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1. Introduction

In his book from 1984 Horst Wessel presents the system of strict logical conse-

quence Fs (see also (Wessel, 1979)). The author maintained that this system ax-

iomatized the relation |=s of strict logical consequence between formulas of Clas-

sical Propositional Calculi (CPC). Let |= be the classical consequence relation in

CPC. The relation |=s is defined as follows:

ϕ |=s ψ iff ϕ |= ψ, every variable from ψ occurs in ϕ and

neither ϕ is a contradiction nor ψ is a tautology.

Clearly, if ϕ |=s ψ, then neither ϕ is a tautology nor ψ is a contradiction.

Intuitions connected with the relation |=s were presented in (Wessel, 1984). The

analysis of the relation |=s is also carried out in (Pietruszczak, 2004). In the present

paper we will show that the system Fs is not a complete axiomatization of the

relation |=s. Moreover, we will present the system VFs that is an «extension to

completeness» of the Fs.1

∗This is a corrected version of the Polish paper (Pietruszczak, 1997) and its German version

(Pietruszczak, 1998). Translation from Polish by Rafał Gruszczyński (authorized).
1The book (Wessel, 1999) is a revised edition of (Wessel, 1984). Wessel replaced the system Fs

with VFs (under the old name ‘Fs’). In (Wessel, 1999) some of the theorems are given without proofs,

in particular the Completenness Theorem. Wessel refers readers to our paper (Pietruszczak, 1998),

cited several times in (Wessel, 1999).
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2. The calculus Fs

Let L = 〈L,∨,∧,¬〉 be a propositional language. Formulas of L (i.e., elements

of the set L) are built in a standard way from propositional variables from the

countable set V ≔ {p1, p2, p3, . . .}, brackets and functors ∨, ∧ and ¬ understood

respectively as truth-value connectives of disjunction, conjunction and negation.

First three variables in examples will be denoted by, respectively, ‘p’, ‘q’ and

‘r’. Let V(ϕ) be a set of variables occurring in a formula ϕ.

Let T (resp. F) be the set of all tautologies (resp. contradictions) of CPC. We

say that a given formula is contingent iff it is neither tautology nor contradiction.

Let K be the set of all contingent formulas, i.e., K ≔ L \ (T ∪ F). Directly form

definitions for all ϕ, ψ ∈ L we obtain:

ϕ |= ψ & ϕ ∈ T =⇒ ψ ∈ T ,

ϕ |= ψ & ψ ∈ F =⇒ ϕ ∈ F ,

ϕ |= ψ & ϕ < F & ψ < T =⇒ ϕ, ψ ∈ K .(2.1)

In our terminology, for all ϕ, ψ ∈ L we have:

ϕ |=s ψ
df
⇐⇒ ϕ |= ψ & V(ψ) ⊆ V(ϕ) & ϕ < F & ψ < T ,

ϕ |=s ψ ⇐⇒ ϕ |= ψ & V(ψ) ⊆ V(ϕ) & ϕ, ψ ∈ K .(2.2)

Let { pϕ ⊢ ψq : ϕ, ψ ∈ L } be a set of sequents. The sign ‘⊢’ do not mark

any binary relation on L. A sequent pϕ ⊢ ψq is a «new formula» that render the

argument with the assumption ϕ and the claim ψ. The formula ϕ is called the

antecedent and ψ is called the succedent of the sequent pϕ ⊢ ψq. A sequent pϕ ⊢ ψq

is called correct iff ϕ |=s ψ.

The calculus Fs is a deductive system (with the standard notion of proof) built

in the set of all sequents.

An axiom of the system is this and only this sequent that satisfies the following

three conditions:

(E1) neither antecedent of this sequent is a contradiction nor its succedent is a

tautology;

(E2) every variable occurring in a succedent of this sequent occurs in its antecedent

as well;

(E3) the sequent has one of the following nine forms:

ϕ ⊢ ¬¬ϕ(A1)

¬¬ϕ ⊢ ϕ(A2)
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ϕ ∧ ψ ⊢ ϕ(A3)

ϕ ∧ ψ ⊢ ψ ∧ ϕ(A4)

¬(ϕ ∧ ψ) ⊢ ¬ϕ ∨ ¬ψ(A5)

¬ϕ ∨ ¬ψ ⊢ ¬(ϕ ∧ ψ)(A6)

(ϕ ∨ ψ) ∧ χ ⊢ (ϕ ∧ χ) ∨ ψ(A7)

(ϕ ∧ χ) ∨ (ψ ∧ χ) ⊢ (ϕ ∨ ψ) ∧ χ(A8)

ϕ ⊢ ϕ ∧ (ψ ∨ ¬ψ)(A9)

Moreover, the system Fs has three rules of inference:

ϕ ⊢ ψ ψ ⊢ χ

ϕ ⊢ χ
(R1)

ϕ ⊢ ψ ϕ ⊢ χ

ϕ ⊢ ψ ∧ χ
(R2)

ϕ ⊢ ψ ψ ⊢ ϕ

χ ⊢ χ(ϕ/ψ)
dla χ < F i χ(ϕ/ψ) < T(R3)

A given sequent is a thesis of Fs iff it is derivable in a finite number of steps

from the axioms by application of the rules of inference.

Wessel proves:

Theorem on the Correctness 2.1 (Wessel, 1984, cf. MT1, MT2 and MT3, p. 170).

If a sequent pϕ ⊢ ψq is a thesis of the calculus Fs, then it is correct, i.e., ϕ |=s ψ.

3. Incompleteness of Fs

In (Wessel, 1984, p. 172) one can find the completeness metatheorem MT7, which

says that all correct sequents are theses of Fs, i.e., if ϕ |=s ψ, then pϕ ⊢ ψq is a thesis

of Fs. Yet we will show that this theorem does not hold. For example, the correct

sequent

(p ∧ (¬q ∨ q)) ∧ (¬r ∨ r) ⊢ p ∧ ((¬q ∨ q) ∧ (¬r ∨ r))

is not a thesis of Fs, since it does not fulfill the following criterion:

Criterion. If a sequent pϕ ⊢ ψq is a thesis of the calculus Fs and a tautology

p(τ1 ∧ τ2)q is a subformula of ψ, then p(τ1 ∧ τ2)q is also a subformula of ϕ.

Proof. Induction on complexity of proofs of theses. Proofs of the axioms are of

complexity zero; proofs of theses derivable directly from the axioms by means of

the rules of inference are of complexity one; proofs of theses derivable form the

theses whose proofs are of complexity zero or one are of complexity two; etc.
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(I) Clearly, the axioms of the form (A1)–(A6), (A8), (A9) satisfy the above

criterion. Similarly the axioms of the form (A7), since a tautology p(τ1 ∧ τ2)q

has to be a subformula of formulas that are mentioned in the above schema. A

succedent cannot have the form p(τ1 ∧ τ2) ∨ ψq, since it would be a tautology (in

case of the axioms of the form (A4) and(A6) the argument is similar).

(II) As inductive hypothesis, let us assume that the criterion holds for the se-

quents whose proof is of complexity less then n. Let a sequent pϕ ⊢ ψq has a proof

of complexity n and let a tautology p(τ1 ∧ τ2)q be a subformula of a formula ψ.

(i) If the sequent pϕ ⊢ ψq was derived by means of the formula (R1), then for

some χ the sequents pϕ ⊢ χq and pχ ⊢ ψq have a proof of complexity less then n.

Thus, by inductive hypothesis, the tautology p(τ1 ∧ τ2)q is a subformula of ϕ.

(ii) If the sequent pϕ ⊢ ψq was derived by means of the rule (R2), then for some

χ1 , τ1 and χ2 , τ2 we have ψ = pχ1 ∧ χ2q, where the sequents pϕ ⊢ χ1q and

pϕ ⊢ χ2q have a proof of complexity lees than n. Thus the tautology p(τ1 ∧ τ2)q is

a subformula of χ1 or χ2. Hence, by inductive hypothesis, this tautology also is a

subformula of ϕ.

(iii) If sequent pϕ ⊢ ψq was derived by means of the rule (R3), then for some

ϕ′ and ψ′ we have ψ = ϕ(ϕ′/ψ′), where the sequents pϕ′ ⊢ ψ′q and pψ′ ⊢ ϕ′q have

a proof of complexity less than n. Since the tautology p(τ1 ∧ τ2)q is a subformula

of ψ, then at least one of the following two cases holds: (a) this tautology is a

subformula of ϕ, (b) this tautology is a subformula of ψ′ and the substitution ϕ′/ψ′

was essential (i.e., ϕ′ occurred in ϕ). In the case (b), by inductive hypothesis, this

tautology is also a subformula of ϕ′. Therefore, it is also a subformula of ϕ.

In (Wessel, 1984, p. 167) one can find a proof of the fact, that a sequent p(ϕ ∧

ψ)∧χ ⊢ ϕ∧(ψ∧χ)q is a thesis of Fs (cf. T4), without any additional restrictions put

on formulas ϕ, ψ and χ except for (E1) and (E2). Yet this proof does not take into

account cases in which ϕ, ψ or χ are tautologies, but p(ϕ∧ψ)∧χq and pϕ∧ (ψ∧χ)q

are contingent. Let us analyze a derivation of a sequent p(ϕ∧ψ)∧ χ ⊢ ϕ∧ (ψ∧ χ)q

taking one additional assumption, that ϕ, ψ, χ < T. In this derivation we will apply

the following thesis of Fs, for any ϕ, ψ ∈ L such that pϕ ∧ ψq < F and ψ < T:

(3.1) ϕ ∧ ψ ⊢ ψ .

1. ϕ ∧ ψ ⊢ ψ ∧ ϕ (A4), by hypothesis pψ ∧ ϕq ∈ K

2. ψ ∧ ϕ ⊢ ψ (A3)

3. ϕ ∧ ψ ⊢ ψ 1, 2 and (R1)

We have the following derivation of a sequent p(ϕ∧ψ)∧χ ⊢ ϕ∧ (ψ∧χ)q (such

that p(ϕ ∧ ψ) ∧ χq ∈ K) with additional assumptions:
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1a. ϕ < T additional assumption

2a. ψ < T additional assumption

3a. χ < T additional assumption

4a. (ϕ ∧ ψ) ∧ χ ⊢ χ (3.1), (E1), 3a

5a. (ϕ ∧ ψ) ∧ χ ⊢ ϕ ∧ ψ (A3), (E1), 1a, 2a

6a. ϕ ∧ ψ ⊢ ϕ (A3), (E1), 1a

7a. ϕ ∧ ψ ⊢ ψ (3.1), (E1), 2a

8a. (ϕ ∧ ψ) ∧ χ ⊢ ϕ 5a, 6a and (R1)

9a. (ϕ ∧ ψ) ∧ χ ⊢ ψ 5a, 7a and (R1)

10a. (ϕ ∧ ψ) ∧ χ ⊢ ψ ∧ χ 9a, 4a and (R2)

11a. (ϕ ∧ ψ) ∧ χ ⊢ ϕ ∧ (ψ ∧ χ) 8a, 10a and (R2)

From the Criterion one can see that assumptions 1a–3a were essential.

Similar gaps can be found in the derivations of the theses T5 and T12

(Wessel, 1984, p. 167, 168). Moreover, in some derivations we can find gaps of

different kinds. For example:

– In the proofs of the theses T6–T8, p¬(ϕ∨ψ) ⊢ ¬ϕ∧¬ψq, p¬ϕ∧¬ψ ⊢ ¬(ϕ∨ψ)q

and pϕ∨ψ ⊢ ψ∨ϕq, while applying the rule (R3), it is being assumed that theses

of the systemu Fs are sequents ϕ ⊢ ¬¬ϕ and ¬¬ϕ ⊢ ϕ, although it is not ruled

out that ϕ is not in K (similarly for ψ).

– In the derivation of the thesis T18, while applying the rule (R3), it is being as-

sumed that the thesis of Fs is a sequent ¬(ψ ∨ ¬ψ) ⊢ ¬ψ ∧ ψ which has a contra-

dictory antecedent.

– In the proof of a sequent ϕ ∨ (¬ψ ∧ ψ) ⊢ ϕ the axiom (A9) pϕ ⊢ ϕ ∧ (ψ ∨ ¬ψ)q

is being applied. Yet we may use this axiom only if V(ψ) ⊆ V(ϕ) (see the condi-

tion E2). But it does not have to obtain for the sequent being proved.

4. The calculus VFs

We will build a new system VFs in the set of sequents. It will have six rules of

inference: to the rules of the system Fs we will add rules:

ϕ ⊢ ψ

ϕ ⊢ ψ ∧ τ
if τ ∈ T and V(τ) ⊆ V(ϕ)(R4)

ϕ ⊢ ψ

ϕ ⊢ ψ ∨ φ
if φ ∈ F and V(φ) ⊆ V(ϕ)(R5)

ϕ ⊢ ψ

ϕ ⊢ φ ∨ ψ
if φ ∈ F and V(φ) ⊆ V(ϕ)(R6)
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By definitions we obtain:

Lemma 4.1. Six rules of inference of the calculus VFs are correct in the following

sense: when applied to correct sequents these yield a correct sequent.

Proof. The relation |=s is transitive, by (2.2) (since |= is transitive). Therefore the

rule (R1) preserves strict consequence.

If ϕ |=s ψ and ϕ |=s χ, then ψ ∧ χ < T and ϕ |= ψ ∧ χ. Thus the rule (R2) also

preserves strict consequence relation.

If ϕ |=s ψ and ψ |=s ϕ, then ϕ |=| ψ, V(ψ) = V(ϕ) and ϕ, ψ ∈ K, by (2.2). Thus,

by the extensionality of CPC and (2.2), the rule (R3) preserves strict consequence.

Finally, the rules (R4), (R5) and (R6) preserve strict consequence, since ϕ |= ψ

entails ϕ |= ψ ∧ τ, ϕ |= ψ ∨ φ and ϕ |= φ ∨ ψ.

The axiom of VFs is this and only this sequent that fulfills conditions (E1) and

(E2) for the axioms of Fs and

(E3′) the sequent in question is a specification of one of the following ten schemas:

(A1)–(A8) and

ϕ ∨ φ ⊢ ϕ(A10)

φ ∨ ϕ ⊢ ϕ(A11)

where φ is a contradiction.

By the definition of axioms we obtain:

Lemma 4.2. All axioms of the calculus VFs are correct sequents.

Proof. For any axiom pϕ ⊢ ψq we have ϕ |= ψ. Moreover, from the conditions

(E1) and (E2) we have V(ψ) ⊆ V(ϕ), ϕ < F and ψ < T. Thus ϕ |=s ψ.

From lemmas 4.1 and 4.2 we obtain:

Theorem on the Correctness 4.1. All theses of VFs are correct sequents, i.e., if a

sequent pϕ ⊢ ψq is a thesis of the calculus VFs, then ϕ |=s ψ.

Proof. As we showed, all axioms of VFs are correct sequent. Moreover, all rules

of VFs always lead from correct sequents to correct sequents. Thus, by induction

over VFs, we see that every derivable sequent is correct.

We will show that for VFs Theorem on the Adequacy holds, i.e., the sequent

pϕ ⊢ ψq will be thesis of VFs iff ϕ |=s ψ. We will derive auxiliary theses of VFs

necessary to prove that (cf. Section 6, p. 138):

Completenness Theorem 4.2. All correct sequents are theses of the calculus VFs.
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5. Some auxiliary theses of VFs

By means of (A1), (A2) and (R1) for any ϕ ∈ K we will derive the sequent:

(5.1) ϕ ⊢ ϕ

From this, by means of the rules (R2), (R5), (R6) and (R4), respectively, for all

ϕ ∈ K, φ ∈ F and τ ∈ T such that V(φ),V(τ) ⊆ V(ϕ) we derive the following

sequents

ϕ ⊢ ϕ ∧ ϕ(5.2)

ϕ ⊢ ϕ ∨ φ(5.3)

ϕ ⊢ φ ∨ ϕ(5.4)

ϕ ⊢ ϕ ∧ τ(5.5)

By (5.5) all sequents of the schema (A9), that satisfy conditions (E1) and (E2), are

theses of VFs. Hence we have:

Fact 5.1. All theses of Fs are theses of VFs.

We will infer a derivable rule of the system VFs (and of Fs as well):

(R7)
χ1 ⊢ χ2 ϕ1 ⊢ ψ1 ψ1 ⊢ ϕ1 ϕ2 ⊢ ψ2 ψ2 ⊢ ϕ2

χ1(ϕ1/ψ1) ⊢ χ2(ϕ2/ψ2)

1. χ1 ⊢ χ2 assumption

2. ϕ1 ⊢ ψ1 assumption

3. ψ1 ⊢ ϕ1 assumption

4. ϕ2 ⊢ ψ2 assumption

5. ψ2 ⊢ ϕ2 assumption

6. χ2 ⊢ χ2(ϕ2/ψ2) 4, 5, (R3)

7. χ1 ⊢ χ2(ϕ2/ψ2) 1, 6, (R1)

8. χ1(ϕ1/ψ1) ⊢ χ1 χ1 = χ1(ϕ1/ψ1).(ψ1/ϕ1), 2, 3, (R3)

9. χ1(ϕ1/ψ1) ⊢ χ2(ϕ2/ψ2) 8, 7, (R1)

Farther in this paper all auxiliary theses of VFs will satisfy conditions (E1) and

(E2). This fact will not be mentioned separately.

By means of the new rule (R4) we can «finish the proof» concerning the se-

quents of the form

(ϕ ∧ ψ) ∧ ψ ⊢ ϕ ∧ (ψ ∧ χ)(5.6)

ϕ ∧ (ψ ∧ χ) ⊢ (ϕ ∧ ψ) ∧ χ(5.7)
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1b. ϕ < T additional assumption

2b. ψ < T additional assumption

3b. χ ∈ T additional assumption

4b. (ϕ ∧ ψ) ∧ χ ⊢ ψ ∧ χ 2b=2a, 3b, 9a, (R4)

5b. (ϕ ∧ ψ) ∧ χ ⊢ ϕ ∧ (ψ ∧ χ) 1b=1a, 8a, 4b, (R2)

1c. ϕ < T additional assumption

2c. ψ ∈ T additional assumption

3c. χ ∈ T additional assumption

4c. (ϕ ∧ ψ) ∧ χ ⊢ ϕ ∧ (ψ ∧ χ) 1c=1a, 8a, 2c, 3c, (R4)

1d. ϕ ∈ T additional assumption

2d. ψ < T additional assumption

3d. χ ∈ T additional assumption

4d. (ϕ ∧ ψ) ∧ χ ⊢ (ψ ∧ χ) ∧ ϕ 2d=2b, 3d=3b, 4b, 1d, (R4)

5d. (ϕ ∧ ψ) ∧ χ ⊢ ϕ ∧ (ψ ∧ χ) (A4), (R7)

Analogously we will analyze remaining alternative cases. The similar proof is

carried out for the sequent (5.7).

Let us prove that some sequents are theses of the calculus VFs.

(5.8) ϕ ⊢ ϕ ∨ ϕ

1. ¬ϕ ∧ ¬ϕ ⊢ ¬ϕ (A3)

2. ¬ϕ ⊢ ¬ϕ ∧ ¬ϕ (5.2), (R3)

3. ¬¬ϕ ⊢ ¬(¬ϕ ∧ ¬ϕ) 1, 2 and (R3) for χ = p¬¬ϕq

4. ¬¬ϕ ⊢ ¬¬ϕ ∨ ¬¬ϕ 3, (A5), (A6), (R7)

5. ϕ ⊢ ϕ ∨ ϕ 4, (A1), (A2), (R7)

(5.9) ϕ ∨ ϕ ⊢ ϕ

1. ¬¬ϕ ⊢ ¬¬ϕ (5.1)

2. ¬(¬ϕ ∧ ¬ϕ) ⊢ ϕ 1, (A3), (5.2), (A1), (A2), (R7)

3. ¬¬ϕ ∨ ¬¬ϕ ⊢ ϕ 2, (A5), (A6), (R7)

4. ϕ ∨ ϕ ⊢ ϕ 3, (A1), (A2), (R7)

(5.10) ϕ ∨ ψ ⊢ ¬(¬ϕ ∧ ¬ψ)

1. ¬¬ϕ ∨ ¬¬ψ ⊢ ¬(¬ϕ ∧ ¬ψ) (A6)

2a. ϕ < F additional assumption

3a. ψ < F additional assumption

4a. ϕ ∨ ψ ⊢ ¬¬ϕ ∨ ¬¬ψ 2a, 3a, (5.1), (A1), (A2), (R7)

2b. ϕ < F additional assumption

3b. ψ ∈ F additional assumption
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4b. ϕ ∨ ψ ⊢ ϕ 2b, 3b, (A10)

5b. ϕ ∨ ψ ⊢ ϕ ∨ ¬¬ψ 4b, (R5)

6b. ϕ ∨ ψ ⊢ ¬¬ϕ ∨ ¬¬ψ 5b, 2b, (A1), (A2), (R7)

2c. ϕ ∈ F additional assumption

3c. ψ < F additional assumption

4c. ϕ ∨ ψ ⊢ ψ 2b, 3b, (A11)

5c. ϕ ∨ ψ ⊢ ¬¬ϕ ∨ ψ 4c, (R6)

6c. ϕ ∨ ψ ⊢ ¬¬ϕ ∨ ¬¬ψ 5c, 2c, (A1), (A2), (R7)

7. ϕ ∨ ψ ⊢ ¬(¬ϕ ∧ ¬ψ) 4a=6b=6c, 1, (R1)

(5.11) ¬(¬ϕ ∧ ¬ψ) ⊢ ϕ ∨ ψ

1. ¬(¬ϕ ∧ ¬ψ) ⊢ ¬¬ϕ ∨ ¬¬ψ (A5)

2a. ϕ < F additional assumption

3a. ψ < F additional assumption

4a. ¬¬ϕ ∨ ¬¬ψ ⊢ ϕ ∨ ψ 2a, 3a, (5.1), (A1), (A2), (R7)

2b. ϕ < F additional assumption

3b. ψ ∈ F additional assumption

4b. ¬¬ϕ ∨ ¬¬ψ ⊢ ¬¬ϕ 2b, 3b, (A10)

5b. ¬¬ϕ ∨ ¬¬ψ ⊢ ¬¬ϕ ∨ ψ 4b, (R5)

6b. ¬¬ϕ ∨ ¬¬ψ ⊢ ϕ ∨ ψ 5b, 2b, (A1), (A2), (R7)

2c. ϕ ∈ F additional assumption

3c. ψ < F additional assumption

4c. ¬¬ϕ ∨ ¬¬ψ ⊢ ¬ψ 2b, 3b, (A11)

5c. ¬¬ϕ ∨ ¬¬ψ ⊢ ϕ ∨ ¬¬ψ 4c, (R6)

6c. ¬¬ϕ ∨ ¬¬ψ ⊢ ϕ ∨ ψ 5c, 2c, (A1), (A2), (R7)

7. ¬(¬ϕ ∧ ¬ψ) ⊢ ϕ ∨ ψ 4a=6b=6c, 1, (R1)

(5.12) ϕ ∨ ψ ⊢ ψ ∨ ϕ

1. ϕ ∨ ψ ⊢ ¬(¬ϕ ∧ ¬ψ) (5.10)

2. ¬(¬ϕ ∧ ¬ψ) ⊢ ¬(¬ψ ∧ ¬ϕ) (A4), (R3)

3. ¬(¬ψ ∧ ¬ϕ) ⊢ ψ ∨ ϕ (5.11)

4. ϕ ∨ ψ ⊢ ψ ∨ ϕ 1–3, (R1)

(5.13) ¬(ϕ ∨ ψ) ⊢ ¬ϕ ∧ ¬ψ

1. ¬(ϕ ∨ ψ) ⊢ ¬¬(¬ϕ ∧ ¬ψ) (5.10, (5.11), (R3)

2. ¬(ϕ ∨ ψ) ⊢ ¬ϕ ∧ ¬ψ 1, (A2), (R1)
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(5.14) ¬ϕ ∧ ¬ψ ⊢ ¬(ϕ ∨ ψ)

1. ¬¬(¬ϕ ∧ ¬ψ) ⊢ ¬(ϕ ∨ ψ) (5.10), (5.11), (R3)

2. ¬ϕ ∧ ¬ψ ⊢ ¬(ϕ ∨ ψ) (A1), 1, (R1)

(5.15) (ϕ ∨ ψ) ∧ χ ⊢ (ϕ ∧ χ) ∨ (ψ ∧ χ)

1. (ϕ ∨ ψ) ∧ χ ⊢ (ϕ ∧ χ) ∨ ψ (A7)

2a. χ < T additional assumption

3a. (ϕ ∨ ψ) ∧ χ ⊢ χ 2a, (3.1)

4a. (ϕ ∨ ψ) ∧ χ ⊢ ((ϕ ∧ χ) ∨ ψ) ∧ χ 1, 3a, (R2)

2b. χ ∈ T additional assumption

3b. (ϕ ∧ χ) ∨ ψ ⊢ ((ϕ ∧ χ) ∨ ψ) ∧ χ 2b, (5.5)

4b. (ϕ ∨ ψ) ∧ χ ⊢ ((ϕ ∧ χ) ∨ ψ) ∧ χ 1, 3b, (R1)

5. ((ϕ ∧ χ) ∨ ψ) ∧ χ ⊢ (ψ ∨ (ϕ ∧ χ)) ∧ χ (5.12), (R3)

6. (ψ ∨ (ϕ ∧ χ)) ∧ χ ⊢ (ψ ∧ χ) ∨ (ϕ ∧ χ ∧ χ) (A7)

7. (ψ ∨ (ϕ ∧ χ)) ∧ χ ⊢ (ψ ∧ χ) ∨ (ϕ ∧ χ) (A3), (5.2), (R7)

8. (ψ ∧ χ) ∨ (ϕ ∧ χ) ⊢ (ϕ ∧ χ) ∨ (ψ ∧ χ) (5.12)

9. (ϕ ∨ ψ) ∧ χ ⊢ (ϕ ∧ χ) ∨ (ψ ∧ χ) 4a=4b, 5, 7, 8 (R1)

(5.16) (ϕ ∨ ψ) ∨ χ ⊢ ϕ ∨ (ψ ∨ χ)

1a. ϕ ∨ ψ ∈ K additional assumption

2a. (ϕ ∨ ψ) ∨ χ ⊢ ¬¬((ϕ ∨ ψ) ∨ χ) (A1)

3a. (ϕ ∨ ψ) ∨ χ ⊢ ¬((¬ϕ ∧ ¬ψ) ∧ ¬χ) 1a, 2a, (5.13), (5.14), (R7)

4a. (ϕ ∨ ψ) ∨ χ ⊢ ¬(¬ϕ ∧ (¬ψ ∧ ¬χ)) 3a, (5.6), (5.7), (R7)

5aa. ψ ∨ χ ∈ K additional assumption

6aa. (ϕ ∨ ψ) ∨ χ ⊢ ¬¬(ϕ ∨ (ψ ∨ χ)) 5aa, 4a, (5.13), (5.14), (R7)

7aa. (ϕ ∨ ψ) ∨ χ ⊢ ϕ ∨ (ψ ∨ χ) 6aa, (A2), (R1)

5ab. ψ ∨ χ ∈ F additional assumption

6ab. ψ ∈ F 5ab

7ab. χ ∈ F 5ab

8ab. ϕ ∈ K 1a, 6ab

9ab. (ϕ ∨ ψ) ∨ χ ⊢ ϕ 8ab, 6ab, 7ab, (A10), (R1)

10ab. (ϕ ∨ ψ) ∨ χ ⊢ ϕ ∨ (ψ ∨ χ) 5ab, 9ab, (R5)

1b. ϕ ∨ ψ ∈ F additional assumption

2b. ϕ ∈ F 1b

3b. ψ ∈ F 1b

4b. χ ∈ K 1b, (E1)
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5b. (ϕ ∨ ψ) ∨ χ ⊢ χ 1b, 4b, (A11)

6b. (ϕ ∨ ψ) ∨ χ ⊢ ψ ∨ χ 3b, 5b, (R6)

7b. (ϕ ∨ ψ) ∨ χ ⊢ ϕ ∨ (ψ ∨ χ) 2b, 6b, (R6)

The sequent

(5.17) ϕ ∨ (ψ ∨ χ) ⊢ (ϕ ∨ ψ) ∨ χ

will be derived in an analogous way. We will need a couple of auxiliary theses.

(5.18) (ϕ ∧ ψ) ∨ χ ⊢ (ϕ ∨ χ) ∧ (ψ ∨ χ)

1. (ϕ ∧ ψ) ∨ χ ⊢ ¬¬((ϕ ∧ ψ) ∨ χ) (A1)

2. (ϕ ∧ ψ) ∨ χ ⊢ ¬(¬(ϕ ∧ ψ) ∧ ¬χ) 1, (5.13), (5.14), (R7)

3a. ϕ ∧ ψ ∈ K additional assumption

4a. (ϕ ∧ ψ) ∨ χ ⊢ ¬((¬ϕ ∨ ¬ψ) ∧ ¬χ) 3a, 2, (A5), (A6), (R7)

3b. ϕ ∧ ψ ∈ F additional assumption

4b. ¬(ϕ ∧ ψ) ∧ ¬χ ⊢ ¬χ 3b, (3.1)

5b. ¬(ϕ ∧ ψ) ∧ ¬χ ⊢ (¬ϕ ∨ ¬ψ) ∧ ¬χ 4b, (R4),(A4), (R7)

6b. (¬ϕ ∨ ¬ψ) ∧ ¬χ ⊢ ¬(ϕ ∧ ψ) ∧ ¬χ (3.1), 3b, (R4), (A4), (R7)

7b. (ϕ ∧ ψ) ∨ χ ⊢ ¬((¬ϕ ∨ ¬ψ) ∧ ¬χ) 5b, 6b, 2, (R7)

8. (ϕ ∧ ψ) ∨ χ ⊢ ¬((¬ϕ ∧ ¬χ) ∨ (¬ψ ∧ ¬χ)) 4a=7b, (5.15), (A8), (R7)

9a. ϕ ∨ χ ∈ K additional assumption

10a. ψ ∨ χ ∈ K additional assumption

11a. (ϕ ∧ ψ) ∨ χ ⊢ ¬(¬(ϕ ∨ χ) ∨ ¬(ψ ∨ χ)) 9a, 10a, 8, (5.13), (5.14), (R7)

9b. ϕ ∨ χ ∈ K additional assumption

10b. ψ ∨ χ ∈ T additional assumption

11b. (¬ϕ ∧ ¬χ) ∨ (¬ψ ∧ ¬χ) ⊢ ¬ϕ ∧ ¬χ 9b, 10b, (A10)

12b. (¬ϕ ∧ ¬χ) ∨ (¬ψ ∧ ¬χ) ⊢ (¬ϕ ∧ ¬χ) ∨ ¬(ψ ∨ χ) 10b, 11b, (R5)

13b. (¬ϕ ∧ ¬χ) ∨ ¬(ψ ∨ χ) ⊢ (¬ϕ ∧ ¬χ) ∨ (¬ψ ∧ ¬χ) 9b, 10b, (A10), (R5)

14b. (ϕ ∧ ψ) ∨ χ ⊢ ¬((¬ϕ ∧ ¬χ) ∨ ¬(ψ ∨ χ)) 12b, 13b, 8, (R7)

15b. (ϕ ∧ ψ) ∨ χ ⊢ ¬(¬(ϕ ∨ χ) ∨ ¬(ψ ∨ χ)) 14b, 10b, (5.13), (5.14), (R7)

9c. ϕ ∨ χ ∈ T additional assumption

10c. ψ ∨ χ ∈ K additional assumption

11c. (¬ϕ ∧ ¬χ) ∨ (¬ψ ∧ ¬χ) ⊢ ¬ψ ∧ ¬χ 9c, 10c, (A11)

12c. (¬ϕ ∧ ¬χ) ∨ (¬ψ ∧ ¬χ) ⊢ ¬(ϕ ∨ χ) ∨ (¬ψ ∧ ¬χ) 9c, 11c, (R6)

13c. ¬(ϕ ∨ χ) ∨ (¬ψ ∧ ¬χ) ⊢ (¬ϕ ∧ ¬χ) ∨ (¬ψ ∧ ¬χ) 9c, 10c, (A11), (R6)

14c. (ϕ ∧ ψ) ∨ χ ⊢ ¬((¬ϕ ∧ ¬χ) ∨ ¬(ψ ∨ χ)) 12c, 13c, 8, (R7)

15c. (ϕ ∧ ψ) ∨ χ ⊢ ¬(¬(ϕ ∨ χ) ∨ ¬(ψ ∨ χ)) 14c, 10c, (5.13), (5.14), (R7)

16. (ϕ ∧ ψ) ∨ χ ⊢ ¬¬((ϕ ∨ χ) ∧ (ψ ∨ χ)) 10a=15b-c, (A5), (A6), (R7)

17. (ϕ ∧ ψ) ∨ χ ⊢ (ϕ ∨ χ) ∧ (ψ ∨ χ) 16, (A2), (R1)
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Analogously we will derive the sequent:

(5.19) (ϕ ∨ χ) ∧ (ψ ∨ χ) ⊢ (ϕ ∧ ψ) ∨ χ

Finally we will derive the sequent:

(5.20) ϕ ⊢ ϕ ∨ ψ

1. ϕ ⊢ (ψ ∧ ¬ψ) ∨ ϕ (5.4)

2. ϕ ⊢ (ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ) 1, (5.12), (5.18), (5.19), (R7)

3. ϕ ⊢ ϕ ∨ ψ 2, (A3), (R1)

6. Completeness of the calculus VFs

We will prove Completeness Theorem 4.2 for the system VFs. The proof of this

theorem will consist of a series of auxiliary lemmas.

For the beginning we will need a generalized form of a couple of previously

proved theorems.

Lemma 6.1. If p(ϕ1∨· · ·∨ϕn)∧ψq, pϕi∧ψq ∈ K for i = 1, . . . , n, then the following

sequents are theses of VFs:

(ϕ1 ∨ · · · ∨ ϕn) ∧ ψ ⊢ (ϕ1 ∧ ψ) ∨ · · · ∨ (ϕn ∧ ψ)

(ϕ1 ∧ ψ) ∨ · · · ∨ (ϕn ∧ ψ) ⊢ (ϕ1 ∨ · · · ∨ ϕn) ∧ ψ

Proof. For n = 1 the lemma holds by (5.1). As inductive hypothesis, let us assume

that the lemma is true for n − 1. From (5.12), (A8), (5.15) and (R7) we will derive

theses: p(ϕ1 ∨ · · · ∨ ϕn) ∧ ψ ⊢ ((ϕ1 ∨ · · · ∨ ϕn−1) ∧ ψ) ∨ (ϕn ∧ ψ)q and p((ϕ1 ∨

· · · ∨ ϕn−1) ∧ ψ) ∨ (ϕn ∧ ψ) ⊢ (ϕ1 ∨ · · · ∨ ϕn) ∧ ψq. Notice that (by assumption):

p(ϕ1∨ · · · ∨ϕn−1)∧ψq ∈ K. Indeed, if p(ϕ1∨ · · · ∨ϕn−1)∧ψq < K, then p(ϕ1∨ · · · ∨

ϕn−1)∧ψq ∈ F, thus also ϕi ∧ψ ∈ F for i 6 n− 1, contrary to the assumption. Thus

we can apply the inductive hypothesis. Hence, applying (A8), (5.15) and (R7), we

will get both sequents.

Lemma 6.2. If pϕ1 ∧ · · · ∧ ϕnq ∈ K, then the following sequents are theses of VFs:

¬(ϕ1 ∧ · · · ∧ ϕn) ⊢ ¬ϕ1 ∨ · · · ∨ ¬ϕn

¬ϕ1 ∨ · · · ∨ ¬ϕn ⊢ ¬(ϕ1 ∧ · · · ∧ ϕn)

Proof. For n = 1 the lemma holds by (5.1). Let n > 1. Then, by means of (A5),

(A6) and (R7) we will derive: (a) p¬((ϕ1∧· · ·∧ϕn−1)∧ϕn) ⊢ ¬(ϕ1∧· · ·∧ϕn−1)∨¬ϕnq

and (b) p¬(ϕ1∧· · ·∧ϕn−1)∨¬ϕn ⊢ ¬((ϕ1∧· · ·∧ϕn−1)∧ϕn)q. As inductive hypothesis,

let us assume that the condition holds for n−1. Thus in case if pϕ1∧· · ·∧ϕn−1q ∈ K,

by inductive hypothesis and from (R7), we get the thesis. In case if pϕ1 ∧ · · · ∧
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ϕn−1q ∈ T, we get that ϕ1, . . . , ϕn−1 ∈ T and ϕn ∈ K. Thus from (a), (A11) and (R1)

we will derive the sequent p¬((ϕ1 ∧ · · · ∧ ϕn−1) ∧ ϕn) ⊢ ¬ϕnq. From this, applying

(R6), we get the first of the sequents being proved. Similarly, from (A11) and (R6)

we will derive the sequent p¬ϕ1∨· · ·∨¬ϕn−1∨¬ϕn ⊢ ¬(ϕ1∧· · ·∧ϕn−1)∨¬ϕnq. From

this and from (b), applying (R1) we get the second of the sequents being proved.

The above reasoning can be repeated for an arbitrary combination of brackets,

applying respectively (5.6) and (5.7) or (5.16) and (5.17).

Lemma 6.3. If pϕ1 ∨ · · · ∨ ϕnq ∈ K, then the following sequents are theses of VFs:

¬(ϕ1 ∨ · · · ∨ ϕn) ⊢ ¬ϕ1 ∧ · · · ∧ ¬ϕn

¬ϕ1 ∧ · · · ∧ ¬ϕn ⊢ ¬(ϕ1 ∨ · · · ∨ ϕn)

Proof. For n = 1 the lemma holds by (5.1). Let n > 1. Then, by means of

(5.13), (5.14) and (R7) we will derive sequents: (a) p¬((ϕ1 ∨ · · · ∨ ϕn−1) ∨ ϕn) ⊢

¬(ϕ1∨· · ·∨ϕn−1)∧¬ϕnq and (b) p¬(ϕ1∨· · ·∨ϕn−1)∧¬ϕn ⊢ ¬((ϕ1∨· · ·∨ϕn−1)∨ϕn)q.

As inductive hypothesis, let us assume that the condition holds for n − 1. Thus in

case if pϕ1∧· · ·∧ϕn−1q ∈ K, by inductive hypothesis and by (R7), we get the thesis.

In case if pϕ1∨· · ·∨ϕn−1q ∈ F, we get that ϕ1, . . . , ϕn−1 ∈ F and ϕn ∈ K. Thus from

(a), (3.1) and (R1) we will derive the sequent p¬((ϕ1 ∨ · · · ∨ ϕn−1) ∨ ϕn) ⊢ ¬ϕnq.

From this, applying (A4) and (R4), we get the first of the sequents being proved.

Similarly, from (3.1), (A4) and (R4) we will derive the sequent p¬ϕ1∧· · ·∧¬ϕn−1∧

¬ϕn ⊢ ¬(ϕ1 ∨ · · · ∨ ϕn−1)∧¬ϕnq. From this, (b) and (R1) we will get the second of

the sequents being proved.

Let E
∧ be the set of elementary conjunctions. These will include variables and

their negations, and conjunctions built from variables and their negations. More-

over, let L
∨∧ be the set of all conjunctions from E

∧ and all disjunctions of these con-

junctions. Thus all members of L
∨∧ have a disjunctive–conjunctive normal form.

We will prove a couple of lemmas concerning the formulas from L
∨∧.

Lemma 6.4. For every κ ∈ E
∧ ∩ K there are such ϕ ∈ L

∨∧ ∩ K, that theses of VFs

are sequents: p¬κ ⊢ ϕq and pϕ ⊢ ¬κq.

Proof. By Lemma 6.2, (A1) (A2) and (R7).

Lemma 6.5. Let ϕ1, . . . , ϕn ∈ L
∨∧ for n > 0. If pϕ1 ∧ · · · ∧ ϕnq ∈ K, then there is

such ψ ∈ L
∨∧ ∩ K, that the following sequents are theses of VFs:

ϕ1 ∧ · · · ∧ ϕn ⊢ ψ

ψ ⊢ ϕ1 ∧ · · · ∧ ϕn

Proof. By induction on n. (I) For n = 1: by (5.1) and the assumption take ψ = ϕ1.
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(II) For n = 2: assume that ϕ1 = pκ1∨ · · · ∨ κmq and ϕ2 = pλ1∨ · · · ∨λlq, where

m, l > 0 and κi, λi ∈ E
∧. We will consider three cases.

(i) Let l = 1 = m. Then by the assumption pκ1 ∧ λ1q ∈ E
∧ ∩ K ⊆ L

∨∧. Hence,

by (5.1), we can set ψ = pκ1 ∧ λ1q.

(ii) Let m + l = k > 1 and m > 1. Then by the assumption, (5.1), (5.6), (5.7)

and (R7) we get sequents: pϕ1 ∧ ϕ2 ⊢ (κ1 ∨ (κ2 ∨ · · · ∨ κm)) ∧ ϕ2q and p(κ1 ∨ (κ2 ∨

· · · ∨ κm)) ∧ ϕ2 ⊢ ϕ1 ∧ ϕ2q. From these and from (A8) and (5.15) by application

(R7) we get sequents: (a) pϕ1 ∧ ϕ2 ⊢ (κ1 ∧ ϕ2) ∨ ((κ2 ∨ · · · ∨ κm) ∧ ϕ2)q and (b)

p(κ1 ∧ ϕ2) ∨ ((κ2 ∨ · · · ∨ κm) ∧ ϕ2) ⊢ ϕ1 ∧ ϕ2q.

As inductive hypothesis, let us assume that for n = 2 the lemma is true for all

m and l such that m + l < k. By the assumption and the Theorem 4.1 one of the

following three subcases holds:

(a) pκ1 ∧ ϕ2, (κ2 ∨ · · · ∨ κm) ∧ ϕ2q ∈ K. By inductive hypothesis, there are such

ψ1, ψ2 ∈ L
∨∧∩K, that sequents pκ1∧ϕ2 ⊢ ψ1q, pψ1 ⊢ κ1∧ϕ2q, p(κ2∨· · ·∨κm)∧ϕ2 ⊢

ψ2q and pψ2 ⊢ (κ2 ∨ · · · ∨ κm) ∧ ϕ2q are theses of VFs. Hence, applying (R7) to

sequents (a) and (b) we get: pϕ1 ∧ ϕ2 ⊢ ψ1 ∨ ψ2q and pψ1 ∨ ψ2 ⊢ ϕ1 ∧ ϕ2q.

(b) pκ1∧ϕ2q ∈ K and p(κ2 ∨ · · · ∨ κm)∧ϕ2q ∈ F. By inductive hypothesis, there

are such ψ ∈ L
∨∧ ∩ K, that sequents: pκ1 ∧ ϕ2 ⊢ ψq and pψ ⊢ κ1 ∧ ϕ2q are theses of

VFs. Hence from sequents (a) and (b) applying (R7) we will derive sequents: (a′)

pϕ1∧ϕ2 ⊢ ψ∨((κ2∨· · ·∨κm)∧ϕ2)q and (b′) pψ∨((κ2∨· · ·∨κm)∧ϕ2) ⊢ ϕ1∧ϕ2q. From

(a′), by application of (A10) and (R1), we get a sequent: pϕ1 ∧ ϕ2 ⊢ ψq. Hence,

applying (R5), we will derive pϕ1∧ϕ2 ⊢ ψ∨ (pi1 ∧¬pi1 )∨· · · ∨ (pi j
∧¬pi j

)q, where

pi1 , . . . , pi j
are all variables from the set V(ϕ1 ∧ ϕ2) \ V(ψ). Moreover, the sequent:

pψ ∨ (pi1 ∧ ¬pi1 ) ∨ · · · ∨ (pi j
∧ ¬pi j

) ⊢ ψq is a particular instance of the axiom

(A10). From this, applying (R6), we will get pψ∨ (pi1 ∧¬pi1 )∨ · · · ∨ (pi j
∧¬pi j

) ⊢

ψ ∨ ((κ2 ∨ · · · ∨ κm) ∧ ϕ2)q. From this and from (b′), applying (R1), we will get

pψ ∨ (pi1 ∧ ¬pi1 ) ∨ · · · ∨ (pi j
∧ ¬pi j

) ⊢ ϕ1 ∧ ϕ2q.

(c) pκ1 ∧ ϕ2q ∈ F and p(κ2 ∨ · · · ∨ κm) ∧ ϕ2q ∈ K. Analogously to (b).

(iii) Let m + l > 2 and l > 1. Analogously to the case (ii).

(III) For n > 2: as inductive hypothesis, let us assume that the lemma being

proved is true for all m < n. Consider two cases:

(i) pϕ1∧· · ·∧ϕn−1q ∈ K. Then, by inductive hypothesis, there is such ψ′ ∈ L
∨∧,

that sequents pϕ1 ∧ · · · ∧ ϕn−1 ⊢ ψ
′q and pψ′ ⊢ ϕ1 ∧ · · · ∧ ϕn−1q are theses of

VFs. From this and from (5.1), by the assumption and (R7), we get sequents:

pϕ1∧· · ·∧ϕn ⊢ ψ
′∧ϕnq and pψ′∧ϕn ⊢ ϕ1∧· · ·∧ϕnq. Applying inductive hypothesis,

again we get such ψ ∈ L
∨∧, that sequents pψ′∧ϕn ⊢ ψq and pψ ⊢ ψ′∧ϕnq are theses

of VFs. Thus by application of (R1) we get the theses being proved.

(ii) pϕ1∧· · ·∧ϕn−1q < K. Then pϕ1∧· · ·∧ϕn−1q ∈ T and ϕn ∈ K. Thus, applying

(R5), from the thesis pϕ1 ∧ · · · ∧ϕn−1 ∧ϕn ⊢ ϕnq of the schema (3.1) we will derive
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the sequent pϕ1∧· · ·∧ϕn−1∧ϕn ⊢ ϕn∨(pi1∧¬pi1 )∨· · ·∨(pi j
∧¬pi j

)q, where pi1 , . . . ,

pi j
are all variables from the set V(ϕ1∧ · · · ∧ϕn−1) \V(ϕn). Moreover, the particular

instance of the axiom (A10) is the sequent: pϕn∨(pi1∧¬pi1 )∨· · ·∨(pi j
∧¬pi j

) ⊢ ϕnq.

From this, applying (R4), we will get pϕn ∨ (pi1 ∧ ¬pi1 ) ∨ · · · ∨ (pi j
∧ ¬pi j

) ⊢

ϕn ∧ (ϕ1 ∧ · · · ∧ ϕn−1)q. From this and from (A4), applying (R7), we will get

pϕn ∨ (pi1 ∧ ¬pi1 ) ∨ · · · ∨ (pi j
∧ ¬pi j

) ⊢ ϕ1 ∧ · · · ∧ ϕnq.

Considerations from (III) are repeated for an arbitrary combination of brackets.

Lemma 6.6. For every ϕ ∈ L
∨∧∩K there is such ψ ∈ L

∨∧∩K, that sequents p¬ϕ ⊢ ψq

and pψ ⊢ ¬ϕq are theses of VFs.

Proof. Assume that ϕ = pκ1 ∨ · · · ∨ κnq, where κi ∈ E
∧ dla i = 1, . . . , n > 1. By the

Lemma 6.3 we get theses p¬(κ1∨· · ·∨κn) ⊢ ¬κ1∧· · ·∧¬κnq and p¬κ1∧· · ·∧¬κn ⊢

¬(κ1 ∨ · · · ∨ κn)q.

Let κi1 , . . . , κim ∈ K dla 0 < m 6 n. By Lemma 6.4 there are such ϕi1 , . . . ,

ϕim ∈ L
∨∧ ∩ K, that for j = 1, . . . , m sequents p¬κi j

⊢ ϕi j
q and pϕi j

⊢ ¬κi j
q are

theses of VFs.

Let us notice that since ϕ,¬κi j
∈ K for 1 6 j 6 m, so p¬κi1 ∧ · · · ∧ ¬κimq ∈ K.

Hence, beginning with the thesis ¬κi1 ∧ · · · ∧¬κim ⊢ ¬κi1 ∧ · · · ∧¬κimq and applying

(R7), we get theses: (a) p¬κi1 ∧· · ·∧¬κim ⊢ ϕi1 ∧· · ·∧ϕimq and (b) pϕi1 ∧· · ·∧ϕim ⊢

¬κi1 ∧ · · · ∧ ¬κimq.

From (A3), (3.1) (5.6), (5.7) and (R1) we will derive the sequent p¬ϕ ⊢ ¬κi1 ∧

· · ·∧¬κimq. From this and from (a) we get the sequent p¬ϕ ⊢ ϕi1 ∧ · · · ∧ϕimq. From

this, applying (R4), we derive (a′) p¬ϕ ⊢ ϕi1 ∧ · · · ∧ϕim ∧ (pk1
∨¬pk1

)∧ · · · ∧ (pkl
∨

¬pkl
)q, where pk1

, . . . , pkl
are all variables from the set V(ϕ) \ V(ϕi1 ∧ · · · ∧ ϕim ).

From (b), (A3) and (R1) we will derive pϕi1∧· · ·∧ϕim∧(pk1
∨¬pk1

)∧· · ·∧(pkl
∨

¬pkl
) ⊢ ¬κi1 ∧ · · · ∧¬κimq. Since remaining elementary conjunctions occurring in ϕ

are in F, so applying (R4) we get pϕi1 ∧ · · ·∧ϕim ∧ (pk1
∨¬pk1

)∧ · · ·∧ (pkl
∨¬pkl

) ⊢

¬κ1 ∧ · · · ∧ ¬κnq. From this, applying (R1), we derive (b′) pϕi1 ∧ · · · ∧ ϕim ∧ (pk1
∨

¬pk1
) ∧ · · · ∧ (pkl

∨ ¬pkl
) ⊢ ¬ϕq.

By application of the Lemma 6.5 to the conjunction pϕi1 ∧ · · · ∧ ϕim ∧ (pk1
∨

¬pk1
) ∧ · · · ∧ (pkl

∨ ¬pkl
)q, there is such ψ ∈ L

∨∧, that—applying the rule (R7) to

(a′) and (b′)—we get theses: p¬ϕ ⊢ ψq and pψ ⊢ ¬ϕq.

Lemma 6.7. For every ϕ ∈ K there is such ϕa ∈ L
∨∧ ∩K, that sequents pϕ ⊢ ϕaq and

pϕa ⊢ ϕq are theses of VFs.

Proof. Induction on the complexity of the formula ϕ.

(I) ϕ ∈ V. Then ϕ ∈ L
∨∧ ∩ K and pϕ ⊢ ϕq is a thesis of the form (5.1).
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(II) ϕ = p¬ψq. Then ψ ∈ K. As inductive hypothesis, let us assume that for

ψ the lemma being proved holds, i.e., there is such ψa ∈ L
∨∧ ∩ K, that sequents

pψ ⊢ ψaq and pψa ⊢ ψq are theses of VFs. Thus, applying rule (R7) to pϕ ⊢ ϕq, we

get sequents p¬ψ ⊢ ¬ψaq and p¬ψa ⊢ ¬ψq. Applying Lemma 6.6 to ψa we get such

ϕa ∈ L
∨∧, that theses of VFs are sequents p¬ψa ⊢ ϕaq and pϕa ⊢ ¬ψaq. Thus, by

(R1), we get the theses being proved.

(III) ϕ = pψ ∨ χq. Consider three cases. (i) ψ, χ ∈ K. By inductive hypothesis,

there are such ψa, χa ∈ L
∨∧, that we will derive theses: pψ ⊢ ψaq, qψa ⊢ ψq,

pχ ⊢ χaq and pχa ⊢ χq. From these, by (R7), we have: pϕ ⊢ ψa ∨ χaq and

pψa ∨ χa ⊢ ϕq. Clearly, pψa ∨ χaq ∈ L
∨∧. (ii) ψ ∈ K and χ ∈ F. Then by (A10),

we have pϕ ⊢ ψq. By inductive hypothesis, there is such ψa ∈ L
∨∧, that sequents

pψ ⊢ ψaq and pψa ⊢ ψq are theses of VFs. By (R1) and (R5), we have the thesis

pϕ ⊢ ψa ∨ (pi1 ∧ ¬pi1 ) ∨ · · · ∨ (pi1 ∧ ¬pik )q, where pi1 , . . . , pik are all variables

from the set V(ϕ) \ V(ψ). Moreover, applying the axiom pψa ∨ (pi1 ∧ ¬pi1 ) ∨ · · · ∨

(pi1 ∧¬pik ) ⊢ ψaq of the form (A10) and the rules (R1) and (R5) we will get thesis:

pψa ∨ (pi1 ∧¬pi1 )∨ · · · ∨ (pi1 ∧¬pik ) ⊢ ψ∨ χq. (iii) ψ ∈ F and χ ∈ K. Analogously

to (ii), applying (A11) and (R6).

(IV) ϕ = pψ ∧ χq. Consider two cases. (i) ψ, χ ∈ K. By inductive hypothesis,

for some ψa, χa ∈ L
∨∧ we have theses: pψ ⊢ ψaq, pψa ⊢ ψq, pχ ⊢ χaq and pχa ⊢ χq.

From these, by (R7), we have theses: pϕ ⊢ ψa ∧ χaq and pψa ∧ χa ⊢ ϕq. By

Lemma 6.5, there is ϕa ∈ L
∨∧ such that sequents pψa∧χa ⊢ ϕaq and pϕa ⊢ ψa∧χa ⊢

ϕaq are theses VFs. From (R1) we thus get sequents pϕ ⊢ ϕaq and pϕa ⊢ ϕq.

(ii) ψ ∈ K and χ ∈ T. Then, by inductive hypothesis, for some ψa ∈ L
∨∧ we get

theses: pψ ⊢ ψaq and pψa ⊢ ψq. Now from the axiom pϕ ⊢ ψq of the form (A3)

and (R1), we have pϕ ⊢ ψaq. Hence applying rules (R1) and (R5) we get thesis

pϕ ⊢ ψa ∨ (pi1 ∧ ¬pi1 ) ∨ · · · ∨ (pi1 ∧ ¬pik )q, where pi1 , . . . , pik are all variables

from the set V(ϕ) \ V(ψ). Moreover, applying axiom pψa ∨ (pi1 ∧ ¬pi1 ) ∨ · · · ∨

(pi1 ∧¬pik ) ⊢ ψaq of the form (A10) and the rules (R1) and (R4) we will get thesis:

pψa ∨ (pi1 ∧¬pi1 )∨ · · · ∨ (pi1 ∧¬pik ) ⊢ ψ∧ χq. (iii) ψ ∈ T and χ ∈ K. Analogously

to (ii), applying (3.1) and (A4).

For a formula ϕ from K by ϕ◦ we will denote its canonical disjunctive-con-

junctive normal form (cf. (Asser, 1959)). Let V(ϕ) = {pi1 , . . . , pin } for i1 < · · · < in.

Then ϕ◦ ≔ κk
1
∨ · · · ∨ κk

m, where κk
i
= p

bi1

i1
∧ · · · ∧ p

bin

in
, the evaluation V(ϕ) ∋

pi j
7→ bi j

∈ {0, 1} satisfies the formula ϕ and p
bi

i j
is pi j

, if bi j
= 1, otherwise it is

¬pi j
. Moreover, the order of elementary conjunctions in ϕ◦ is determined by an

increasing order of numbers bi1 . . . bin in binary notation.

Lemma 6.8. If ϕ ∈ K, then sequents pϕ ⊢ ϕ◦q and pϕ◦ ⊢ ϕq are theses of VFs.
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Proof. For ϕ ∈ K let V(ϕ) = {pi1 , pi2 , . . . , pin}, where i1 < i2 < · · · < in.

By Lemma 6.7, there is such ϕa ∈ L
∨∧∩K, that sequents pϕ ⊢ ϕaq and pϕa ⊢ ϕq

are theses of VFs. Let κ1, . . . , κm (for m > 0) be all elementary conjunctions in ϕa

that are elements of K.

For 1 6 i 6 m, by (A4), (5.6), (5.7), (A3), (5.2), (R1) and (R7), we can de-

rive sequents pκi ⊢ κ
′
i
q and pκ′

i
⊢ κiq, where V(κ′

i
) = V(κi) and κ′

i
differs from κi

only in that, that no element of the conjunction κ′
i

repeats and these are ordered

according to an increasing order of indexes of variables. Let now l1 < · · · < l j

and {pl1 , . . . , pl j
} = V(ϕ) \ V(κi). By (A4), (5.15), (A8), (5.6), (5.7) and (R7), we

get sequents pκ′
i
∧ (pl1 ∨ ¬pl1 ) ⊢ (κ′

i
)1
1
∨ (κ′

i
)0
1
q and pκ1

1
∨ κ0

1
⊢ κ′

i
∧ (pl1 ∨ ¬pl1 )q,

where (κ′
i
)1
1

and (κ′
i
)0
1

differ from pκ′
i
∧ pl1q and pκ′

i
∧ ¬pl1q, respectively, only in

that, that their elements are ordered according to increasing numbers of indexes of

variables. In a second step, for a variable pl2 , in an analogous way, we get sequents

p(κ′
i
)1
1
∧ (pl2 ∨ ¬pl2 ) ⊢ (κ′

i
)11
12
∨ (κ′

i
)10
12
q, p(κ′

i
)11
12
∨ (κ′

i
)10
12
⊢ (κ′

i
)1
1
∧ (pl2 ∨ ¬pl2 )q,

p(κ′
i
)0
1
∧ (pl2 ∨ ¬pl2 ) ⊢ (κ′

i
)11
12
∨ (κ′

i
)10
12
q and p(κ′

i
)11
12
∨ (κ′

i
)10
12
⊢ (κ′

i
)0
1
∧ (pl2 ∨ ¬pl2 )q.

Thus, by (5.15), (A8), (R1) and (R7), we have sequents pκ′
i
∧ (pl1 ∨ ¬pl1 ) ∧ (pl2 ∨

¬pl2 ) ⊢ (κ′
i
)11
12
∨ (κ′

i
)10
12
∨ (κ′

i
)01
12
∨ (κ′

i
)00
12
q and p(κ′

i
)11
12
∨ (κ′

i
)10
12
∨ (κ′

i
)01
12
∨ (κ′

i
)00
12
⊢

κ′
i
∧ (pl1 ∨ ¬pl1 ) ∧ (pl2 ∨ ¬pl2 )q. These steps are repeated for j and thus we get

sequents pκ′
i
∧ (pl1 ∨¬pl1 )∧ · · · ∧ (pl j

∨¬pl j
) ⊢ (κ′

i
)11...1
12... j
∨ (κ′

i
)11...0
12... j
∨ . . .∨ (κ′

i
)00...0
12... j
q

and p(κ′
i
)11...1
12... j
∨ (κ′

i
)11...0
12... j
∨ . . .∨ (κ′

i
)00...0
12... j
⊢ κ′

i
∧ (pl1 ∨¬pl1 )∧· · ·∧ (pl j

∨¬pl j
)q. Let us

denote derived 2 j elementary disjunction by κka
i

. By construction, V(κka
i

) = V(ϕ).

Notice that by (A10), (A11), (5.12), (5.16), (5.17), (R1), (R7) and previously

proved theses, we will derive a sequent pϕa ⊢ κ′
1
∨ · · · ∨ κ′mq. From this, applying

(R4), (5.12), (5.16), (5.17), (A8), (5.15), (A3), (3.1), (R1), (R7) and Lemma 6.1,

we get sequent pϕa ⊢ κka
1
∨ · · · ∨ κka

m q.

Moreover, applying (5.18), (5.19), (A3), (3.1), (5.12), (5.16), (5.17), (R1) and

(R7), we will derive the sequent pκka
1
∨ · · · ∨ κka

m ⊢ κ
′
1
∨ · · · ∨ κ′mq. From this and

previously proved theses, by (5.12), (5.16), (5.17), (R5), (R6) and (R7), we get the

thesis pκka
1
∨ · · · ∨ κka

m ⊢ ϕ
aq.

Now, by (5.16), (5.17), (5.8), (5.9) and (5.12) from disjunction pκka
1
∨ · · · ∨ κka

m q

we can delete elementary conjunctions that repeat and arrange it in order proper for

a formula ϕ◦.

It remains to show that the above disjunction is really the formula ϕ◦.

Since this disjunction is equivalent, within CPC, to the formula ϕ, thus an arbi-

trary 0-1 evaluation pi1 7→ bi1 , . . . , pin 7→ bin satisfies the formula ϕ iff it satisfies

the disjunction in question, i.e., it satisfies at least one of its members. Hence it fol-

lows, firstly, that the disjunction contains all elementary conjunctions determined

by evaluations satisfying the formula ϕ; secondly, that only such conjunctions.
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Now we can finish the proof of the Completeness Theorem.

Proof of Completenness Theorem 4.2. Assume that ϕ |=s ψ. Thus ϕ |= ψ, V(ψ) ⊆

V(ϕ) and ϕ, ψ ∈ K. Moreover, set ψ′ = pψ∧ (pi1 ∨¬pi1 )∧ · · · ∧ (pin ∨¬pin )q, where

pi1 , . . . , pin are all variables from the set V(ϕ) \ V(ψ). Thus V(ψ′) = V(ϕ).

By Lemma 6.8 we get theses pϕ ⊢ ϕ◦q and pψ′◦ ⊢ ψ′q. Since ϕ |= ψ and ψ′ is

equivalent, within CPC, to ψ, thus ϕ◦ |= ψ′◦. Therefore all members of disjunction

ϕ◦ occur also in a disjunction ψ′◦. Hence by (5.20) and (R1) we will derive thesis

pϕ◦ ⊢ ψ′◦q. Moreover from (A3) and (R1) we will derive thesis pψ′ ⊢ ψq. Thus,

applying the rule (R1) to the theses already proved, we will derive pϕ ⊢ ψq.
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