Logic and Logical Philosophy Volume 14 (2005), 235–252 DOI: 10.12775/LLP.2005.015

# Janusz Ciuciura

# ON THE DA COSTA, DUBIKAJTIS AND KOTAS' SYSTEM OF THE DISCURSIVE LOGIC, $D_2^*$

**Abstract.** In the late forties, Stanisław Jaśkowski published two papers on the discursive (or discussive) sentential calculus,  $D_2$ . He provided a definition of it by an interpretation in the language of S5 of Lewis. The known axiomatization of  $D_2$  with discursive connectives as primitives was introduced by da Costa, Dubikajtis and Kotas in 1977. It turns out, however, that one of the axioms they used is not a thesis of the *real* Jaśkowski's calculus. In fact, they built a new system,  $D_2^*$  for short, that differs from  $D_2$  in many respects. The aim of this paper is to introduce a direct Kripke-type semantics for the system, axiomatize it in a new way and prove soundness and completeness theorems. Additionally, we present labelled tableaux for  $D_2^*$ .<sup>1</sup>

Keywords: discursive (discussive) logic,  $D_2$ , paraconsistent logic, labelled tableaux.

## 1. Introduction

The language of  $D_2$  is not simply formed by extending, for example, the classical propositional calculus with an extra operator (or operators) as it is in a modal case, but by replacing some of the classical connectives with their discursive counterparts, more explicitly:

<sup>&</sup>lt;sup>1</sup>The main ideas of this paper were presented at the Logic-Philosophical Workshop, Bierzgłowo Teutonic Castle near Toruń, September 5–8, 2005.

DEFINITION 1. Let *var* be a non-empty set of all propositional variables. The symbols:  $\sim, \lor, \land_d, \rightarrow_d$  denote negation, disjunction, discursive conjunction and discursive implication, respectively.  $For_{D_2}$  is defined to be the least set such that:

- (i)  $\alpha \in var \Rightarrow \alpha \in For_{D_2}$
- (ii)  $\alpha \in For_{D_2} \Rightarrow \sim \alpha \in For_{D_2}$
- (iii)  $\alpha \in For_{D_2}$  and  $\beta \in For_{D_2} \Rightarrow \alpha \bullet \beta \in For_{D_2}$ , where  $\bullet \in \{\lor, \land_d, \rightarrow_d\}$ .<sup>2</sup>

It seems very *exotic* at first sight that Jaśkowski applied a translation procedure instead of just giving a *direct* semantics or a set of the syntactical rules for  $D_2$ . His choice, however, was not accidental.<sup>3</sup>

To give an insight into the procedure, we determine a translation function of the language of  $D_2$  into the language of S5 of Lewis,  $f: For_{D_2} \Rightarrow For_{S5}$ , as follows:

(i)  $f(p_i) = p_i \ if p_i \in var \text{ and } i = \{1, 2, 3, \dots\}$ 

(ii) 
$$f(\sim \alpha) = \sim f(\alpha)$$

(iii) 
$$f(\alpha \lor \beta) = f(\alpha) \lor f(\beta)$$

(iv) 
$$f(\alpha \wedge_{\mathbf{d}} \beta) = f(\alpha) \wedge \Diamond f(\beta)$$

(v) 
$$f(\alpha \rightarrow_{\mathbf{d}} \beta) = \Diamond f(\alpha) \rightarrow f(\beta)$$

and additionally:

(vi) 
$$\forall_{\alpha \in For_{D_{\alpha}}} : \alpha \in D_2 \Leftrightarrow \Diamond f(\alpha) \in S5.$$

By way of illustration, we demonstrate how the mechanism works in practice. Suppose then that we check whether the formula  $\sim (\sim (\alpha \land_d \beta) \lor \gamma) \rightarrow_d (\alpha \land_d \sim (\sim \beta \lor \gamma))$  is valid in  $D_2$ . As a result, we are made to apply the translation procedure and check if the formula  $\Diamond (\Diamond \sim (\sim (\alpha \land \Diamond \beta) \lor \gamma)) \rightarrow (\alpha \land \Diamond \sim (\sim \beta \lor \gamma)))$  is valid in S5. Unfortunately, it is a bit inconvenient to use the translation rules whenever we want to check out if a formula is valid in  $D_2$  or it is not.<sup>4</sup>

The question arises: Is  $D_2$  a finitely axiomatizable system? The year 1977 was a turning point. The well-known axiomatization presented by da

<sup>&</sup>lt;sup>2</sup>The discursive equivalence is introduced as an abbreviation:  $\alpha \leftrightarrow_d \beta = (\alpha \rightarrow_d \beta) \wedge_d (\beta \rightarrow_d \alpha)$ .

<sup>&</sup>lt;sup>3</sup>For details, see [2], [3], [9] and [11].

 $<sup>^{4}</sup>$ We solved this problem in [4] and [5].

237

Costa, Dubikajtis and Kotas consists of the following axiom schemata and rules:

$$\begin{array}{ll} (A_1) & \alpha \rightarrow_{\rm d} (\beta \rightarrow_{\rm d} \alpha) \\ (A_2) & (\alpha \rightarrow_{\rm d} (\beta \rightarrow_{\rm d} \gamma)) \rightarrow_{\rm d} ((\alpha \rightarrow_{\rm d} \beta) \rightarrow_{\rm d} (\alpha \rightarrow_{\rm d} \gamma)) \\ (A_3) & ((\alpha \rightarrow_{\rm d} \beta) \rightarrow_{\rm d} \alpha) \rightarrow_{\rm d} \alpha \\ (A_4) & \alpha \wedge_{\rm d} \beta \rightarrow_{\rm d} \alpha \\ (A_5) & \alpha \wedge_{\rm d} \beta \rightarrow_{\rm d} \beta \\ (A_6) & \alpha \rightarrow_{\rm d} (\beta \rightarrow_{\rm d} (\alpha \wedge_{\rm d} \beta)) \\ (A_7) & \alpha \rightarrow_{\rm d} \alpha \vee \beta \\ (A_8) & \beta \rightarrow_{\rm d} \alpha \vee \beta \\ (A_8) & \beta \rightarrow_{\rm d} \alpha \vee \beta \\ (A_9) & (\alpha \rightarrow_{\rm d} \gamma) \rightarrow_{\rm d} ((\beta \rightarrow_{\rm d} \gamma) \rightarrow_{\rm d} (\alpha \vee \beta \rightarrow_{\rm d} \gamma)) \\ (A_{10}) & \alpha \rightarrow_{\rm d} \sim \sim \alpha \\ (A_{11}) & \sim \sim \alpha \rightarrow_{\rm d} \alpha \\ (A_{12}) & \sim (\alpha \vee \alpha) \rightarrow_{\rm d} \beta \\ (A_{13}) & \sim (\alpha \vee \beta) \rightarrow_{\rm d} \sim (\beta \vee \alpha) \\ (A_{14}) & \sim (\alpha \vee \beta) \rightarrow_{\rm d} (\alpha \wedge_{\rm d} \sim \beta) \\ (A_{15}) & \sim (\sim \alpha \vee \beta) \rightarrow_{\rm d} \alpha \wedge (\alpha \vee \beta) \\ (A_{16}) & (\alpha (\alpha \vee \beta) \rightarrow_{\rm d} \gamma) \rightarrow_{\rm d} (\alpha \wedge_{\rm d} \alpha (\beta \vee \gamma)) \\ (A_{17}) & \sim ((\alpha \vee \beta) \vee \gamma) \rightarrow_{\rm d} (\alpha \wedge_{\rm d} \sim (\beta \vee \gamma)) \\ (A_{18}) & \sim ((\alpha \wedge_{\rm d} \beta) \vee \gamma) \rightarrow_{\rm d} (\alpha \wedge_{\rm d} \sim (\beta \vee \gamma)) \\ (A_{19}) & \sim ((\alpha \wedge_{\rm d} \beta) \vee \gamma) \rightarrow_{\rm d} (\alpha \wedge_{\rm d} \sim (\alpha \vee \beta \vee \gamma)) \\ (A_{20}) & \sim (\sim (\alpha \wedge_{\rm d} \beta) \vee \gamma) \rightarrow_{\rm d} (\alpha \wedge_{\rm d} \sim (\sim \beta \vee \gamma)) \\ (A_{21}) & \sim (\sim (\alpha \wedge_{\rm d} \beta) \vee \gamma) \rightarrow_{\rm d} (\alpha \wedge_{\rm d} \sim (\sim \beta \vee \gamma)) \\ (A_{22}) & \alpha \rightarrow_{\rm d} \beta = (\alpha \rightarrow_{\rm d} \beta) \wedge_{\rm d} (\beta \rightarrow_{\rm d} \alpha) \\ (R_{\rm d}) & \alpha \rightarrow_{\rm d} = (\alpha \vee \alpha) \\ (R_{\rm d}) & \alpha \rightarrow_{\rm d} = (\alpha \vee \alpha) \\ (R_{\rm d}) & \alpha \rightarrow_{\rm d} = (\alpha \rightarrow_{\rm d} \alpha) \\ (R_{\rm d}) & \alpha \rightarrow_{\rm d} = (\alpha \rightarrow_{\rm d} \beta) \wedge_{\rm d} (\beta \rightarrow \alpha).^{5} \\ \end{array}$$

It is amazing that their construction has been widely recognized as a *real* axiomatization of  $D_2$ . To shed some light on the point, take the axiom schema:

$$(A_{19}) \sim ((\alpha \wedge_{d} \beta) \vee \gamma) \rightarrow_{d} (\alpha \rightarrow_{d} \sim (\beta \vee \gamma))$$

$$\xrightarrow{^{5}\text{See [1], [6] and [12]}}$$

apply the translation procedure to obtain:

$$\Diamond(\Diamond \sim ((\alpha \land \Diamond \beta) \lor \gamma) \to (\Diamond \alpha \to \sim (\beta \lor \gamma)))$$

and check if the translated formula is valid in S5 of Lewis.

COROLLARY 1. The formula is not valid in S5 of Lewis (for every  $\alpha, \beta, \gamma \in For_{S5}$ ).

We solve the problem defining a new function  $f^* : For_{D_2} \Rightarrow For_{S5}$  in the following way:

(i)' 
$$f^*(p_i) = p_i \ if p_i \in var \text{ and } i = \{1, 2, 3, \dots\}$$
  
(ii)'  $f^*(\sim \alpha) = \sim f^*(\alpha)$   
(iii)'  $f^*(\alpha \lor \beta) = f^*(\alpha) \lor f^*(\beta)$   
(iv)'  $f^*(\alpha \land_{\mathrm{d}} \beta) = \Diamond f^*(\alpha) \land f^*(\beta)$   
(v)'  $f^*(\alpha \to_{\mathrm{d}} \beta) = \Diamond f^*(\alpha) \to f^*(\beta)$ 

and introducing the key definition:

(vi)'  $\forall_{\alpha \in For_{D_{\varphi}}} : \alpha \in D_2 \Leftrightarrow \Diamond f^*(\alpha) \in S5.$ 

Let  $D_2^*$  denote the system defined by the new translation.

COROLLARY 2. All of the axiom schemata are valid in  $D_2^*$  and (MP)<sup>\*</sup> preserves validity.

Note that despite their superficial similarities, the two systems  $(D_2 \text{ and } D_2^*)$  are slightly different.<sup>6</sup>

# 2. Kripke-type Semantics for $D_2^*$

Although we depicted how to translate any discursive formula into its modal counterpart, the procedures introduced in Section 1 were a little unhandy and time-consuming to handle in practice. The inconvenience results in the search for a new semantic tool we could use trying to avoid passing through the translation rules. In aid of it we present here a *Kripke-type* semantics for  $D_2^*$ .

A frame  $(D_2^*\text{-frame})$  is a pair  $\langle W, R \rangle$  where W is a non-empty set (of possible worlds) and R is a binary relation on W. Moreover, R is subject to the conditions:

 $<sup>^{6}</sup>$ See [4].

- (i)  $\forall_{x \in W} (xRx)$
- (ii)  $\forall_{x,y\in W}(xRy \Rightarrow yRx)$
- (iii)  $\forall_{x,y,z\in W}(xRy \text{ and } yRz \Rightarrow xRz).$

The conditions define R as being the equivalence relation on W.

A model  $(D_2^*\text{-model})$  is a triple  $\langle W, R, v \rangle$  where v is a mapping from propositional variables to sets of worlds,  $v : var \Rightarrow 2^W$ . The satisfaction relation  $\models_m$  is inductively defined:

 $\begin{array}{lll} (var) & x \models_{m} p_{i} & \Leftrightarrow & x \in v(p_{i}) \text{ and } i = \{1, 2, 3, \dots\} \\ (\sim) & x \models_{m} \sim \alpha & \Leftrightarrow & x \not\models_{m} \alpha \\ (\vee) & x \models_{m} \alpha \lor \beta & \Leftrightarrow & x \models_{m} \alpha \text{ or } x \models_{m} \beta \\ (\wedge_{d}) & x \models_{m} \alpha \land_{d} \beta & \Leftrightarrow & \exists_{y \in W} (xRy \text{ and } y \models_{m} \alpha) \text{ and } x \models_{m} \beta \\ (\rightarrow_{d}) & x \models_{m} \alpha \rightarrow_{d} \beta & \Leftrightarrow & \text{if } \exists_{y \in W} (xRy \text{ and } y \models_{m} \alpha) \text{ then } x \models_{m} \beta. \end{array}$ 

We define the notion of a valid sentence as follows:

$$\models \alpha \quad \Leftrightarrow \quad \text{for any model } \langle W, R, v \rangle, \forall_{x \in W}, \exists_{y \in W} (xRy \text{ and } y \models_{m} \alpha).$$

Notice that the non-standard definition is a direct result of (vi)'. Furthermore, not only is the discursive equivalence definable in our semantics:

$$\alpha \leftrightarrow_{\mathrm{d}} \beta = (\alpha \rightarrow_{\mathrm{d}} \beta) \wedge_{\mathrm{d}} (\beta \rightarrow_{\mathrm{d}} \alpha),$$

but also the discursive implication can be eliminated:

 $\alpha \to_{\mathrm{d}} \beta = \sim (\alpha \wedge_{\mathrm{d}} (p_1 \vee \sim p_1)) \vee \beta.$ 

Now we can establish a link between the translation rules and the semantics in question.

COROLLARY 3. 
$$\forall_{\alpha \in For_{D_g^*}} :\models \alpha \Leftrightarrow \alpha \in D_2^* \ (\Leftrightarrow \Diamond f^*(\alpha) \in S5).$$

PROOF. By induction. First, we have to prove that for every model  $\langle W, R, v \rangle$ and every  $x \in W$  it is true that  $x \models_m \alpha \Leftrightarrow x \models^{\#} f^*(\alpha)$ , where  $\models^{\#} \subseteq W \times For_{S5}$  is the satisfaction relation defined in any S5-model  $\langle W, R, v \rangle$ . Case (1):  $\alpha = p_i, i = \{1, 2, 3, ...\}$ .

 $x \models_{m} p_{i} \Leftrightarrow x \in v(p_{i}) \Leftrightarrow x \models^{\#} p_{i} \Leftrightarrow x \models^{\#} f^{*}(p_{i}).$ Case (2):  $\alpha = \sim \gamma.$ 

$$x\models_{\mathbf{m}}\sim\gamma\Leftrightarrow x\not\models_{\mathbf{m}}\gamma\Leftrightarrow x\not\models^{\#}f^{*}(\gamma)\Leftrightarrow x\models^{\#}\sim f^{*}(\gamma)\Leftrightarrow x\models^{\#}f^{*}(\sim\gamma).$$

Case (3):  $\alpha = \gamma \lor \delta$ .  $x \models_{m} \gamma \lor \delta \Leftrightarrow [x \models_{m} \gamma \text{ or } x \models_{m} \delta] \Leftrightarrow [x \models^{\#} f^{*}(\gamma) \text{ or } x \models^{\#} f^{*}(\delta)] \Leftrightarrow$  $\Leftrightarrow x \models^{\#} f^{*}(\gamma) \lor f^{*}(\delta) \Leftrightarrow x \models^{\#} f^{*}(\gamma \lor \delta).$ Case (4):  $\alpha = \gamma \wedge_{d} \delta$ ,  $x \models_{m} \gamma \wedge_{d} \delta \Leftrightarrow [(\exists_{u \in W} (xRy \text{ and } y \models_{m} \gamma) \text{ and } x \models_{m} \delta)] \Leftrightarrow$  $\Leftrightarrow [\exists_{y \in W}(xRy \text{ and } y \models^{\#} f^{*}(\gamma)) \text{ and } x \models^{\#} f^{*}(\delta))] \Leftrightarrow$  $\Leftrightarrow [x \models^{\#} \Diamond f^{*}(\gamma) \text{ and } x \models^{\#} f^{*}(\delta)] \Leftrightarrow x \models^{\#} \Diamond f^{*}(\gamma) \land f^{*}(\delta) \Leftrightarrow$  $\Leftrightarrow x \models^{\#} f^*(\gamma \wedge_{\mathrm{d}} \delta).$ Next we show that in any model  $\langle W, R, v \rangle, \forall_{x \in W} \exists_{y \in W} (xRy \text{ and } y \models_m \alpha)$  $\models \alpha \Leftrightarrow$  $\Leftrightarrow$  in any model  $\langle W, R, v \rangle, \forall_{x \in W} \exists_{y \in W} (xRy \text{ and } y \models^{\#} f^{*}(\alpha))$  $\Leftrightarrow \quad \text{in any model } \langle W, R, v \rangle, \forall_{x \in W} (x \models^{\#} \Diamond f^*(\alpha))$  $\Leftrightarrow \quad \Diamond f^*(\alpha) \in S5$  $\Leftrightarrow$  $\alpha \in D_2$ .

The translation procedure became redundant and we succeeded in constructing a new (*direct*) semantics for  $D_2^*$ . All the axiom schemata ( $A_1$ )– ( $A_{22}$ ) are valid in the modified semantics (and (MP)\* preserves validity).

Since the accessibility relation defined on  $D_2^*$ -frames is reflexive, symmetric and transitive, it implies that any world is accessible from any other and we might well considere the relation to be complete. Consequently, the notion of  $D_2^*$ -model can be simplified to the form:

A model  $(D_2^*\text{-model})$  is a pair  $\langle W, v \rangle$  where W is a non-empty set (of possible worlds, points, etc.) and v is a function that each pair consisting of a formula and a point assigns an element of  $\{1,0\}, v : For_{D_2^*} \times W \Rightarrow \{1,0\},$  defined as follows:

$$\begin{array}{lll} (\sim) & v(\sim\alpha,x)=1 & \Leftrightarrow & v(\alpha,x)=0 \\ (\vee) & v(\alpha\vee\beta,x)=1 & \Leftrightarrow & v(\alpha,x)=1 \text{ or } v(\beta,x)=1 \\ (\wedge_{\rm d}) & v(\alpha\wedge_{\rm d}\beta,x)=1 & \Leftrightarrow & \exists_{y\in W}(v(\alpha,y)=1) \text{ and } v(\beta,x)=1 \\ (\rightarrow_{\rm d}) & v(\alpha\rightarrow_{\rm d}\beta,x)=1 & \Leftrightarrow & \forall_{y\in W}(v(\alpha,y)=0) \text{ or } v(\beta,x)=1. \end{array}$$

The notion of a valid sentence also needs to be modified:

$$\models \alpha \quad \Leftrightarrow \quad \text{in any model } \langle W, v \rangle, \exists_{y \in W} (v(\alpha, y) = 1).$$

It is worth mentioning that the most of the *notorious*, in a very *real* paraconsistent sense, formulas are not valid in  $D_2^*$ , for instance:

(1)  $p \rightarrow_{d} (\sim p \rightarrow_{d} q)$ (2)  $p \rightarrow_{d} (\sim p \rightarrow_{d} \sim q)$   $(3) \quad (p \to_{d} q) \to_{d} (\sim q \to_{d} \sim p)$   $(4) \quad (\sim p \to_{d} \sim q) \to_{d} (q \to_{d} p)$   $(5) \quad (p \to_{d} q) \to_{d} (\sim (p \to_{d} q) \to_{d} r)$   $(6) \quad p \to_{d} (\sim p \to_{d} (\sim \sim p \to_{d} q))$   $(7) \quad (p \wedge_{d} \sim p) \to_{d} q.$ 

# 3. New Axiomatization of $D_2^*$

In this section, we present a new axiomatization of  $D_2^*$  making use of the discursive connectives occurring *directly* in a set of axiom schemata. The role of axiom schemata of  $D_2^*$  can be taken on by the following:

$$\begin{array}{l} (A_1) \ \alpha \rightarrow_{\rm d} (\beta \rightarrow_{\rm d} \alpha) \\ (A_2) \ (\alpha \rightarrow_{\rm d} (\beta \rightarrow_{\rm d} \gamma)) \rightarrow_{\rm d} ((\alpha \rightarrow_{\rm d} \beta) \rightarrow_{\rm d} (\alpha \rightarrow_{\rm d} \gamma)) \\ (A_3) \ ((\alpha \rightarrow_{\rm d} \beta) \rightarrow_{\rm d} \alpha) \rightarrow_{\rm d} \alpha \\ (A_4) \ \alpha \wedge_{\rm d} \beta \rightarrow_{\rm d} \alpha \\ (A_5) \ \alpha \wedge_{\rm d} \beta \rightarrow_{\rm d} \alpha \\ (A_5) \ \alpha \wedge_{\rm d} \beta \rightarrow_{\rm d} \beta \\ (A_6) \ \alpha \rightarrow_{\rm d} (\beta \rightarrow_{\rm d} (\alpha \wedge_{\rm d} \beta)) \\ (A_7) \ \alpha \rightarrow_{\rm d} \alpha \vee \beta \\ (A_8) \ \beta \rightarrow_{\rm d} \alpha \vee \beta \\ (A_8) \ \beta \rightarrow_{\rm d} \alpha \vee \beta \\ (A_9) \ (\alpha \rightarrow_{\rm d} \gamma) \rightarrow_{\rm d} ((\beta \rightarrow_{\rm d} \gamma) \rightarrow_{\rm d} (\alpha \vee \beta \rightarrow_{\rm d} \gamma)). \\ (A_9) \ \alpha \vee \sim \alpha \\ (A_{10}) \ \alpha \rightarrow_{\rm d} \sim (\sim (\alpha \vee \beta) \wedge_{\rm d} \sim \beta \wedge_{\rm d} \sim \alpha) \\ (A_{11}) \ \sim (\sim (\alpha \vee \beta) \wedge_{\rm d} \sim \beta \wedge_{\rm d} \sim \alpha) \rightarrow_{\rm d} \ \sim (\sim (\alpha \vee \beta \vee \gamma) \wedge_{\rm d} \sim \gamma \wedge_{\rm d} \sim \beta \wedge_{\rm d} \sim \alpha) \\ (A_{12}) \ \sim (\sim (\alpha \vee \beta) \wedge_{\rm d} \sim \beta \wedge_{\rm d} \sim \alpha) \rightarrow_{\rm d} ((\alpha \vee \beta \beta) \rightarrow_{\rm d} \alpha) \\ (A_{14}) \ \sim (\sim (\alpha \vee \beta \vee \gamma) \wedge_{\rm d} \sim \gamma \wedge_{\rm d} \sim \beta \wedge_{\rm d} \sim \alpha) \rightarrow_{\rm d} (\alpha \vee \beta) ) \\ (A_{15}) \ \sim (\sim (\alpha \vee \beta \vee \gamma) \wedge_{\rm d} \sim \gamma) \wedge_{\rm d} \sim \gamma \wedge_{\rm d} \sim \beta \wedge_{\rm d} \sim \alpha) \rightarrow_{\rm d} \\ \rightarrow_{\rm d} \ (\sim (\sim \alpha \wedge_{\rm d} \sim \beta) \rightarrow_{\rm d} (\alpha \vee \beta) \\ (A_{16}) \ \sim (\sim \alpha \wedge_{\rm d} \sim \beta) \rightarrow_{\rm d} (\alpha \vee \beta) \\ (A_{18}) \ (\alpha \vee \beta) \rightarrow_{\rm d} (\alpha \vee \sim \sim \beta) \end{array}$$

The sole rule of inference is Detachment Rule

 $(MP)^* \quad \alpha, \alpha \to_d \beta / \beta$ 

The consequence relation  $\vdash_{D_2^*}$  is determined by the set of axioms and  $(MP)^*$ .

Observe that  $(A_1), (A_2)$  are axiom schemata of  $D_2^*$  and our system is closed under the detachment rule. It immediately follows that the proof of the deduction theorem is standard.

THEOREM 1.  $\Phi \vdash_{D_2^*} \alpha \to_{\mathrm{d}} \beta \Leftrightarrow \Phi \cup \{\alpha\} \vdash_{D_2^*} \beta$ , where  $\alpha, \beta \in For_{D_2^*}, \Phi \subseteq For_{D_2^*}$ .

COROLLARY 4. The formulas listed below are provable in  $D_2^*$ :

 $\begin{array}{ll} (T_1) & (\alpha \lor \alpha) \to_{d} \alpha \\ (T_2) & (\alpha \lor \beta) \leftrightarrow_{d} (\beta \lor \alpha) \\ (T_3) & ((\alpha \lor \beta) \lor \gamma) \leftrightarrow_{d} (\alpha \lor (\beta \lor \gamma)) \\ (T_4) & (\alpha \lor (\beta \to_{d} \gamma)) \leftrightarrow_{d} ((\alpha \lor \beta) \to_{d} (\alpha \lor \gamma)) \\ (T_5) & \alpha \lor (\alpha \to_{d} \beta) \\ (T_6) & (\alpha \to_{d} \beta) \to_{d} ((\gamma \lor \alpha) \to_{d} (\gamma \lor \beta)) \\ (T_7) & (\alpha \to_{d} (\alpha \to_{d} \beta)) \to_{d} \beta \\ (T_8) & (\beta \lor \alpha \lor \beta) \to_{d} (\alpha \lor \beta) \\ (T_9) & \sim (\sim (\alpha \lor \beta) \land_{d} \sim \beta \land_{d} \sim \alpha) \to_{d} \\ & \rightarrow_{d} (\sim (\sim (\alpha \lor \sim \beta) \land_{d} \sim \alpha) \to_{d} \alpha) \end{array}$ 

and the set of  $\{\alpha : \vdash_{D_2^*} \alpha\}$  is closed under the rules:

 $\begin{array}{ll} (R_1) & \alpha, \beta \ / \ \alpha \wedge_{\rm d} \beta \\ (R_2) & \alpha \wedge_{\rm d} \beta \ / \ \alpha \ (\beta) \\ (R_3) & \alpha \ (\beta) \ / \ \alpha \lor \beta. \end{array}$ 

PROOF. We prove  $(T_1) - (T_8)$  in much the same way as it is in the (positive) classical case.  $(T_9)$ :

 $\begin{array}{ll} 1. & \sim (\sim (\alpha \lor \beta) \land_{\rm d} \sim \beta \land_{\rm d} \sim \alpha) & \text{by deduction theorem} \\ 2. & \sim (\sim (\alpha \lor \sim \beta) \land_{\rm d} \sim \sim \beta \land_{\rm d} \sim \alpha) & \text{by deduction theorem} \\ 3. & (\alpha \lor \sim \beta) \lor \sim \beta \lor \alpha & (A_{16}), 2 \text{ and } ({\rm MP})^* \\ 4. & \alpha \lor \sim \beta & (T_8), (T_3), 3 \text{ and } ({\rm MP})^* \\ 5. & \alpha & (A_{13}), 1, 4 \text{ and } ({\rm MP})^* \end{array}$ 

 $(R_1)$ – $(R_3)$  are obvious due to  $(A_6), (A_5), (A_4), (A_7), (A_8)$  and  $(MP)^*$ .

COROLLARY 5. Each of the axiom schemata of  $D_2^*$ ,  $(A_1)-(A_{18})$ , becomes a schema of the thesis of the classical propositional calculus after replacing in  $A_i$ , where  $i \in \{1, \ldots, 18\}$ , all the discursive connectives with their classical counterparts (i.e.  $\rightarrow_d / \rightarrow$  and  $\wedge_d / \wedge$ ).<sup>7</sup> The rule (MP)\* becomes an

 $<sup>^{7}(</sup>A_{9})$  can already be treated as a thesis of *CPC*.

admissible rule of CPC after replacing  $\rightarrow_d$  with  $\rightarrow$ .

Let  $(D_2^*) = \{ \alpha : \vdash_{(D_2^*)} \alpha \}$  be the system described in Corollary 5 and  $CPC = \{ \alpha : \vdash_{CPC} \alpha \}.$ 

Corollary 6.  $(D_2^*) \subset CPC$ .

# 4. Soundness and Completeness

THEOREM 2 (Soundness).  $\vdash_{D_2^*} \alpha \Rightarrow \models \alpha$ .

PROOF. By induction. All that needs to be checked is that  $(A_1)-(A_{18})$  are valid and  $(MP)^*$  preserves validity.

THEOREM 3 (Completeness).  $\models \alpha \Rightarrow \vdash_{D_2^*} \alpha$ 

**PROOF.** (Outline). Assume that  $\not\vdash_{D_2^*} \alpha$  (by contraposition) and  $\models \alpha$ . Define a sequence of all the formulas of  $D_2^*$  as follows:

 $\Gamma = \gamma_1, \gamma_2, \gamma_3, \ldots$  where  $\gamma_1 = \alpha$ .

Define the family of (finite) subsequences of  $\Gamma$ :

 $\begin{array}{lll} \Delta_1 = \delta_1 & \text{where } \delta_1 = \gamma_1 = \alpha \\ \Delta_2 = \delta_1, \delta_2 & \text{where } \delta_1 = \gamma_1 = \alpha \text{ and } \delta_2 = \gamma_i \text{ iff } \not\vdash_{D_2^*} \delta_1 \vee \gamma_i, \\ & \text{otherwise take the very next formula(s) occurring in} \\ \Delta_3 = \delta_1, \delta_2, \delta_3 & \text{where } \delta_1 = \gamma_1 = \alpha, \delta_2 = \gamma_i \text{ and } \delta_3 = \gamma_{i+n} \text{ iff } \not\vdash_{D_2^*} \\ & \delta_1 \vee \delta_2 \vee \gamma_{i+n}, \text{ otherwise go on testing the very next} \\ & \text{formulas of the sequence } \Gamma \end{array}$ 

$$\begin{aligned} & \vdots \\ \Delta_n = \delta_1, \delta_2, \delta_3, \dots, \delta_n \\ & \vdots \end{aligned}$$

Next define:

$$\nabla_{1} = \underbrace{\delta_{1}}_{\Delta_{1}}, \underbrace{\delta_{1}, \delta_{2}}_{\Delta_{2}}, \underbrace{\delta_{1}, \delta_{2}, \delta_{3}}_{\Delta_{3}}, \dots, \underbrace{\delta_{1}, \delta_{2}, \delta_{3}, \dots, \delta_{n}}_{\Delta_{n}}, \dots$$

$$\nabla_{2} = \underbrace{\delta_{1}, \delta_{2}}_{\Delta_{2}}, \underbrace{\delta_{1}, \delta_{2}, \delta_{3}}_{\Delta_{3}}, \dots, \underbrace{\delta_{1}, \delta_{2}, \delta_{3}, \dots, \delta_{n}}_{\Delta_{n}}, \dots$$

$$\nabla_{3} = \underbrace{\delta_{1}, \delta_{2}, \delta_{3}}_{\Delta_{3}}, \dots, \underbrace{\delta_{1}, \delta_{2}, \delta_{3}, \dots, \delta_{n}}_{\Delta_{n}}, \dots$$

$$\vdots$$

$$\nabla_n = \underbrace{\delta_1, \dots, \delta_n}_{\Delta_n}, \dots, \underbrace{\delta_1, \delta_2, \delta_3, \dots, \delta_{n+k}}_{\Delta_{n+k}}, \dots$$

Observe that all the sequences are *infinite*.

From now on we use  $\nabla_i$ , where  $i = \{1, 2, 3, ...\}$ , to denote both the *i*-sequence and the set of formulas which contains all the elements of the *i*-sequence. Additionally, let  $\nabla = \{\nabla_1, \nabla_2, ..., \nabla_i, ..., \nabla_n, ...\}$ .

LEMMA 1. (i)  $\not\vdash_{D_2^*} \delta_1 \lor \cdots \lor \delta_1 \lor \cdots \lor \delta_n$ , for any  $n \in N$ (ii) if  $\beta \notin \nabla_i$ , then  $\vdash_{D_2^*} \delta_1 \lor \cdots \lor \delta_1 \lor \cdots \lor \delta_k \lor \beta$ , for some  $k \in N$ .

PROOF. Apply the definition of  $\nabla_i$ , where  $i = \{1, 2, 3, ...\}$ .

DEFINITION 2.  $\nabla_i \mathbf{R} \nabla_k \Leftrightarrow (\nabla_i = \nabla_k)$ , for every  $\nabla_i, \nabla_k \in \nabla$ .

LEMMA 2. **R** is the equivalence relation on  $\nabla$ .

**PROOF.** Immediately from Definition 2.

In Section 2, we mentioned that the connectives of  $\leftrightarrow_d$  and  $\rightarrow_d$  were redundant. This fact simplifies a proof of the next lemma.

LEMMA 3.  $\forall_{\beta,\gamma\in For_{D_{\alpha}^{*}}}, \forall_{\nabla_{i},\nabla_{k}\in\nabla}$ :

(i)  $\beta \lor \gamma \in \nabla_i \Leftrightarrow \beta \in \nabla_i \text{ and } \gamma \in \nabla_i$ (ii)  $\beta \land_d \gamma \in \nabla_i \Leftrightarrow \forall_{\nabla_k \in \nabla} (\nabla_i \mathbf{R} \nabla_k \Rightarrow \beta \in \nabla_k) \text{ or } \gamma \in \nabla_i$ (iii)  $\sim \beta \in \nabla_i \Leftrightarrow \beta \notin \nabla_i$ .

PROOF. We only show (ii) and (iii).

(ii)  $\Rightarrow$ . Let (1)  $\beta \wedge_{d} \gamma \in \nabla_{i}$ , (2)  $\exists_{\nabla_{k} \in \nabla} (\nabla_{i} \mathbf{R} \nabla_{k} \text{ and } \beta \notin \nabla_{k})$  and  $\gamma \notin \nabla_{i}$ . Then, due to (2), we obtain (3)  $\nabla_{i} \mathbf{R} \nabla_{k}$ , (4)  $\beta \notin \nabla_{k}$  and (5)  $\gamma \notin \nabla_{i}$ . By Definition 2 and (4), we have (6)  $\beta \notin \nabla_{i}$  and consequently (7)  $\vdash_{D_{2}^{*}} \delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k} \vee \beta$ , for some  $k \in N$  (Lemma 1(ii) and (6)), (8)  $\vdash_{D_{2}^{*}} \delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{r} \vee \gamma$ , for some  $r \in N$  (Lemma 1 (ii) and (5)). Suppose that  $k \geq r$  (we prove the second case, i.e. r > k, on much the same way as  $k \geq r$ ). Apply  $(R_{3})$ ,  $(T_{2})$ ,  $(T_{3})$ ,  $(MP)^{*}$  to (8), to get (9)  $\vdash_{D_{2}^{*}} \delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k} \vee \gamma$ . Now use  $(R_{1})$  to obtain  $(10) \vdash_{D_{2}^{*}} (\delta_{1} \vee \cdots \vee \delta_{1} \vee \cdots \vee \delta_{k}) \vee (\beta \wedge_{d} \gamma)$ . Obviously,  $\delta_{1}, \delta_{2}, \ldots, \delta_{k}, \beta \wedge_{d} \gamma \in \nabla_{i}$ . A contradiction due to Lemma 1(i).

(ii)  $\Leftarrow$ . Assume that (1)  $\forall_{\nabla_k \in \nabla} (\nabla_i \mathbf{R} \nabla_k \Rightarrow \beta \in \nabla_k)$  or  $\gamma \in \nabla_i$  and (2)  $\beta \wedge_d \gamma \notin \nabla_i$ . Subcase (a): if (1)  $\forall_{\nabla_k \in \nabla} (\nabla_i \mathbf{R} \nabla_k \Rightarrow \beta \in \nabla_k), (2)\beta \wedge_d \gamma \notin \nabla_i$ , then (3)  $\beta \in \nabla_i$  (by **R**) and (4)  $\vdash_{D_2^*} (\delta_1 \vee \cdots \vee \delta_1 \vee \cdots \vee \delta_k) \vee (\beta \wedge_d \gamma),$ for some  $k \in N$  (Lemma 1(ii) and (2)). Now apply (T\_4) to get (5)  $\vdash_{D_2^*} (\delta_1 \vee \cdots \vee \delta_1 \vee \cdots \vee \delta_k \vee \beta) \wedge_d (\delta_1 \vee \cdots \vee \delta_1 \vee \cdots \vee \delta_k \vee \gamma)$  and (R<sub>2</sub>) to obtain (6)  $\vdash_{D_2^*} \delta_1 \vee \cdots \vee \delta_1 \vee \cdots \vee \delta_k \vee \beta,$  but  $\delta_1, \ldots, \delta_k, \beta \in \nabla_i$ . A contradition due to Lemma 1(i). Subcase (b): (1)  $\gamma \in \nabla_i$  and (2)  $\beta \wedge_d \gamma \notin \nabla_i$ . Now proceed analogously to the subcase (a).

(iii)  $\Rightarrow$ . Assume that  $\sim \beta \in \nabla_i$  and  $\beta \in \nabla_i$ . It means the formula  $\beta \lor \sim \beta$  is not a thesis of  $D_2^*$  (Lemma 1 (i)). A contradiction due to  $(A_9)$ .

(iii)  $\Leftarrow$ . Let  $\nabla_i$  be a sequence  $i = \{1, 2, 3, \dots\}$ . For every  $\nabla_i$  define:

$$\nabla_i^* = \delta_1^*, \delta_2^*, \delta_3^*, \delta_4^*, \dots$$

where

(a)  $\delta_1^* = \delta_1 = \gamma_1 = \alpha$ (b) for every  $\delta_n \in \nabla_i : (\delta_n = \delta_k^*) \Leftrightarrow \not \vdash_{D_2^*} \sim (\sim (\delta_1^* \lor \ldots \lor \delta_k^*) \land_d \sim \delta_k^* \land_d \ldots \land_d \sim \delta_1^*).$ 

DEFINITION 3. We call a formula  $\beta$  classical if it does not include constant symbols other than  $\sim$  and  $\vee$ . We call a formula  $\beta$  discursive if it contains at least one discursive connective. A formula  $\beta$  is a discursive thesis if it is a thesis and discursive.

COROLLARY 7. (i)  $\nabla_i^* \subseteq \nabla_i$ , for every  $i \in \{1, 2, 3, \dots\}$ 

- (ii)  $\not\vdash_{D_2^*} \sim (\sim (\delta_1^* \vee \cdots \vee \delta_n^*) \wedge_{\mathrm{d}} \sim \delta_n^* \wedge_{\mathrm{d}} \ldots \wedge_{\mathrm{d}} \sim \delta_1^*)$ , for every  $n \in N$
- (iii) If  $\beta$  is not a discursive thesis,  $\beta \notin \nabla_i$ , then  $\vdash_{D_2^*} \sim (\sim (\delta_1^* \lor \cdots \lor \delta_k^* \lor \beta) \land_{\mathrm{d}} \sim \beta \land_{\mathrm{d}} \sim \delta_k^* \land_{\mathrm{d}} \ldots \land_{\mathrm{d}} \sim \delta_1^*)$ , for some  $k \in N$ .

Now assume that (1)  $\sim \beta \notin \nabla_i$  and (2)  $\beta \notin \nabla_i$ . Apply Lemma 1(ii), to get (3)  $\vdash_{D_2^*} \delta_1 \lor \cdots \lor \delta_m \lor \sim \beta$  and (4)  $\vdash_{D_2^*} \delta_1 \lor \cdots \lor \delta_n \lor \beta$ , for some  $m, n \in N$ . Suppose that  $m \ge n$  (the case n > m is similar to  $m \ge n$ ). Use ( $R_3$ ), ( $T_2$ ), ( $T_3$ ), (MP)\* to (4), to obtain (5)  $\vdash_{D_2^*} \delta_1 \lor \cdots \lor \delta_m \lor \beta$ . If  $\sim \beta \notin \nabla_i, \beta \notin \nabla_i$ and  $\nabla_i^* \subseteq \nabla_i$ , then (6)  $\sim \beta \notin \nabla_i^*$ , (7)  $\beta \notin \nabla_i^*$ . We have to consider three subcases:

- (A) neither  $\beta$  nor  $\sim \beta$  is a discursive thesis
- (B)  $\beta$  is a discursive thesis, but  $\sim \beta$  is not a discursive thesis
- (C) ~  $\beta$  is a discursive thesis, but  $\beta$  is not a discursive thesis.

Note that the fourth subcase (both  $\beta$  and  $\sim \beta$  is a *discursive thesis*) is impossible due to *Soundness*.

Subcase (A).

Let m = 1. (8)  $\vdash_{D_2^*} \sim (\sim(\delta_1^* \lor \beta) \land_d \sim \beta \land_d \sim \delta_1^*)$ , Corollary 7 (iii) and (2), (9)  $\vdash_{D_2^*} \sim (\sim(\delta_1^* \lor \sim \beta) \land_d \sim \sim \beta \land_d \sim \delta_1^*)$ , Corollary 7 (iii) and (1). Apply (T<sub>9</sub>) to (8) and (9), to get (10)  $\vdash_{D_2^*} \delta_1^*$ , but  $\delta_1^* = \delta_1 = \gamma_1 = \alpha$ . A contradiction. Let m > 1. (8)  $\vdash_{D_2^*} \sim (\sim(\delta_1^* \lor \cdots \lor \delta_p^* \lor \beta) \land_d \sim \beta \land_d \sim \delta_p^* \land_d \ldots \land_d \sim \delta_1^*)$ , for some  $p \in N$ , (9)  $\vdash_{D_2^*} \sim (\sim(\delta_1^* \lor \cdots \lor \delta_r^* \lor \sim \beta) \land_d \sim \sim \beta \land_d \sim \delta_r^* \land_d \ldots \land_d \sim \delta_1^*)$ , for some  $r \in N$ . Note that  $p \ge r$  or r > p. If  $p \ge r$ , then apply (A<sub>11</sub>), (A<sub>12</sub>) and (MP)\* to (9)', to get (10)'  $\vdash_{D_2^*} \sim (\sim(\delta_1^* \lor \cdots \lor \delta_p^* \lor \sim \beta) \land_d \sim \sim \beta \land_d \sim \delta_p^* \land_d \ldots \land_d \sim \delta_1^*)$ , for some  $r \in N$ . Now consider (8)', (10)' and use (A<sub>15</sub>) and (MP)\*, to obtain (11)'  $\vdash_{D_2^*} \sim (\sim \delta_p^* \land_d \ldots \land_d \sim \delta_1^*)$ . Apply (A<sub>16</sub>) to (11)', to get (12)'  $\vdash_{D_2} \delta_1^* \lor \cdots \lor \delta_p$  (where  $\delta_1^* = \delta_1, \delta_2^* = \delta_2, \ldots, \delta_p^* = \delta_p$ ). Clearly,  $\delta_1, \ldots, \delta_p \in \nabla_i$ . A contradition due to Lemma 1(i).

We prove the subcases (B) and (C) in a very similar way. Make use of  $(A_{11}), (A_{12}), (A_{13}), (A_{14}), (A_{17})$  and  $(A_{18})$ .

Now we construct a canonical model for  $D_2^*$  that will falsify any non-theorem (and invalidate a non-derivable rule). Let  $M_C = \langle \nabla, \mathbf{R}, v_c \rangle$  be such a model. The canonical valuation  $v_c : For_{D_2^*} \times \nabla \Rightarrow \{1, 0\}$  is defined:

$$v_c(\beta, \nabla_i) = \begin{cases} 1, & \text{if } \beta \notin \nabla_i \\ 0, & \text{if } \beta \in \nabla_i. \end{cases}$$

We have to show:

 $\begin{array}{l} \text{Case (1): } \beta = \sigma \lor \tau \\ \text{(i) } v_c(\sigma \lor \tau, \nabla_i) = 1 \Leftrightarrow \sigma \lor \tau \not\in \nabla_i \Leftrightarrow \sigma \not\in \nabla_i \text{ or } \tau \not\in \nabla_i \Leftrightarrow v_c(\sigma, \nabla_i) = 1 \\ \text{or } v_c(\tau, \nabla_i) = 1 \\ \text{(ii) } v_c(\sigma \lor \tau, \nabla_i) = 0 \Leftrightarrow \sigma \lor \tau \in \nabla_i \Leftrightarrow \sigma \in \nabla_i \text{ and } \tau \in \nabla_i \Leftrightarrow v_c(\sigma, \nabla_i) = 0 \\ \text{and } v_c(\tau, \nabla_i) = 0. \end{array}$   $\begin{array}{l} \text{Case (2): } \beta = \sigma \land_{\mathrm{d}} \tau \end{array}$ 

(i)  $v_c(\sigma \wedge_d \tau, \nabla_i) = 1 \Leftrightarrow \sigma \wedge_d \tau \notin \nabla_i \Leftrightarrow \exists_{\nabla_k \in \nabla} (\nabla_i \mathbf{R} \nabla_k \text{ and } \sigma \notin \nabla_k)$ and  $\tau \notin \nabla_i \Leftrightarrow \exists_{\nabla_k \in \nabla} (\nabla_i \mathbf{R} \nabla_k \text{ and } v_c(\sigma, \nabla_k) = 1)$  and  $v_c(\tau, \nabla_i) = 1$ (ii)  $v_c(\sigma \wedge_d \tau, \nabla_i) = 0 \Leftrightarrow \sigma \wedge_d \tau \in \nabla_i \Leftrightarrow \forall_{\nabla_k \in \nabla} \text{ (if } \nabla_i \mathbf{R} \nabla_k \text{ then } \sigma \in \nabla_k)$ or  $\tau \in \nabla_i \Leftrightarrow \forall_{\nabla_k \in \nabla} \text{ (if } \nabla_i \mathbf{R} \nabla_k \text{ then } v_c(\sigma, \nabla_k) = 0)$  or  $v_c(\tau, \nabla_i) = 1$ . Case (3):  $\beta = \sim \sigma$ 

- (i)  $v_c(\sim \sigma, \nabla_i) = 1 \Leftrightarrow \sim \sigma \notin \nabla_i \Leftrightarrow \sigma \in \nabla_i \Leftrightarrow v_c(\sigma, \nabla_i) = 0$
- (ii)  $v_c(\sim \sigma, \nabla_i) = 0 \Leftrightarrow \sim \sigma \in \nabla_i \Leftrightarrow \sigma \notin \nabla_i \Leftrightarrow v_c(\sigma, \nabla_i) = 1.$

To finish the proof, recall  $\not\vdash_{D_2^*} \alpha$ , but  $\models \alpha$ . Notice, however, that the formula  $\alpha$  is the very first element of all the sequences  $\nabla_i$ , where  $i \in \{1, 2, 3, ...\}$ . Since  $\alpha \in \nabla_i$ , then the formula is not valid in  $\langle \nabla, \mathbf{R}, v_c \rangle$ , and consequently  $\not\models \alpha$ . A contradiction.

# 5. Labelled Tableaux for $D_2^*$

In what follows, we will use signed labelled formulas such as  $\sigma :: TP$  (or  $\sigma :: FP$ ), where  $\sigma$  is a label and TP (or FP) is a signed formula (i.e. a formula prefixed with a "T" or "F"). The phrase  $\sigma :: TP$  is read as "P is true at the world  $\sigma$ " and  $\sigma :: FP$  as "P is false at the world  $\sigma$ ". By *label*, we understand a natural number. We call  $\rho$  root label and always assume that  $\rho = 1$ . A tableau for a labelled formula P is a downward rooted tree, where each of the nodes contains a signed labelled formula, constructed using the branch extension rules defined below.

#### Non-discursive rules:

The rules for disjunction and negation are identical to the ones used in classical case.

$$(\mathbf{T}\vee) \quad \frac{\sigma :: TP \lor Q}{\sigma :: TP \mid \sigma :: TQ} \qquad (\mathbf{F}\vee) \quad \frac{\sigma :: FP \lor Q}{\sigma :: FP}$$
$$(\mathbf{T}\sim) \quad \frac{\sigma :: T \sim P}{\sigma :: FP} \qquad (\mathbf{F}\sim) \quad \frac{\sigma :: F \sim P}{\sigma :: FP}$$

The rules  $(F \lor)$ ,  $(F \sim)$  and  $(T \sim)$  are linear, but  $(T \lor)$  is branching.

## Discursive rules:

$$\begin{array}{c|c} (\boldsymbol{T} \wedge_{\mathrm{d}}) & \underline{\sigma} :: T \to \wedge_{\mathrm{d}} \mathrm{Q} \\ \hline \boldsymbol{\tau} :: T \to \\ \sigma :: T \to \mathrm{Q} \end{array} \quad \begin{array}{c} \boldsymbol{\sigma} :: F \to \wedge_{\mathrm{d}} \mathrm{Q} \\ \hline \boldsymbol{\sigma}' :: F \to | \boldsymbol{\sigma} :: F \to \mathrm{Q} \end{array}$$

Notice that  $\tau$ , for  $(T \wedge_d)$ , is a label that is *new* to the branch, but  $\sigma'$ , for  $(F \wedge_d)$ , is a label that has been *already used* in the branch.

JANUSZ CIUCIURA

$$\begin{array}{c|c} (\mathbf{T} \rightarrow_{\mathrm{d}}) & \underline{\sigma} :: T \operatorname{P} \rightarrow_{\mathrm{d}} \operatorname{Q} \\ \hline \sigma' :: F \operatorname{P} & \sigma :: T \operatorname{Q} \end{array} & (\mathbf{F} \rightarrow_{\mathrm{d}}) & \underline{\sigma} :: F \operatorname{P} \rightarrow_{\mathrm{d}} \operatorname{Q} \\ & \tau :: T \operatorname{P} \\ & \sigma :: F \operatorname{Q} \end{array}$$

where  $\sigma'$ , for  $(T \to_d)$ , has been already used in the branch and  $\tau$ , for  $(F \to_d)$ , is a label that is *new* to the branch.

## Closure rule:

A branch of a tableau is closed if we can apply the rule:

 $\begin{array}{c} \textbf{(C)} & \sigma :: T \neq \\ \sigma :: F \neq \\ \hline closed \end{array}$ 

Otherwise the branch is open. A tableau is closed if all of its branches are closed, otherwise the tableau is open.

## Special rule:

(S) 
$$\frac{\rho :: F P}{\sigma' :: F P}$$

 $\rho$  is a root label and  $\sigma$ ' is a label that has been *already used* in the branch. The application of the rule is always limited to root labels.

Let P be a formula. By a  $D_2^*$ -tableau proof of P we mean a closed tableau with 1 :: FP.

Now, we give a few examples to illustrate how the rules we defined work.

EXAMPLE 1. Closed tableau for the second Clavius' law.

| (a) $1 :: F (\sim P$          | $\rightarrow_d P) \rightarrow_d P$ | (start)                                       |
|-------------------------------|------------------------------------|-----------------------------------------------|
| (b) $2 :: T \sim \mathbf{P}$  | $\rightarrow_{\rm d} {\rm P}$      | $(F \rightarrow_{\mathrm{d}}), (\mathrm{a})$  |
| (c) $1 :: F P$                |                                    | $(F \rightarrow_{\mathrm{d}}), (\mathrm{a})$  |
| $1^{\mathrm{st}}$ branch      |                                    |                                               |
| (d) $1 :: F \sim P$           |                                    | $(T \rightarrow_{\rm d}), (b)$                |
| (e) $1 :: T P$                |                                    | $(F \sim), (d)$                               |
| Closed                        |                                    | (C), (c), (e)                                 |
| $2^{nd}$ branch               |                                    |                                               |
| (d)' $2 :: T P$               |                                    | $(T \rightarrow_{\mathrm{d}}), (\mathrm{b})$  |
| (e)' $2 :: F (\sim P$         | $\rightarrow_d P) \rightarrow_d P$ | (S), (a)                                      |
| (f)' $3 :: T \sim \mathbf{P}$ | $\rightarrow_{\rm d} {\rm P}$      | $(F \rightarrow_{\mathrm{d}}), (\mathrm{e})'$ |
| (g)' $2 :: F P$               |                                    | $(F \rightarrow_{\mathrm{d}}), (\mathrm{e})'$ |
| Closed                        |                                    | (C), (d)', (g)'                               |

In our example, we applied one of the branching rules, i.e.  $(T \rightarrow_d)$ , to the line (b) and used the notions  $1^{st}$  branch and  $2^{nd}$  branch to indicate that the *(new)* branches were opened.

In the next example, we will generate an infinite tableau for a *notorious* law of *CPC*.

EXAMPLE 2. Infinite tableau for the Duns Scotus thesis

(a)  $1 :: F P \rightarrow_d (\sim P \rightarrow_d Q)$  (start) (b) 2 :: T P  $(F \rightarrow_d), (a)$ (c)  $1 :: F \sim P \rightarrow_d Q$   $(F \rightarrow_d), (a)$ (d)  $3 :: T \sim P$   $(F \rightarrow_d), (c)$ (e) 1 :: F Q  $(F \rightarrow_d), (c)$ (f) 3 :: F P  $(T \sim), (d)$ (g)  $2 :: F P \rightarrow_d (\sim P \rightarrow_d Q)$  (S), (a) (h) 4 :: T P  $(F \rightarrow_d), (g)$ (i)  $2 :: F \sim P \rightarrow_d Q$   $(F \rightarrow_d), (g)$ (j)  $5 :: T \sim P$   $(F \rightarrow_d), (i)$ (k) 2 :: F Q  $(F \rightarrow_d), (i)$ (l) 5 :: F P  $(T \sim), (j)$ (m)  $3 :: F P \rightarrow_d (\sim P \rightarrow_d Q)$  (S), (a) (n) 6 :: T P  $(F \rightarrow_d), (m)$ (o)  $3 :: F \sim P \rightarrow_d Q$   $(F \rightarrow_d), (m)$ (p)  $7 :: T \sim P$   $(F \rightarrow_d), (m)$ (p) 7 :: F P  $(T \sim), (p)$ (t)  $4 :: F P \rightarrow_d (\sim P \rightarrow_d Q)$  (S), (a)  $\vdots$ 

The procedure goes on ad infinitum.

THEOREM 4. A formula P has a  $D_2^*$ -tableau proof  $\Leftrightarrow$  P is valid in  $D_2^*$ . PROOF. See [5].

# 6. Unsigned Labelled Tableaux for $D_2^*$

Now, we give a new set of tableau rules for our system We will work with *labelled formulas* such as  $\sigma :: P$ , where  $\sigma$  is a label (being viewed as a natural

249

number) and P is a formula. The notation  $\sigma :: P$  intuitively means "P holds in world  $\sigma$ ".

 $D_2^*$ -tableau is a tree of labelled formulas with root label  $\rho$  (we always assume that  $\rho = 1$ ) and all the nodes of a tree are obtained by the rules schematically described in Table 1. A branch of  $D_2^*$ -tableau is closed if it contains  $\perp$ , otherwise it is open. A  $D_2^*$ -tableau is closed if all of the branches it contains are closed, otherwise it is open. By a  $D_2^*$ -tableau proof of P we mean a closed tableau with  $1 :: \sim P$ .



Table 1. Unsigned Labelled Tableaux for  $D_2^*$ 

Here is an example of a tableau proof of  $\sim \sim P \rightarrow_d P$ .

EXAMPLE 3. Closed tableau for the law of double negation.

#### References

- Achtelik G., L. Dubikajtis, E. Dudek, J. Kanior, "On Independence of Axioms of Jaśkowski Discussive Propositional Calculus", *Reports on Mathemati*cal Logic 11: 3–11, 1981.
- [2] Ciuciura, J., "History and Development of the Discursive Logic", Logica Trianguli 3: 3–31, 1999.
- [3] Ciuciura, J., "Logika dyskusyjna", Principia 35–36: 279–291, 2003.
- [4] Ciuciura, J., "A New Real Axiomatization of D<sub>2</sub>", 1<sup>st</sup> Congress on Universal Logic, Montreux, 31. 03–03. 04. 2005, an abstract available at http://www.uni-log.org/one2.html
- [5] Ciuciura, J., "Labelled Tableaux for  $D_2$ ", BSL 33(4): 223-236, 2004.
- [6] N. C.A. da Costa, Lech Dubikajtis, "A New Axiomatization for the Discursive Propositional Calculus". In: A.I. Arruda, N.C.A. da Costa, R. Chuaqui, (eds.), Non Classical Logics, Model Theory and Computability, North-Holland Publishing, Amsterdam 1977, pp. 45–55.
- [7] Fitting, M. C., First-Order Logic and Automated Theorem Proving, Springer, 1996 (first edition, 1990).
- [8] Goré, R., "Tableau Methods for Modal and Temporal Logics". In: M. D'Agostino, D. Gabbay, R. Haenle and J. Possegga, (eds.), *Handbook of Tableau Methods*, Kluwer Academic Publishers, Dordrecht-Boston-London, 1999, pp. 297–396.
- [9] Jaśkowski, S., "A Propositional Calculus for Inconsistent Deductive Systems", Logic and Logical Philosophy, 7(1): 35-56, 2001.

- [10] Jaśkowski, S., "On the Discussive Conjuntion in the Propositional Calculus for Inconsistent Deductive Systems", *Logic and Logical Philosophy*, 7(1): 57-59, 2001.
- [11] Kotas, J., "Discussive Sentential Calculus of Jaśkowski", Studia Logica 34(2): 149-168, 1975.
- [12] Kotas, J., N. C.A. da Costa, "On Some Modal Logical Systems Sefined in Connexion with Jaśkowski's Problem". In: A.I. Arruda, N.C.A. da Costa, R. Chuaqui, (eds.), Non Classical Logics, Model Theory and Computability, North-Holland Publishing, Amsterdam 1977, pp. 57–73.

JANUSZ CIUCIURA Department of Logic University of Łódź Kopcińskiego 16/18 90-232 Łódź Poland janciu@uni.lodz.pl