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Jean Paul Van Bendegem

CLASSICAL ARITHMETIC IS QUITE UNNATURAL

1. Aim of the paper

It is a generally accepted idea that strict finitism is a rather marginal view
within the community of philosophers of mathematics. If one therefore wants
to defend such a position (as the present author does), then it is useful
to search for as many different arguments as possible in support of strict
finitism. Sometimes, as will be the case in this paper, the argument consists
of, what one might call, a “rearrangement” of known materials. The novelty
lies precisely in the rearrangement, hence on the formal-axiomatic level most
of the results presented here are not new. In fact, the basic results are
inspired by and based on Mycielski (1981). This does not imply of course
that Mycielski would agree with my use of his results (frankly, I think he
would not1 ).

The argumentative strategy of this paper is to show that classical arith-
metic (I will limit myself to that theory), say in the form of Peano Arithmetic
(PA), is a quite “unnatural” theory (in a sense to be specified) and, in con-
trast, that strict finitist arithmetics are quite natural. Obviously what needs
to be specified is the meaning of “(un)natural”. To do that, I want to invoke
an analogy with supertasks.

In general terms a supertask is any task that consists of a countably
infinite number of repeated actions to be executed in a finite time interval2.

1 One of the remarks in the paper (p. 627, remark (7)) states that particular axioms are
introduced to secure the potential infinity of the theory. This makes clear that Mycielski
is not interested in strict finitism as such.

2 An excellent overview of supertasks is Laraudogoitia (2002).
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A typical example of a supertask is the so-called Thomson lamp. A one-
minute interval is divided into a countably infinite number of subintervals
— half a minute for the first interval, half of what remains for the next
interval, and so forth — and in the first interval the lamp is switched on,
in the second switched off, and so forth. Usually these supertasks have
been devised to ask (and preferably to answer) questions about the relation
between the successive stages up to the end of the one-minute interval and
the state at the end of the time interval. In the case of the Thomson lamp,
e.g., the question is whether the lamp is on or off at the end. There is a good
argument to show that the lamp is in neither state, hence this supertask is
(sometimes) used to undermine particular forms of determinism. However
for the purpose of this paper it is another relation I want to focus on. Often in
supertasks, even if the outcome at the end of the time-interval is determined,
the outcome turns out to be quite different from the previous stages. A
splendid illustration of how different things can be is the Ross paradox3.

In the Ross supertask an empty box and a countably infinite number of
labeled balls are given. In the first interval balls 1 up to 10 go in the box
and 1 goes out, in the second interval 11 up to 20 go in and 2 comes out, In
general in the nth interval, balls 10(n − 1) + 1 up to 10n go in and n comes
out. After one minute, surprisingly enough, the box has to be empty. The
argument is quite simple: if there were to a ball left in the box, that ball
must have a label, say k, but in the kth interval that ball was removed from
the box. Formally all of this seems quite correct, but what is important for
the purpose of this paper is the amazing if not staggering contrast between
the final outcome — an empty box — and all the previous stages where at
each stage 9 balls are added to the box.

Suppose now that we had arguments in support of the view that the
stages before the final outcome are far more likely to occur “in the real world”
than the final outcome itself. Or better still: suppose we had arguments to
believe that the final outcome is an ideal state never to be reached. Is it not
reasonable then to argue that we would do better to study the stages before
the outcome rather than the outcome itself? What does it help us to make
an elaborate study of an empty box to remain within the story of Ross’
paradox — when the situation that we are most likely to be confronted with
is a nearly uncontrollably overflowing box4? Little or nothing must be the

3 Papers directly related to this paradox are: Allis and Koetsier (1991) and (1995),
Holgate (1994) and Van Bendegem (1994a)

4 A perhaps silly example. Questions about the size of the box are of no importance
if we only take the final state into account, since the box in that state is empty. But at
stage, say 1010, there will be 9.1010 balls in the box. At those stages one should definitely
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answer.

Here is the analogy. In terms of the numbers (or, perhaps better, the
numerals) we deal with everyday, it seems obvious to me that we are always
dealing with finite sets of such numbers (and a finite number of such sets).
I am referring here of course to the use of actual numerals in a given nota-
tion system, e.g., in a decimal system a numeral would be 67236856. I have
presented arguments in other papers to defend the thesis that the world we
are in and the capacities we have to develop in order to know this world, are
all perfectly finite5. Although many philosophers and mathematicians will
accept this point — apparently that is not what they see as a problem — ,
they will nevertheless claim that one should make abstraction of these ex-
plicitly finite bounds, be a bit more liberal and therefore use an arithmetical
theory such as PA. In short, PA is an ideal state. And this statement leads
directly to the following analogy.

The basic idea or suggestion of this paper is to see PA as the final outcome
of a kind of supertask6. Or, in other words, the question is whether it is
possible to find a series of stages Si that approach PA as closely as possible
in such a way that:

(a) all stages are strictly finite, and

(b) all stages have a set of (nice) properties in common, and

(c) PA does not have these (nice) properties and therefore is too different
from the previous stages to be interesting.

If such a thing is possible, then it shows that PA is quite “unnatural” and,
assuming as I have done, that the stages provide us with a better description
of things as they are, it is therefore more interesting to stick with these
stages, and simply to forget about the final outcome, i.e. PA. In other
words: one should become a strict finitist7.

worry about the size of the box.
5 See Van Bendegem (1994b) and (1998).
6 The less important thing is the one-minute interval. My argumentation does not

change if the one-minute interval becomes an open interval. The point is the fundamental
difference between a particular stage and the final outcome.

7 Of course for the purpose of this paper, I am talking about a countably infinite number
of stages. This is only motivated by argumentative considerations. I am presenting an
argument to the defender of PA and, hence, to be able to “attack” PA, at least I have to
use the same language, the same concepts, and so on. A comparison: for an atheist to
be able to discuss with a theologian what are, if any, God’s properties, the atheist will
actually have to use the word God.
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The next paragraph gives a full formal description of an arbitrary stage
Si. Paragraph 3 shows how the final outcome can be reached from the
previous stages. It is shown that this limit is indeed PA. It is then easily
demonstrated that all the nice properties do in fact disappear. Finally in
paragraph 4 some further consequences are discussed.

2. Formal presentation

The object of this part is to present a formal description of a stage Si and
discuss some of its properties. The first thing we need is a language L.

2.1. Language

(a) Vocabulary:

(a1) constant names for the first i+1
natural numbers: 0, s(0), s2(0), , si(0)

(a2) a constant name for the “last” number: ∗

(a3) names for variables: x, y, z, . . .
(a4) function names: s,+, .
(a5) a single predicate: =
(a6) logical constants: ∼,⊃,≡,&,∨,∃,∀

(b) Formation rules:

(b1) the set T of terms t, t′, t′′, . . . is defined as usual, i.e. a term t is
any expression that is either a constant name, a variable or the
result of applying one of the functions to given terms.

(b2) the set of atomic formulas AF is also defined as usual, i.e., the
set of all formulas of the form t = t′, where t and t′ are terms.

(b3) the set of all formulas F is equally defined as usual.

Note concerning (b1): this definition does allow, of course, to write down
expressions such as s(s(si(0)). Obviously this can be read as a constant name
indicating the number si+2(0). However in this paper the expression will be
read as the application, two times, of the successor function to the constant
name si(0). The fact that I am rather liberal about the expressibility of the
language is to go along with the infinitist as far as possible. From a strict
finitist framework the length of the formulas should also be strictly finite.
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2.2. Semantics

A model Mi for a stage Si is a triple 〈Di, Ii, vi〉 such that:

(c1) the domain Di is the set {0,1,2, . . . , i, i + 1}

(c2) the interpretation Ii is a function that maps:

- a constant name sj(0) onto j, so I(sj(0)) = j

- ∗ onto i + 1, so I(∗) = i + 1

- a variable x onto any element of the domain, I(x) = j, for some j.
- the function s corresponds to a function s from Di to Di such

that:
s(j) = j + 1, for all j ≤ i and s(i + 1) = i + 1.

- addition and multiplication onto the following functions:

- a function ⊕ from Di × Di to Di, such that

m⊕n = k if m⊕n ≤ i+1, where k is the classical value
m ⊕ n = i + 1 for all other values,

- a function ⊕ from Di × Di to Di, such that

m⊕n = k if m⊕n ≤ i+1, where k is the classical value
m ⊕ n = i + 1 for all other values.

(c3) the valuation vi is a function that maps:

- atomic formulas to {0, 1}, such that vi(t = t′) = 1 iff I(t) = I(t′)
- for all other formulas the clauses are perfectly classical.

Some comments, especially concerning (c2): the first remark concerns the
successor function that has a property that the standard successor function
does not have, viz. the loop at the end. That, of course, turns the model into
a strict finitist model. The second remark concerns addition and multipli-
cation. As will be shown in the next paragraph, it is not necessary once the
successor function has been so restricted to introduce any additional restric-
tions for these functions, although semantically speaking it seems otherwise.
This will turn out to be a very important element in defense of strict finitism.
I will return to this problem in the last paragraph of the paper.

2.3. Axiomatics

Since we have names for all elements in the domain and the number of ele-
ments is finite, it is completely straightforward to present an axiomatisation
of an arbitrary stage Si:
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(Ax0) All necessary logical axioms for first-order predicate calcu-
lus, together with the following non-logical axioms:

(Ax1) ∼ (∃x)(s(x) = 0)
(Ax2) (∀x)(∀y)((x 6=∗ &y 6=∗) ⊃ (s(x) = s(y) ⊃ x = y))
(Ax3) s(si(0)) =∗ &s(∗) =∗

(Ax4) (∀x)(x + 0 = x)
(Ax5) (∀x)(∀y)(x + s(y) = s(x + y))
(Ax6) (∀x)(x.0 = 0)
(Ax7) (∀x)(∀y)(x.s(y) = x.y + x)

and, on the level of rules :

(R1) The usual logical rules for first-order predicate calculus, together

with mathematical induction

(R2) A(0), (∀x)(A(x) ⊃ A(s(x))/(∀x)A(x).

I should add here that this presentation of a strict finitist arithmetic is
just one of a list of possibilities. In my (1994b), inspired by the approach of
Graham Priest, I used a type of paraconsistent logic instead of classical logic.
Both Vermeir (1999) and Batens (unpublished) have presented criticisms of
this approach and both authors have presented alternatives8. Here I have
tried to stay as close as possible to an axiomatic formulation of PA. As
one can obviously notice, the only difference with such an axiomatisation,
is the restriction in (Ax2) and the explicit addition of (Ax3). This is the
idea borrowed from Mycielski and also used by Vermeir; it is a very simple,
but extremely powerful idea. Next follow some theorems leading up to the
“nice” properties. Although the proofs are fairly trivial, I do write them
down explicitly because they have some interesting properties.

Theorem 1. (∀x)(x = s(∗) ⊃ x = ∗).

Proof. Suppose x = s(∗), use (Ax3) and conclude x = ∗.

Theorem 2. (∀x)(x 6= ∗ ⊃ x 6= s(x)).

8 One of the paraconsistent logics used is LP (Logic of Paradox) of Graham Priest.
This logic has three truth-values, viz. 0, 1, and 0,1. To be true means that 1 belongs to
the truth-value. The effect is that all statements that talk about numbers larger than the
limit are {0, 1}. Whereas in the presentation here, positive atomic statements turn out to
be true and their negations false. So, if ∗ = s3(0), then s4(0) = s4(0) and s4(0) = s7(0)
are both true, but s4(0) 6= s4(0) and s4(0) 6= s7(0) are both false. What remains the case
however, is that all mathematical reasoning above the limit is quite uninteresting.
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Proof. By induction:
Basis: 0 6=∗⊃ 0 6= s(0). The right part is guaranteed by (Ax1), hence
the result follows. Induction step: suppose (∀x)(x 6= ∗ ⊃ x 6= s(x)) and
assume that s(x) 6= ∗. We have to show that s(x) 6= s(s(x)). Suppose not:
s(x) = s(s(x)). Now either x = ∗ or x 6= ∗. The first case is excluded because
it follows by (Ax3) that s(x) = s(∗) = ∗, contradicting the assumption.
Thus x 6= ∗. As both x 6= ∗ and s(x) 6= ∗, (Ax2) implies that x = s(x).
Contradiction.

Corollary 1. (∀x)(x = s(x) ⊃ x = ∗).

Theorem 3. (∀x)(x 6= 0 & x 6= s(0) & . . . & x 6= si(0) ⊃ x = ∗).

Proof. By induction:
Basis: trivial.
Induction step: suppose x 6= 0 & x 6= s(0) & . . . & x 6= si(0) ⊃ x = ∗.
Assume that we have s(x) 6= 0 & s(x) 6= s(0) & . . . & s(x) 6= si(0). We now
have to show that s(x) = ∗. From the formulas s(x) 6= sj(0), for j ranging
from 1 to i, follows that x 6= sj−1(0). This takes care of all cases apart from
si(0). Now either x = si(0) or x 6= si(0). In the former case, it follows that
s(x) = s(si(0)) = ∗ by (Ax3). In the latter case, we use the induction step
to derive x = ∗, hence s(x) = ∗ by the same axiom.

Corollary 2. ∼(∃x)(A(x) & x 6= 0 & x 6= s(0) & . . . & x 6= si(0) &
x 6= ∗). (If there was such an x, then we would have x 6= 0 & x 6= s(0) &
. . . & x 6= si(0) & x 6= ∗, contradicting the previous theorem.)

Here is the first “nice” result.

Theorem 4. (∀x)A(x) is equivalent to A(0) & A(s(0)) & . . . A(si(0)) &
A(∗).

Proof. From left to right is trivial. Now suppose that A(0) & A(s(0)) &
. . . A(si(0)) & A(∗) and that ∼ (∀x)A(x) or (∃x) ∼ A(x). Either (x = 0∨x =
s(0)∨ . . . x = si(0)∨x = ∗) or ∼ (x = 0∨x = s(0)∨ . . . x = si(0)∨x = ∗). In
the former case, each possibility leads to a contradiction and, in the latter
case, we have a contradiction because of corollary 2.

Corollary 3. (∃x)A(x) is equivalent to A(0)∨A(s(0))∨ . . . A(si(0))∨A(∗)

Although it is perhaps an obvious fact, it is interesting to point out that the
reductions of the quantifiers is only possible because of the explicit axiom
(Ax3) that identifies the largest number. Without (Ax3) this is not possible.
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A perhaps less obvious fact to note is that mathematical induction is required
as a proof tool. Without (R2) the results above could not be obtained, hence
(R2) implies the reduction of the quantifier. Obviously if we have the reduc-
tion then, for any statement A(x), (R2) is derivable. For suppose that we
have A(0) and (∀x)(A(x) ⊃ A(s(x)). The second statement is equivalent to
a finite conjunction of statements of the form A(sj(0)) ⊃ A(sj+1(0)) and the
statement A(si(0)) ⊃ A(∗). All statements that follow will be of the form
A(∗) ⊃ A(∗), but these are trivial. Therefore by a straightforward applica-
tion of modus ponens, a sufficient number of times, we derive (∀x)A(x). In
short, (R2) and reduction of the quantifiers imply one another.

Next come the “nice” meta-results.

Theorem 5. ⊢ A iff |= A. In other words, Si is (weakly) complete.

Proof. Because of theorem 4 and corollary 3 the method of quantifier elim-
ination can be used to show completeness.

Theorem 6. Si is consistent.

Proof. Any model of Si is finite.

Theorem 7. Si is categorical.

Proof. Because each model has the same finite number of elements (due
to the explicit axiom (Ax3), as mentioned before), there is a one-to-one
mapping between every two models.

Corollary 4. Löwenheim-Skolem theorems do not apply.

Theorem 8. Si is (obviously) decidable.

Proof. Trivial.

Corollary 5. Gödel’s theorems do not apply.

As must be obvious by now, the theories at each stage Si are really among the
“nicest” theories imaginable: complete, decidable, consistent, categorical. It
seems to good to be true. As mentioned before, above the limit things
become quite uninteresting, but for the strict finitist that is precisely the
place not to be. If in addition one tends to be rather liberal about the
“true” size of ∗ — as I have tried to show in my (1998) — then all the
interesting things can be done well below the limit.
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Theorem 9. For every stage Si, there is a later stage Sj such that the
consistency of Si can be proven in Sj.

Proof. Although Si is a strictly finite stage9, one needs a later stage to be
able to express all the sentences of stage Si, (say by some form of coding),
but since Si is finite, such a stage must exist.

Now that we have a description of all the stages Si, let us turn our
attention to the “ugly” limit.

3. The unnaturalness of classical arithmetic

The first question to settle is how to define the limit. There are several
possibilities but, relying once more on the analogy with supertasks, one
possibility seems an obvious candidate. Some supertasks, such as Ross’
paradox, involves balls being moved around. It is therefore not easy to
determine their final positions. A quite acceptable criterion is a (kind of)
continuity principle. In terms of the movements of objects, such a principle
could state that, if at a certain interval a ball reaches a specific position and
in all later intervals it does not change from that position, then that will be
the position of the ball in the final outcome. My proposal is to apply the
same idea to the arithmetical domain, to the interpretation function and to
the truth-values of arithmetical statements in order to determine the limit
semantically. It is of course understood that the language of the limit is
the same language as the language of the different stages, unless otherwise
indicated. I formulate the “continuity” principle for arithmetic in terms of
the three following rules:

Rule 1 : A number n will belong to the domain D of the final outcome, if
there is a stage Si such that the number n belongs to the domain Di of that
stage and also belongs to all domains Dj of the stages Sj that follow. In
addition D will contain nothing but these numbers.

Rule 2 : The interpretation function I will map a term t onto an element d
of the domain D, I(t) = d, if at a certain stage Si, the interpretation of t
is d, Ii(t) = d and for all the stages Sj that follow, Ij(t) = d. If this is not

9 Although we have of course the full countable language of PA at our disposal, since
there are strictly finite models for a given stage, the number of sentences that are not
equivalent to one another is also finite. In that sense one does not need a full coding.
Or to put it otherwise: at a later stage we can always give a complete description of the
model that is finite.
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the case, then I does not assign anything and the term is deleted from the
language (hence the “nothing but” clause in Rule 1).

Rule 3 : If A is some statement and there is a stage Si, such that vi(A) = 1
(or 0), and such that for all stages Sj that follow, vj(A) = 1 (or 0) – in other
words, A acquires a stable truth-value —, then that will be the truth-value
of A in the final outcome. For all other statements it is supposed that the
final truth-value is false.

Rule 1 implies immediately that the domain D of the limit model will be the
set of the standard natural numbers, N= {0,1,2, . . . ,n, . . . }. A few things
follow straightforwardly from Rule 2:

(a) It is evident that for the constant names, I(si(0)) = i.

(b) Addition and multiplication will correspond to classical addition and
multiplication as this is the case at all stages. The more interesting
cases are the interpretation of ∗ and s:

(c) ∗ has to disappear from the language. At each stage ∗ is mapped onto
a different element of the domain, hence it has no stable interpretation.

(d) It thereby follows that the interpretation of the successor function s
has to be: s is a function from Di to Di such that s(j) = j + 1, for all
j in D.

By the elimination of the loop, i.e., the number such that s(j) = j at
a certain stage disappears as well, thus the restriction on s is without
meaning.

Applying rule 3 is slightly more tricky. First if we want to determine
the truth-values of complex statements, we can easily reduce the question to
atomic formulas, since in all stages Si the classical rules are followed. Fur-
thermore, since addition and multiplication are classically defined through-
out all the stages Si, we can limit ourselves to expressions of the form x = y,
where x and y are names for objects in the domain. But then it is obvious
that all statements of the form i = i will turn out to be true, because such
a statement is true right from the first stage (below the limit, classically so,
above the limit, trivially so). Consider now a statement i = j, for i and j

different numbers. Let i be smaller than j. Than at all stages below i, i = j

will turn out to be true (because it reduces to ∗ = ∗), but after stage Sj,
it will be false and remain so throughout all the remaining stages, hence it
is finally false. This settles the atomic formulas. To obtain a full valuation
function v, one now applies the classical rules within that stage.

(Note: One might wonder about the following formula (∃x)(x = s(x)).
At every stage Si this formula is true, should one not therefore conclude
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that it is true in the limit as well? But then the limit turns out to be
inconsistent. The answer is that it is not true in the limit. According to the
valuation function v and the interpretation function I, to assign the formula
a truth-value, we have to find out on what element of the domain D x will be
mapped. Suppose it is i, then for that element i 6= i + 1, hence no element
of the final domain makes the formula true.)

In short, what we have here is a semantic description of classical arith-
metic. Needless to say, the implication is that we loose all the “nice” proper-
ties. Out goes the categoricity, Löwenheim-Skolem’s theorems apply, Gödel’s
theorems apply, hence consistency ceases to be a trivial matter, and the the-
ory is undecidable. In that sense, classical arithmetic has little to do with
the previous stages. Hence the argument that since we have to deal with one
of the previous stages, it is a defensible attitude to ignore the limit theory.
In that sense, PA is indeed “unnatural”.

4. Further reflections on strict finitism and PA

4.1. Other stages and other limits

It is obvious that one needs the three rules (or similar ones) sketched above
to arrive at PA in the limit. The use of a (kind of) continuity principle needs
to be argued for. In Rule 3 an option is taken to declare all the undecided
cases false. This is not a necessary move. In a supervaluational mood of
thinking, Rule 3 could have been something like this:

(i) If A is true from a certain stage onwards, then A is true in the limit,

(ii) If A is false from a certain stage onwards, then A is false in the limit,

(iii) All other cases are undecided.
Although the limit case is a quite interesting one — the undecided cases all
involve ∗ —, it would not be PA. In short, the series of stages Si sketched in
this paper can lead to very different limits, depending on the rules that gov-
ern the transition from the elements of the series to the limit. In that sense,
the purpose of this paper can be reformulated as an attempt to show that
PA is a possible limit with the additional property that it differs maximally
from the preceding stages. There is however a nice symmetry present.

Just as there is one series leading to different limits, there are different
series of stages that could lead to the same limit, in our case PA. I briefly
sketch three possibilities:

(a) Start at S1 with Presburger Arithmetic (PrA). That means that we have
addition but not multiplication10. Suppose now we have an ordering on all

10 A slight difference that has to be noted is that in this approach we use the full
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triples of natural numbers 〈n,m, k〉, such that n.m = k, where n,m and k
are shorthand for sn(0), sm(0) and sk(0) respectively. In the limit one will
have reached PA and for all stages before that limit it will be the case that
it is decidable (as we do not have full multiplication, but just a finite set of
particular instances), but in the limit this property will have disappeared.
Actually there is a body of research on extensions of PrA, initiated by A.
L. Semenov11, to investigate at what point decidability breaks down before
one reaches PA. A typical example is the addition of a predicate P to PrA
that expresses the property “is a prime”.

(b) Start at S1 with the theory Q or Robinson Arithmetic (RA)12. RA
consists of the axioms of PA, thus in (Ax2) the restriction to ∗ can be dropped
and (Ax3) is replaced by:

(Ax3Q) (∀x)(x 6= 0 ⊃ (∃y)(x = s(y))).

The originality of RA is that the rule of mathematical induction is missing.
(Note: sometimes the label Q is reserved for the theory without (Ax3Q);
here I will stick to RA). If we set up a listing of all formulas of the language,
A1, A2, , An, . . . , then at each stage we can add the induction rule for that
formula. In the limit all formulas have been treated and so we end up in
PA.

(c) A perhaps rather exotic example is to start at S1 with the domain D1 con-
sisting only of primes and including 0 and 1, thus D1 = {0,1,2,3,5,7, . . . ,
pn, . . . }. If we define the successor function as defined over the primes, thus:

I(0) = 0,

I(s(0)) = 1,

I(sn(0)) = pn, where pn is the n-th prime (taking p2 = 2),

then addition and multiplication are defined although these will differ from
their “natural” interpretation. Take s2(0) + s3(0). This will equal s5(0),
but I(s2(0)) = 2, I(s3(0)) = 3, but I(s5(0)) = 7, thus 2 ⊕ 3 = 7. At the
next stage, the domain can be extended with all numbers consisting of the
product of two primes (implying of course a suitable reinterpretation of the
successor function). Bizarre though this structure may seem, it will still
be the case that from a certain stage onwards, mathematical statements

language of PA. Thus right from the start we have the multiplication function (or, better,
what will turn out to be multiplication in the limit), but, axiomatically, say at stage S2,
we only state that, e.g., s(0).s(0) = s(0).

11 See Michaux (2000) for an overview of these results.
12 See Nelson (1986) for a full treatment.
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will have stable truth-values. Since at stage S2, the domain will contain
0,1,2,3,4,5,6,7,. . . , we will have that 2 + 2 does equal 4 from that stage
onwards (and not 5 if we are in S1).

I want to emphasize once more that this presentation does not lead to
new results (not at first sight apparently). Its focus is on a different way of
looking at a theory, PA, that we seem to know so well and that appears to
be so “natural”.

4.2. Recovering PA within strict finitism.

Usually strict finitist arithmetic is seen as a severe reduction of PA, hence it is
seen as a very weak and poor theory. The straightforward counterargument
to this observation is the claim that:

if ⊢PA A, then ⊢Si
A.

It is easy enough to see why: the only difference between the axiomatization
of a stage Si and PA are the conditions that have been added to (Ax2). This
comes down to a (kind of) relativization13 of PA. Hence the result that says
that all stages are actually extensions of PA. However, one might observe
that, although the result looks impressive, all it amounts to is the following:

(a) A universally true statement in PA will obviously remain true if you
only consider a finite, initial fragment.

(b) An existential statement in PA will remain true if the number making
the statement true is below the limit and above the limit it will be
trivially true because the conditions are not satisfied.

(c) Both universal and existential false statements in PA can turn out to
be true. This is indeed not truly interesting.

There is however another way of looking at things. Suppose we are at a
certain stage Si. Consider the set of possible proofs we can write down. Some
of these proofs will make use of (Ax2) and/or (Ax3). All other proofs that do
not involve these axioms are entirely classically acceptable. Of course, this
idea introduces the delicate notion of “making use of”. I will not go into
this matter here, but assume that we can identify and ignore such trivial

13 I add the expression “kind of”, because it does not correspond to the classical defi-
nition of a relativization, where (∀x)A(x) is replaced by (∀x)(C ⊃ A(x)), where C stands
for the conditions, and (∃x)A(x) is replaced by (∃x)(C&A(x)). In this particular case,
(∃x)A(x) is replaced by (∃x)(C ⊃ A(x)).



244 Jean Paul Van Bendegem

cases where, e.g., in a proof where there is a transition from A to B, one
can always change it into a transition from A to A & (Ax3) and then to B,
so (Ax3) has been used. This is of the greatest importance, of course, when
mathematical induction is used. At stage Si we have two formulations, the
classical one and the strict finitist one. In some cases, the explicit version
can be replaced by the classical one, in some cases not. When things become
interesting, to show that a step in a proof is essential becomes itself subject
to proof. What follows is therefore intended as a first survey.

There are two possibilities:

(a) Proofs involving (Ax3) and possibly (Ax2):

These proofs are to be considered exclusively strict finitist. Because
quantifier elimination is possible, this means that all proofs are or
can be reduced to proofs by cases. It is in this sense, of course, that
strict finitism is trivial. Take a famous open problem, say Goldbach’s
conjecture. Of course, at stage S1000 (and for a few stages more as
well) the conjecture will be true. But that is (somewhat) misleading.
Note that in this case too the strict finitist will not to be satisfied. For
the question that remains is: is there an alternative proof that proves
the same statement, but does not involve (Ax3)? Which brings us to
case (b).

(b) Proofs involving (Ax2), but not (Ax3):

Consider any classical PA-proof involving the unconditional axiom
(Ax2). If in the proof every occurrence of that axiom is replaced by the
conditional axiom (Ax2), then we will have a strict finitist proof of the
same theorem. However, there is a very neat way, I believe, to retrieve
the classical proof from the strict finitist. I call this the “bookkeeping”
approach. Say we have a proof where on line (j) we have:

(j) (∀x)(∀y)((x 6= ∗ &y 6= ∗) ⊃ (s(x) = s(y) ⊃ x = y)).

A different way of writing down this line is as follows:

(j) (∀x)(∀y)(s(x) = s(y) ⊃ x = y) {x 6= ∗, y 6= ∗}.

This rewriting system14 has the effect that the proof itself will corre-
spond to the classical proof and the conditions to be satisfied will be

14 In Vermeir (1999) a similar idea is used, though in his case the object is to deal with
inconsistencies. Vermeir’s idea itself goes back to Batens’ adaptive logic. See, e.g., Batens
(2002) for a general introduction.
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gathered together on the right. A different way of formulating this idea
is that the classical mathematician is a strict finitist who (temporarily)
ignores the limit and acts as if there is no limit15. If one looks at a
standard proof for the theorem:

(∀x)(∀y)(∀z)(x + z = y + z ⊃ x = y),

then it is easy to see that the corresponding strict finitist proof will be
for the theorem:

(∀x)(∀y)(∀z)((x + z 6= ∗ & y + z 6= ∗) ⊃ (x + z = y + z ⊃ x = y)).

In the proof itself, (Ax2) is used once, hence if the conditions x+z 6= ∗

and y + z 6= ∗ are put aside, what one is left with is the classical proof
itself.

To end this paragraph, an important element to add is this: quite a
large number of fundamental theorems in PA do not involve (Ax2). Some
examples:

(i) (∀x)(∀y)(∀z)(x = y ⊃ x + z = y + z)

(ii) (∀x)(∀y)(∀z)(x = y ⊃ x.z = y.z)

(iii) (∀x)(∀y)(∀z)(x + y = y + x)

(iv) (∀x)(∀y)(∀z)((x + y) + z = x + (y + z))

(v) (∀x)(∀y)(∀z)((x.y).z = x.(y.z))

(vi) (∀x)(x + 0 = x)

(vii) (∀x)(x.0 = 0)

Are these not the properties of addition and multiplication we really worry
about? In that sense, becoming a strict finitist does not seem all that dis-
astrous from the point of view of mathematical productivity. Taken all

15 I must emphasize the “as if”. Another way of looking at this situation, is this: given
an axiomatic theory T that models some part of the world, it is always possible to try
to find out what happens if this or that axiom is deleted or changed. In some cases this
will still lead to useful models, but in some cases not. If I give a (as good as) complete
description of our solar system and then I ignore the Sun, I should not be surprised that
my model ceases to be interesting. Likewise, ignoring the limit in the arithmetical case,
has given rise to all kinds of explorations, very satisfying and challenging on their own, but
philosophically dangerous. Before you know, people actually believe that infinity exists.



246 Jean Paul Van Bendegem

together, in practice hardly anything changes, but philosophically we end
up at the other end of the spectrum.

At the same time some care has to be taken. If one would restrict oneself
to such universal statements, then one will end up with a theory that will
be very close to so-called PA−. This theory counts the statements (i) up
to (vii) among its axioms. All other axioms are also universal statements,
but induction axioms are lacking. (For a full treatment, see Kaye (1991),
especially chapter 2). On the one hand, the resulting theory turns out to be
quite powerful, meaning that a set of important classical theorems can be
shown to hold in this theory, but, on the other hand, some trivial results do
not hold, e.g.,

(∀x)(∃y)(2.y = x ∨ 2.y + 1 = x).

(The result is shown by the classical method of constructing a counter-model,
in this case the model is the ring Z[X] of polynomials in one variable X with
coefficients from Z, the set of integers.) This is, of course, a rather surprising
result and serves as a warning: it is not because most results match, that
therefore all results match. Being able to talk (strict finitistically) about
commutativity of addition and multiplication is fine, but not being able to
make the distinction between even and odd is precisely that: odd.

4.3. Yessenin-Volpin, Isles and Wittgenstein

I have already mentioned the work of Mycielski, Vermeir and Batens. To
complete this picture, I should also mention the work of A. S. Yessenin-
Volpin and David Isles16. Both have worked with the notion of a natural
number notation system (NNNS). My claim is not that a NNNS corresponds
to a stage Si in the construction outlined here, but there are definitely sim-
ilarities (although I have to add that I do not share Volpin’s basic research
program which was to find a finitary (in a rather unusual meaning of the
term) proof for the consistency of ZF). One of the similarities is that there
are different NNNSs. In their view there could be a NNNS that is closed
under the function s, but not under the function s ◦ s. One of the dissimi-
larities is that a NNNS comes in two parts, so to speak: a realized or actual
part (this would correspond to the domain of a stage Si) and a future part
(this future part has a more tree-like structure to indicate that different
actualisations are possible). In the construction here all stages are strictly
speaking actual.

16 An excellent overview of their work is to be found in Epstein & Carnielli (2000), pp.
260-270.
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There is however one other similarity that is worth mentioning. The
idea of a “bookkeeping” device also occurs in the work of Isles, with a dif-
ferent purpose however. A simple example will clarify the matter. Take the
following PA-theorem:

(∀x)(∃y)(∃z)(z = s(y)&y = s(x)).

In strict finitist terms it is important to know how many times the succes-
sor function is applied. At first glance, one is tempted to say, looking at
the formula, that s is only used in a one-step application. Isles’ idea is to
construct, as the proof goes along, the necessary requirements a model (in
his terms, a substitution graph) must satisfy to make the formula true. It is
easy to see that the partial model:

◦
s

◦ ◦
s

x y z

will do the job17. The model reveals that a double application of s is required.
Note at the same time that if we wanted to construct a model specifically
for this formula, then a domain with three elements is sufficient, which is an
important consideration for a strict finitist.

The idea to construct a model as the proof goes along suggests an al-
ternative way to bring back together syntax and semantics. Above all it
also suggests that the couple 〈P,M〉, where P is a proof and M a (partial)
model for that proof, actually forms the basis of mathematical thinking. I
will not explore this suggestion any further in this paper, but I will end with
a philosopher that is usually accused of not understanding mathematics in
a proper way. I am referring to Ludwig Wittgenstein (of course?) and his
Remarks on the Foundations of Mathematics. Without claiming that he was
a strict finitist (which he probably was not), if one thinks about the struc-
ture of the stages Si in a temporal setting, does not the following paragraph
become quite meaningful:

“However queer it sounds, the further expansion of an irrational
number is a further expansion of mathematics” (excerpt from
V–9, p. 267).

Although he talks about an irrational number, nothing should prevent us of
paraphrasing the quote as follows:

17 I must emphasize that this is my reading of the work of Isles. From his own writings,
it is rather clear that his research problem is to capture as well as possible what Yessenin-
Volpin might have had in mind, not to develop a “bookkeeping device”.
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“However queer it sounds, to move from one stage to the next
stage of a mathematical theory is a further expansion of mathe-
matics.”

If we find ourselves at a certain stage Si and we perform a calculation that
goes over the limit of that stage and we insist on having an answer, then
we move to another stage Sj that corresponds to an expansion. I have
added the phrase that “we insist on having an answer” to highlight another
Wittgensteinian idea, viz., that mathematics is a purposeful enterprise.

In conclusion (and to be clear about my purposes), all the considerations
and reflections presented in this paper show, besides my explicit thesis that
PA is an “unnatural” theory, the richness of strict finitist theories in contrast
to “popular” opinion that claims that such theories are trivial.
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