d}}\left(\sim \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{Q}\right)$
(S), (a)
(h) $4:: T \mathrm{P}$
$(F \rightarrow \mathrm{~d}),(\mathrm{g})$
(i) $2:: F \sim \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{Q}$
$(F \rightarrow \mathrm{~d}),(\mathrm{g})$
(j) $5:: T \sim \mathrm{P}$
$\left(F \rightarrow_{\mathrm{d}}\right)$, (i)
(k) $2:: F \mathrm{Q}$
$\left(F \rightarrow_{\mathrm{d}}\right),(\mathrm{i})$
(l) $5:: F \mathrm{P}$
$(T \sim),(\mathrm{j})$
(m) $3:: F \mathrm{P} \rightarrow_{\mathrm{d}}\left(\sim \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{Q}\right)$
(S), (a)
(n) $6:: T \mathrm{P}$
$\left(F \rightarrow_{\mathrm{d}}\right),(\mathrm{m})$
(o) $3:: F \sim \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{Q}$
$\left(F \rightarrow_{\mathrm{d}}\right),(\mathrm{m})$
(p) $7:: T \sim \mathrm{P}$
$\left(F \rightarrow_{\mathrm{d}}\right),(\mathrm{o})$
(r) $3:: F \mathrm{Q}$
$\left(F \rightarrow_{\mathrm{d}}\right),(\mathrm{o})$
(s) $7:: F \mathrm{P}$
$(T \sim),(\mathrm{p})$
(t) $4:: F \mathrm{P} \rightarrow_{\mathrm{d}}\left(\sim \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{Q}\right) \quad(\mathrm{S}),(\mathrm{a})$

The procedure goes on ad infinitum.
Theorem 4. A formula P has a D_{2}^{*}-tableau proof $\Leftrightarrow \mathrm{P}$ is valid in D_{2}^{*}.
Proof. See [5].

6. Unsigned Labelled Tableaux for D_{2}^{*}

Now, we give a new set of tableau rules for our system We will work with labelled formulas such as $\sigma:: \mathrm{P}$, where σ is a label (being viewed as a natural
number) and P is a formula. The notation $\sigma:: \mathrm{P}$ intuitively means " P holds in world σ ".
D_{2}^{*}-tableau is a tree of labelled formulas with root label ρ (we always assume that $\rho=1$) and all the nodes of a tree are obtained by the rules schematically described in Table 1. A branch of D_{2}^{*}-tableau is closed if it contains \perp, otherwise it is open. A D_{2}^{*}-tableau is closed if all of the branches it contains are closed, otherwise it is open. By a D_{2}^{*}-tableau proof of P we mean a closed tableau with $1:: \sim \mathrm{P}$.

Classical rules:

$$
\begin{aligned}
& \text { (} \vee \frac{\sigma:: \mathrm{P} \vee \mathrm{Q}}{\left.\quad \frac{\sigma}{\sigma:: \mathrm{P}} \right\rvert\, \sigma:: \mathrm{Q}} \quad(\sim \vee) \quad \frac{\sigma:: \sim(\mathrm{P} \vee \mathrm{Q}}{\sigma:: \sim \mathrm{P}} \\
& \sigma:: \sim \mathrm{Q} \\
& (\sim \sim) \quad \frac{\sigma:: \sim \sim \mathrm{P}}{\sigma:: \mathrm{P}}
\end{aligned}
$$

Discursive rules:

$$
\begin{aligned}
& \left(\wedge_{d}\right) \\
& \frac{\sigma:: \mathrm{P} \wedge_{\mathrm{d}} \mathrm{Q}}{\tau:: \mathrm{P}} \quad\left(\sim \wedge_{\mathrm{d}}\right) \\
& \begin{array}{c}
\sigma:: \sim\left(\mathrm{P} \wedge_{\mathrm{d}} \mathrm{Q}\right) \\
\hline \sigma^{\prime}:: \sim \mathrm{P} \mid \sigma:: \sim \mathrm{Q}
\end{array} \\
& \sigma:: \text { Q } \\
& \text { (for } \tau \text { new) } \\
& \begin{array}{cc}
\left(\rightarrow_{\mathrm{d}}\right) \quad \frac{\sigma:: \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{Q}}{\sigma^{\prime}:: \sim \mathrm{P} \mid \sigma:: \mathrm{Q}} \quad\left(\sim \rightarrow_{\mathrm{d}}\right) & \frac{\sigma:: \sim\left(\mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{Q}\right)}{\tau:: \mathrm{P}} \\
& \\
& \text { (for } \sigma^{\prime} \text { used) } \\
& \\
& (\text { for } \tau:: \sim \mathrm{Q} \text { new) }
\end{array}
\end{aligned}
$$

Closing rule:

Special rule:

(C)

$$
\begin{gathered}
\sigma:: \mathrm{P} \\
\sigma:: \sim \mathrm{P}
\end{gathered}
$$

(S)
 (for root label ρ)
(for σ^{\prime} used)

Table 1. Unsigned Labelled Tableaux for D_{2}^{*}

Here is an example of a tableau proof of $\sim \sim \mathrm{P} \rightarrow_{\mathrm{d}} \mathrm{P}$.
Example 3. Closed tableau for the law of double negation.
(a) $1:: \sim\left(\sim \sim \mathrm{P} \rightarrow_{\mathrm{d}} \sim \mathrm{P}\right) \quad$ (start)
(b) $2:: \sim \sim \mathrm{P} \quad\left(\sim \rightarrow_{\mathrm{d}}\right)$, (a)
(c) $1:: \sim \mathrm{P} \quad\left(\sim \rightarrow_{\mathrm{d}}\right)$, (a)
(d) $2:: \mathrm{P}$
(~~), (b)
(e) $2:: \sim\left(\sim \sim \mathrm{P} \rightarrow_{\mathrm{d}} \sim \mathrm{P}\right) \quad$ (S), (a)
(f) $3:: \sim \sim \mathrm{P} \quad\left(\sim \rightarrow_{\mathrm{d}}\right),(\mathrm{e})$
(g) $2:: \sim \mathrm{P} \quad\left(\sim \rightarrow_{\mathrm{d}}\right)$, (e)
(i) \perp
(d), (g)

References

[1] Achtelik G., L. Dubikajtis, E. Dudek, J. Kanior, "On Independence of Axioms of Jaśkowski Discussive Propositional Calculus", Reports on Mathematical Logic 11: 3-11, 1981.
[2] Ciuciura, J., "History and Development of the Discursive Logic", Logica Trianguli 3: 3-31, 1999.
[3] Ciuciura, J., "Logika dyskusyjna", Principia 35-36: 279-291, 2003.
[4] Ciuciura, J., "A New Real Axiomatization of D_{2} ", $1^{\text {st }}$ Congress on Universal Logic, Montreux, 31. 03-03. 04. 2005, an abstract available at http://www.uni-log.org/one2.html
[5] Ciuciura, J., "Labelled Tableaux for D_{2} ", BSL 33(4): 223-236, 2004.
[6] N. C.A. da Costa, Lech Dubikajtis, "A New Axiomatization for the Discursive Propositional Calculus". In: A.I. Arruda, N.C.A. da Costa, R. Chuaqui, (eds.), Non Classical Logics, Model Theory and Computability, North-Holland Publishing, Amsterdam 1977, pp. 45-55.
[7] Fitting, M. C., First-Order Logic and Automated Theorem Proving, Springer, 1996 (first edition, 1990).
[8] Goré, R., "Tableau Methods for Modal and Temporal Logics". In: M. D'Agostino, D. Gabbay, R. Haenle and J. Possegga, (eds.), Handbook of Tableau Methods, Kluwer Academic Publishers, Dordrecht-Boston-London, 1999, pp. 297-396.
[9] Jaśkowski, S., "A Propositional Calculus for Inconsistent Deductive Systems", Logic and Logical Philosophy, 7(1): 35-56, 2001.
[10] Jaśkowski, S., "On the Discussive Conjuntion in the Propositional Calculus for Inconsistent Deductive Systems", Logic and Logical Philosophy, 7(1): 57-59, 2001.
[11] Kotas, J., "Discussive Sentential Calculus of Jaśkowski", Studia Logica 34(2): 149-168, 1975.
[12] Kotas, J., N. C.A. da Costa, "On Some Modal Logical Systems Sefined in Connexion with Jaśkowski's Problem". In: A.I. Arruda, N.C.A. da Costa, R. Chuaqui, (eds.), Non Classical Logics, Model Theory and Computability, North-Holland Publishing, Amsterdam 1977, pp. 57-73.

Janusz Ciuciura
Department of Logic
University of Łódź
Kopcińskiego 16/18
90-232 Łódź
Poland
janciu@uni.lodz.pl

[^0]: ${ }^{1}$ The main ideas of this paper were presented at the Logic-Philosophical Workshop, Bierzgłowo Teutonic Castle near Toruń, September 5-8, 2005.

[^1]: ${ }^{2}$ The discursive equivalence is introduced as an abbreviation: $\alpha \leftrightarrow_{d} \beta=\left(\alpha \rightarrow_{d} \beta\right) \wedge_{d}$ $\left(\beta \rightarrow_{\mathrm{d}} \alpha\right)$.
 ${ }^{3}$ For details, see [2], [3], [9] and [11].
 ${ }^{4}$ We solved this problem in [4] and [5].

[^2]: ${ }^{5}$ See [1], [6] and [12]

[^3]: ${ }^{6}$ See [4].

[^4]: ${ }^{7}\left(A_{9}\right)$ can already be treated as a thesis of $C P C$.

