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1. Introduction

In previous papers (see Van Bendegem [1993], [1996], [1998], [2000], [2004],
[2005], and jointly with Van Kerkhove [2005]) we have proposed the idea
that, if we look at what mathematicians do in their daily work, one will
find that conceiving and writing down proofs does not fully capture their
activity. In other words, it is of course true that mathematicians spend lots
of time proving theorems, but at the same time they also spend lots of time
preparing the ground, if you like, to construct a proof. A first tentative list
of these “extras” comprises at least the following items:

[I1] Informal proofs: “proofs” that do not satisfy the formal standards,
e.g., a non-justified rule is used, say, an extrapolation from a finite case to an
infinite case, but that nevertheless arrives at a correct result, thus pointing
the way to a possibly correct proof.

[I2] Career induction: to get a hold on a problem ranging over, e.g., all
natural numbers, one studies the separate cases of an initial fragment to
get ideas about possible techniques that could lead to a proof of the general
statement.
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[I3] Mathematical “experiments”: computer visualisations are the best
known example. Although in several respects unreliable, as it often involves
the reduction of the (infinite) continuum to a finite, discrete set, they do
produce “clues” that serve as a guide for a proof.

[I4] Probabilistic considerations: although proofs in the genuine sense
of the word, what they establish is not that a mathematical object (say, a
natural number) has a certain property (say, being a prime), but has that
property with a certain probability.

[I5] Computer proofs: to be distinguished from computer visualisations,
these proofs involve the checking of a finite, though huge amount of separate
cases such that human checking is either impossible or too prone to errors
and hence a computer program performs the task. The result is not a proof
in the classical sense, since unavoidably a human cannot check the proof,
one of the basic standards to call a proof a proof.

[I6] Metamathematical considerations: although one has a proof sat-
isfying the required standards, the result is seen as paradoxical, counter-
intuitive, in conflict with expectations, and hence it is questioned. It can
also involve formal metamathematical results, e.g., in showing that a partic-
ular problem is unsolvable.

Usually given a specific case, i.e., a particular theorem and its proof
history, one will see that one item or a few of the above list will actually
be used in the proof search. It is rather exceptional to have a case where
(nearly) all these elements are present. The topic of this paper is quite
simply the presentation (to a certain depth) of one such case study. All
elements, save [I1], of the list are present in one way or another. It can
thus be considered an exemplar (in the Kuhnian sense), and, perhaps more
importantly, as far as I know, a new exemplar. As is so often the case,
in many philosophical discussions, the same typical example keeps coming
back, wrongly suggesting that no other examples are available1. In addition,
the problem is fairly easy to state, although the mathematics that are used in
search of a proof reach formidable heights. And, finally, it is also a problem
that many mathematicians consider absolutely not interesting. As will be
shown here, the problem definitely is interesting, but then the question is

1Think, e.g., about thought experiments. A tiny set of examples keeps coming back
over and over again: Galileo’s thought experiment about heavy and light masses, Newton’s
bucket experiment concerning absolute properties such as acceleration, and Einstein’s
thought experiment about travelling on a light wave. It has led some philosophers to
mistakenly claim that there is no real problem about thought experiments as they are
exceptional and, hence, not important.
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why so many think otherwise. In Section 3, I will provide some suggestions,
relating to this matter.

This paper is primarily based on the overview article of Jeffrey Lagarias
[2004]2 that provides an extremely detailed presentation of the problem and
the attempts to deal with it. Additional sources are used to highlight details
of the main story. The contrast between Lagarias’ presentation and mine is
that I focus on the philosophically interesting features, not necessarily the
“pure” mathematical aspects. However, as should be clear, this paper is
heavily indebted to the excellent work done by him.

2. The problem

Consider a function from N0 to N0, defined as follows:

T(n) =

{

n/2 if n is even

(3n + 1)/2 if n is odd

Next define the iterate of T as usual:
{

T(0)(n) = n

T(i+1)(n) = T(Ti(n))

The question is now to show that for every n ∈ N0, there is a finite k, such
that

T(k)(n) = 1.

A straightforward example: take n = 7, then we have the following sequence

7→ 11→ 17→ 26→ 13→ 20→ 10→ 5→ 8→ 4→ 2 → 1
0 1 2 3 4 5 6 7 8 9 10 11

therefore T(11)(7) = 1 and k = 11.

3. The origin of the problem

It is easy to understand why, if one has only the above information and is
asked whether or not this is an interesting problem, the answer will most
likely be negative. Why?

2This paper available on the Internet is an update of a previous webpaper from 1996,
see Lagarias [1996], and itself a further elaboration of Lagarias [1985]. The most recent
paper is an annotated bibliography whereas Lagarias [1996] retraces the history of the
problem, proofs included.
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Firstly, it is quite easy to “invent” similar problems, so why should this
particular case attract our attention? As a matter of fact, this type of
argument has been used on several occasions by mathematicians, the most
famous case no doubt Gauss’ comment on the problem that was to become
Fermat’s Last Theorem. In 1816 he wrote to Heinrich Olbers (known as
the originator of the Olbers’ paradox) that “he could easily lay down a
multitude of such propositions, which one could neither prove nor dispose
of” (see Ribenboim [1979], p. 3).

Secondly, suppose we do manage to show the theorem to be correct, what
have we gained? Are there other problems around that would get solved in
the process as well? At first sight not.

Thirdly, on the level of proof methods, it is not guaranteed at all that
interesting things will come out of it. Is it likely that some ingenious new
proof method could solve this problem, but is it to be expected? These are
all very good reasons to consider the problem not interesting (as the author
of this paper believed for a very long time, up to the point that he actually
wrote that because the problem has no connections with other problems, it
was perfectly acceptable to consider it uninteresting; so this paper is at the
same time a correction on one of my former views).

In fact, notwithstanding the observation that not that many mathemati-
cians are actually involved with this problem, it is definitely an interesting
problem. Let me say a few words about its origin. When one is dealing
with number-theoretic functions, say functions f from N0 to N0, then one of
the particular problems one has to deal with is notation and representation.
What I mean is the following.

Suppose that the function f from N0 to N0 is a permutation. Then there
are several ways to represent this function:

(a) One of the classical forms is in tabular form:
(

1 2 3 4 5 . . .
f(1) f(2) f(3) f(4) f(5) . . .

)

Note that this representation supposes to have the necessary knowledge on
how to continue the table.

(b) Obviously, as for any function, we can have an explicit form:

f(n) = some symbolic expression involving n.

(c) A variation on (b) is a function defined implicitly by some recurrence
relations:

f(n) = g(f(n − 1), f(n − 2), . . . , f(3), f(2), f(1)),
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where not all of f(i), n− 1 6 i 6 1 need occur and where g is some specified
function.

(d) Another form that differs radically from the three above, but just
like (a) supposes that one has sufficient knowledge on how to continue the
figure, is a graphical representation.

1→ 2→ 3
←−−−−−

4→ 5→ 6
←−−−−−

7→ . . .

where an arrow represents an application of the function f (in this case, the
simple function f(n), defined by f(3n + 1) = 3n + 2, f(3n + 2) = 3(n + 1)
and f(3(n + 1)) = 3n + 1)). Although this example is rather trivial, the
importance of a well-chosen representation must be obvious. The graphical
representation shows immediately that f is composed of an infinite number
of 3-cycles. One could very well imagine that if f becomes more complex,
the graph can tell more things than an algebraic of analytical expression.
(Note at the same time the connection with visualisations; although there is
no computer involvement here, it does show the importance of an image).

Note also that different graph representations are possible. Instead of
simply listing the natural numbers and drawing the appropriate arrows, we
can start with 1 and list the iterates of 1:

1→ f(1)→ f2(1)→ f3(1)→ . . .

All of this shows that if we want to understand what permutations are all
about, what their properties are, then it is a useful approach to examine the
graphs of such functions. In addition, it allows to rephrase some questions
into graph-theoretical questions. This is actually the area that the “creator”
of the problem, Lothar Collatz, was working on. Although his examples
are different from what is now known as the Collatz Conjecture (CC), they
raise the same problems. His original question was whether, for a particular
function f, the trajectory starting with 8 and the iterates of 8, contains 1 or
not. (I use here the term “trajectory” because it need not be a cycle). One
now sees the relation to the CC. Rephrased in terms of trajectories, the CC
claims:

For any natural number n, the trajectory starting with n,
contains the number 1.

Of course, no mathematician doubts the importance of permutation theory.
It is so deeply entrenched in number theory and beyond, that is must be con-
sidered one of the core parts of mathematics. Although one might perhaps
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consider the CC as a “spin-off”, it is clear that the general question that is
raised by it is an interesting one. What seems to have been at play is that
there are several gaps in the research of the CC. The problem disappears for
some years only to reappear at some other moment in the hands of another
mathematician. The fact that it was not easy to locate the “true” origins of
the problems is supported by the observation that the very same problem
is known under different names: Hasse’s algorithm, the Syracuse problem,
Kakutani’s problem, Ulam’s problem, and sometimes it is even referred to
as the Hailstone problem. The last name is a reference to the behaviour of
the sequence of Ti(n). It tends to move upwards and downwards much in
the way that hailstones hit the ground and bounce back up again.

4. Mathematical induction, number crunching and pictures

An important feature to notice in the search for a proof of the CC is that,
at first sight, it seems not very useful to invoke mathematical induction as
a proof method. One of the obvious problems is that it does not help to
start from the assumption that the CC has been proven for all cases up to
a number n in order to prove the case for n + 1, as the iterates for n + 1 can
go well beyond n + 1. In the above example for n = 7, the highest value one
reaches is 26. This would shift the problem to the question whether one can
show that:

For all n, there is a finite number N(n), such that for all i,
T(i)(n) 6 N(n).

In addition, one would need some connection between N(n) and N(n+1)
to be able to get the induction process working. However, it is clear that this
new task looks every bit as difficult as the original task. Of course, one might
try an induction on some other parameter of the problem, but it becomes
soon clear that either one keeps coming back to the original problem itself
or one ends up worse off. E.g., one might try an induction on k, such that
T(k)(n) = 1, if at all. However, one needs a way to enumerate the n such
that k forms a sequence 1, 2, 3, . . . (with or without gaps?). But that seems
an even harder question to answer:

Given a natural number k, what are the numbers n such
that T(k)(n) = 1?

If we had an answer to this question and, for every k, we could list the
numbers n, then of course if we could prove that some number n is missing
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for all k, then we would have a disproof of the CC. Clearly, this is not an
interesting strategy and so, in short, one does well (initially) to forget about
mathematical induction.

As one might expect with this kind of problem, it is very tempting to
collect numerical evidence, corresponding to a mixture of career induction
[I2] and computer proof (a mix of [I3] and [I5]). The CC has been checked
up to a staggering 3.24×1017. One might wonder what the relevance of such
evidence could possibly be.

One argument is rather trivial: one might come up with a counterexam-
ple, thereby settling the problem by producing a disproof. However, oddly
enough, in many cases where such evidence is collected, the mathematicians
tend to believe that there are no counterexamples. So why do they do it?

A possible answer is that mathematicians sometimes do what scientists
in general do: you collect evidence hoping that some pattern appears that
tells you something about the problem your studying. As it happens in
this case, the only thing that appears is complexity and more complexity.
Table 1 shows the maximum value reached of the number n, (indicated by
the variable N) as n ranges from 1 to 100.000. Note, e.g., that between
1.819 and 4.254, the highest value remains 1.276.936 but at 4.255 it jumps
straight away to 6.810.136. Even in this case, however, it is clear that the
numerical evidence is interesting for it is shows that we are most likely
dealing with a problem that is intrinsically complex and therefore we should
not be surprised that the problems resists attempts to prove it.

As to the computer aspect of this numerical search, it is clear that we
are dealing here not with a mere enumeration of cases; the size of the set of
checked cases is simply too large to be checked one by one. Hence a whole
range of mathematical techniques and computer engineering is involved and,
therefore, it becomes interesting. Note that for the computer checking a dis-
tributed network had to be created to have sufficient computational power.

5. Enter probabilities and statistics

5.1. A probabilistic argument

What is more interesting is the fact that there exists a probabilistic heuristic
argument, a perfect illustration of [I4], that (at least some) mathematicians
seem to find convincing enough to believe the CC to be provable. This is
the argument:
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N Path length Maximum value

1 0 1
2 1 2
3 7 16
7 16 52

15 17 160
27 111 9,232

255 47 13,120
447 97 39,364
639 131 41,524
703 170 250,504

1,819 161 1,276,936
4,255 201 6,810,136
4,591 170 8,153,620
9,663 184 27,114,424

20,895 255 50,143,264
26,623 307 106,358,020
31,911 160 121,012,864
60,975 334 593,279,152
77,671 231 1,570,824,736

Table 1. Sequence of peak values up to N = 100,000
(© Scientific American, see Hayes [1984])

(a) You do not have to worry about even numbers 2n, because in the
next step, you will have n, so you go “down”, i.e., the numbers are becoming
smaller.

(b) Therefore look at what happens when you start with an odd number
2n + 1. Either in the next step you will have an odd number or an even
number. Assume that the probability is 1/2 in both cases.

(c) Repeat the process. This produces the following picture:

n/2

n 3(3n + 1)/2 + 1)/2

(3n + 1)/2
(3n + 1)/4

(each arrow has a probability 1/2 and note that 3(3n + 1)/2 + 1)/2 is an
even number, since by construction (3n + 1)/2 is odd).

(d) Consider now a trajectory from one odd number to another odd
number. Suppose that in between there are N − 1 odd numbers. In total
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this produces N transitions from an odd number to the next. What we
expect is that N/2 of these transitions will happen in one step, N/4 in two
steps, and so on. This leads to a growth factor:

(3/2)N/2.(3/4)N/4.(3/8)N/8 . . .

So the average growth factor per transition is:

(3/2)1/2.(3/4)1/4.(3/8)1/8 . . .

(e) A simple calculation shows that the numerator is nothing but 3 to
the power 1/2 + 1/4 + 1/8 + · · · = 1, therefore 3; and the denominator
is 21/2.41/4.81/8 · · · = 22 = 4. (Here a simple inductive reasoning will do
the trick). Hence the average growth factor per transition is 3/4 which is
smaller than 1, so on average the numbers “shrink”, therefore the CC should
be correct.

Of course, this beautiful argument stands or falls with the assumption
made in (b) (in italics). Is there reason to assume that there is just as
much chance to have an odd or an even number in the next step? Actually
not and, in addition, there are many interesting problems in number theory
where one expects certain probabilities but amazingly enough, the mathe-
matical “facts” show otherwise. A famous example to illustrate this point
concerns a conjecture put forward by Georg Polya. Think about the prime
decomposition of natural numbers. Count the number of primes, that need
not be distinct. Call r(n) = number of primes in n. Then either r(n) is
even or odd. Does it not seem likely that if we pick an arbitrary number the
probability that r(n) is even or odd is 1/2? As it happens this is not the
case, and the behaviour of the function r(n) turns out to be quite complex.
In that sense, it is quite understandable that for some mathematicians these
probabilistic considerations carry little weight.

5.2. Gathering statistical evidence

Related to the above are what one might call statistical analyses of the prob-
lem. Here the objective is to explore and hopefully to understand and explain
particular features that appear in the numerical tables, not necessarily to
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find arguments for or against the correctness of the conjecture.

8k + 4 8k + 5

4k + 2 12k + 8

2k + 1 6k + 4

3k + 2

Consider, e.g., the fact that consecutive numbers have trajectories of the
same length (and other properties). In some cases this phenomenon can be
easily explained. The diagram shows why numbers of the 8k + 4 end 8k + 5
must have the same trajectory length.

Although, as said, it is not clear in what way such results could contribute
to a final answer, i.e., a proof satisfying the usual standards, there seems to
be a very clear analogy to be drawn with scientific practice. If it is meaningful
to speak of a Collatz-universe, meaning thereby all the numerical material
related to the conjecture, then these probabilistic and statistical analyses
correspond to an exploration of that universe. One is not really expecting to
find laws or the like, but rather indications that suggest what possible laws
one could look or aim for. In a sense the mathematician is trying to get a
“grip” on the problem by wandering through the territory.

6. Digression: generating concepts to tackle the problem

The heading of this section seems to suggest that its topic is of minor im-
portance. Such is definitely not the case, but there are two reasons why I
want to treat it separately: firstly, because it is a common feature of the
whole mathematical enterprise and in that sense it occurs in [I1] up to and
including [I6], and, secondly, because the topic and its related literature is
too vast to treat here in a thorough way. What is this feature? For want of
a better notion, I propose to call it generating concepts (GC). Let me first
of all illustrate what I mean using CC.

Take a look at the original problem. What concepts occur in the problem
formulation? We talk about functions, natural numbers, about elementary
arithmetical operations (addition, multiplication, division) and about iter-
ation. Those are roughly the “ingredients” of the problem. The striking
feature when one goes through the history of CC is that the concepts as
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formulated in the original problem statement play hardly any role at all.
Instead, and techniques such as listed in [I1]-[I6] promote this process, a
whole range of derived concepts is introduced and in some theorems none of
the original concepts actually occur. For CC, what follows are some of the
derived concepts:

(a) The notion of iteration leads rather naturally to the idea of a trajectory,
i.e., the sequence of numbers, starting with n, and ending with the first 1
to occur.

(b) An obvious correlate of (a) is the length of the trajectory.

(c) Given a trajectory, let k be the least positive number such that T (k)(n) <
n, then k is called the stopping time of n, or, σ(n) = k.

(d) Derived from (c) is σ∞(n), this is the total stopping time, i.e., that k
such that T(k)(n) = 1, (this relates of course to (b)).

(e) The expansion factor s(n) is defined as the division of the largest value

reached in a trajectory by n, i.e., s(n) =
supk>0 T(k)(n)

n .

(f) The parity vector vk(n), basically corresponding to the trajectory, where
all the numbers are reduced modulo 2.

As an illustration, consider once more the example n = 7, then the properties
are:

(a) Trajectory of n = 7: 〈7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1〉,

(b) Length of the trajectory = 12,

(c) σ(7) = 7,

(d) σ∞(7) = 11,

(e) s(n) = 26/7 ≈ 3,7

(f) v11(7) = 〈1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1〉

On the one hand, it seems obvious that these new concepts should emerge,
as it is easy to see how they are related to the original problem and, hence,
how they can be helpful in the search for a proof. However, this is only part
of the story. Besides the concepts mentioned above, many others could have
been proposed, but apparently have not been proposed. As an example, take
this personally thought-up concept:

M7 = the set of all trajectories such that the length
of the trajectory is a multiple of 7

and related to that:

N7 = those numbers that belong to a trajectory in M7.
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It is my estimated guess that no mathematician will find the notions
of M7 and N7 the least bit interesting. But then the question must be:
why? No doubt the answer will be: the mathematicians’ practice, but that
does not help to fill in the details. What is it in that practice that allows
mathematicians to make such a selection? Let me reformulate that question
in slightly more abstract terms. Suppose that:

(a) we are given a set X, and

(b) a property corresponds to a subset of X,

then,

(c) we have a total of 2|X| possible properties.

If X is of infinite size, so is 2X . Hence we are faced with a double question:

(Q1) How is a finite subset of the interesting properties chosen?

(Q2) How are uninteresting properties avoided?

Note the importance of (Q1). Computer programs such as Automatic Mathe-
matician, developed in the eighties by Douglas Lenat, were indeed capable of
generating interesting concepts, but, as time went on, they tended to drown
in them. Somehow, real-life mathematicians seem to avoid this pitfall. Apart
from general considerations about concept generation and selection as stud-
ied in cognitive psychology3 (involving the study of metaphors, analogies,
conceptual blending, and the like), mathematics is in this sense a special
case in that concept generation and proof are tied together. E.g., in the
case of CC, σ(n) is more interesting than σ∞(n) because the first theorems
one could prove about CC involved the stopping time function and not the
total stopping time function. Thereby the concept is reinforced and all con-
cepts that can be easily linked to it. If a derived concept does not turn up
somewhere in a proof, then it will most likely disappear. As the production
of proofs is a rather difficult and often slow process, it explains why so few
derived concepts survive.

As a further support of this thesis—the link between concept generation
and proof production—it is worthwhile to look at so-called “seminal” papers
in the history of mathematics, i.e., those contributions that either set in
motion a new branch of the mathematical tree or relaunched a research
that had arrived at a standstill. One such famous example is Bernhard
Riemann’s paper “Uber die Anzahl der Primzahlen unter einer gegebenen

3The literature in this field is too extensive and too varied to be reported here, but,
obviously, for mathematics a fine example (although many, such as myself, tend to disagree
with the authors) is the recent work of Lakoff and Nunez [2000].



The Collatz Conjecture 19

Grösse” [1859], (“On the Number of Prime Numbers Less than a Given
Quantity”). I will not go into details here, but one, if not the most striking
feature of the paper is that there are hardly any proofs and if so, they tend
to be “over-summarized”, making it a tough job to reconstruct what the
author might have meant4. On the other hand, what the paper does is to
introduce a range of new functions that get connected to existing and well-
studied functions, thereby offering a new range to explore. As the paper
is generally acknowledged as a fundamental contribution, it is reasonable to
conclude that such concept generation attempts are considered as important
as proofs themselves.

However, let me now return to the main story of this paper and look into
item [I6] on the list.

7. Metalevel considerations

In 1972 John Conway published a short paper with a curious and important
result: a generalization of CC is undecidable. In that sense, it is a beautiful
illustration of a type [I6] kind of argument. It implies that perhaps CC itself
is undecidable, although at present no such result has been found5.

The generalization is the following:

Consider a function g from integers to integers (note that this is not an
essential extension as the integers can always be mapped one-to-one onto
the natural numbers6), such that

g(n) = ain + bi for n ≡ i (mod p),

and where ai and bi are rational numbers such that g(n) is always an integer.

4One of the best sources about Riemann’s paper is Edwards [1974]. The statement on
the low proof quality of the paper is based on this quote of Edwards: “The real contribution
of Riemann’s 1859 paper lay not in its results but in its methods. The principal result was
a formula [. . . ] However, Riemann’s proof of this formula was inadequate [. . . ]”. (p. 4)

5If CC would turn out to be undecidable, then it would most certainly replace the
“busy beaver” as the simplest undecidable problem. The “busy beaver” concerns Turing
machines producing a string of ‘1’-s on an empty tape. See Boolos et al. [2002], pp. 41–44,
for a clear and concise exposition of the “busy beaver” problem.

6The reason for the extension from natural numbers to integers has to do with the
problem of encoding a problem known to be undecidable into this generalization of CC.
In that sense the construction can be reformulated restricted to natural numbers, however
the result would be definitely ‘ugly’.
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CC then corresponds to the special case, where:

g(n) = (1/2)n + 0 for n ≡ 0 (mod 2), and

g(n) = (3/2)n + 1/2 for n ≡ 1 (mod 2).

So a0 = 1/2, b0 = 0, a1 = 3/2 and b1 = 1/2.
The undecidability comes down to the fact that, given a function g, and

given a number n, there is no algorithm that decides whether there is a
number k such that g(k)(n) = 1. Actually, Conway proved an even stronger
result, viz. all rational numbers bi may be equal to 0.

Obviously, what this result implies is, at least, that one should not be
amazed by the complexity of the original problem, the CC. The fact that
the statement resisted and continues to resist proof for quite some time now,
is perhaps something to be expected, given Conway’s result. In that sense,
it does have an influence on mathematicians’ expectations. However, the
story does not end there. There are links between CC and ergodic theory
(see Lagarias [1985], Section 2.8), thus introducing considerations about
stochasticity and randomness into the proof search. These considerations
are clearly not purely mathematical, witness this quote from the conclusion
of Lagarias [1985]:

Is the 3x + 1 problem intractably hard? The difficulty of settling the
3x + 1 problem seems connected to the fact that it is a deterministic
process that simulates “random” behaviour. We face this dilemma:
On the one hand, to the extent that the problem has structure, we
can analyse it—yet it is precisely this structure that seems to prevent
us from proving that it behaves “randomly.” On the other hand, to
the extent that the problem is structureless and “random,” we have
nothing to analyse and consequently cannot rigorously prove anything.
Of course there remains the possibi1ity that someone wil1 find some
hidden regularity in the 3x+1 problem that allows some of the conjec-
tures about it to be settled. The existing general methods in number
theory and ergodic theory do not seem to touch the 3x + 1 problem;
in this sense it seems intractable at present. Indeed all the conjectures
made in this paper seem currently to be out of reach if they are true;
I think there is more chance of disproving those that are false.

It seems obvious, at least to me, that such statements do not only go beyond
mathematics proper, but at the same time contain (a) philosophical ideas
about the structure of the mathematical universe, (b) the expectations one
might reasonably have concerning the likelihood of proving a theorem, and
(c) the connection(s) between these two elements. In a sense this could
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be considered a form of philosophy emerging out of mathematical practice
itself, and hence, produced by mathematicians themselves. This explains to a
certain extent the contrast with philosophical explanations by philosophers
about mathematics, that tend to focus on “end-products”, i.e., “finished”
proofs. Let me explore this idea a bit further in the conclusion of this paper.

8. Conclusion

A first minor remark to make is that the reader surely will have noticed
that an illustration of [I1] is missing. There are indeed, as far as I know,
no examples of “sketchy proofs” that could possibly be translated or trans-
formed into an acceptable proof. On the whole, occurrences of [I1] seem to
be rather rare. However, the presence of all the other elements do show that
the Collatz Conjecture deserves to be called an “exemplar”.

Secondly, and more importantly, the reader will also have noticed that I
have given no “real” proofs of partial results. After all, see Lagarias [2004],
as one might expect, there is a multitude of proofs dealing with bits and
pieces of the CC, but I did not want to pay attention to that part of the
mathematical process. I did want to focus on all those elements that are
at the same time not proofs, but essential to guide the search for a proof.
My claim is that these considerations are part and parcel of mathematical
practice and, by implication, that a philosophy of mathematics that claims
to deal with the essential features of what mathematics is all about, should
include these elements.

Thirdly, as a consequence of the observation above, it follows that math-
ematics — or the mathematical building, to use the best known metaphor—
need not be an integrated whole or a unity in some sense. After all, not
only will proof methods differ from mathematical domain to mathemati-
cal domain—think, e.g., about the difference between “diagram chasing”
in category theory and mathematical induction in number theory (see Van
Bendegem [2004])—but the additional elements [I1] up to [I6] will most cer-
tainly differ from domain to domain—in number theory number crunching
is obviously possible but visualisations, equally obviously, seem more suited
to geometrical and topological problems. Note that this form of ‘disunity’
I am pleading for, is not in contradiction with the existence of the founda-
tions of mathematics, such as set theory. From the foundational point of
view, we look at the end-products, i.e., mathematical theories, leave out the
details of the process that has led to the theory, and then integrate these
theories by constructing a common language wherein these theories can be
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translated, thus creating a new universe that has a uniformity that the daily
practice of mathematicians seems to be lacking. In terms of languages,
foundational work corresponds to designing an artificial language such as
Esperanto. Whereas in this paper I am suggesting that we should also have
a look at the languages we daily speak. In the same manner that Esperanto
did not become the world language, working mathematicians know that there
is this special group of “foundational speakers” that seem to have trouble
to convince everyone else to speak as they do. In addition, the better we
understand our daily languages, the more likely we will understand what
kind of artificial languages will have any rate of success or not.

As a final closing remark, let me just mention that at the moment of
writing—February 2005—the problem remains unsolved.
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